Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.255
Filter
1.
Mol Biol Rep ; 51(1): 956, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230759

ABSTRACT

BACKGROUND: Sulphotransferase (SOT) enzyme (encoded by a conserved family of SOT genes) is involved in sulphonation of a variety of compounds, through transfer of a sulphuryl moiety from 3'phosphoadenosine- 5'phosphosulphate (PAPS) to a variety of secondary metabolites. The PAPS itself is derived from 3'adenosine-5'phosphosulphate (APS) that is formed after uptake of sulphate ions from the soil. The process provides tolerance against abiotic stresses like drought and heat in plants. Therefore, a knowledge of SOT genes in any crop may help in designing molecular breeding methods for improvement of tolerance for drought and heat. METHODS: Sequences of rice SOT genes and SOT domain (PF00685) of corresponding proteins were both used for identification of SOT genes in wheat and six related species (T. urartu, Ae. tauschii, T. turgidum, Z. mays, B. distachyon and Hordeum vulgare), although detailed analysis was conducted only in wheat. The wheat genes were mapped on individual chromosomes and also subjected to synteny and collinearity analysis. The proteins encoded by these genes were examined for the presence of a complete SOT domain using 'Conserved Domain Database' (CDD) search tool at NCBI. RESULTS: In wheat, 107 TaSOT genes, ranging in length from 969 bp to 7636 bp, were identified and mapped onto individual chromosomes. SSRs (simple sequence repeats), microRNAs, long non-coding RNAs (lncRNAs) and their target sites were also identified in wheat SOT genes. SOT proteins were also studied in detail. An expression assay of TaSOT genes via wheat RNA-seq data suggested engagement of these genes in growth, development and responses to various hormones and biotic/abiotic stresses. CONCLUSIONS: The results of the present study should help in further functional characterization of SOT genes in wheat and other related crops.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Sulfotransferases , Triticum , Triticum/genetics , Triticum/enzymology , Gene Expression Regulation, Plant/genetics , Sulfotransferases/genetics , Sulfotransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Phylogeny , Chromosome Mapping/methods , Hot Temperature , Hordeum/genetics , Hordeum/enzymology , Chromosomes, Plant/genetics , Oryza/genetics , Oryza/enzymology , Genes, Plant
2.
Hypertension ; 81(10): 2101-2112, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39247955

ABSTRACT

BACKGROUND: High heritability of salt sensitivity suggests an essential role for genetics in the relationship between sodium intake and blood pressure (BP). The role of glycosaminoglycan genes, which are crucial for salinity tolerance, remains to be elucidated. METHODS: Interactions between 54 126 variants in 130 glycosaminoglycan genes and daily sodium excretion on BP were explored in 20 420 EPIC-Norfolk (European Prospective Investigation Into Cancer in Norfolk) subjects. The UK Biobank (n=414 132) and the multiethnic HELIUS study (Healthy Life in an Urban Setting; n=2239) were used for validation. Afterward, the urinary glycosaminoglycan composition was studied in HELIUS participants (n=57) stratified by genotype and upon dietary sodium loading in a time-controlled crossover intervention study (n=12). RESULTS: rs2892799 in NDST3 (heparan sulfate N-deacetylase/N-sulfotransferase 3) showed the strongest interaction with sodium on mean arterial pressure (false discovery rate 0.03), with higher mean arterial pressure for the C allele in high sodium conditions. Also, rs9654628 in HS3ST5 (heparan sulfate-glucosamine 3-sulfotransferase 5) showed an interaction with sodium on systolic BP (false discovery rate 0.03). These interactions were multiethnically validated. Stratifying for the rs2892799 genotype showed higher urinary expression of N-sulfated heparan sulfate epitope D0S0 for the T allele. Conversely, upon dietary sodium loading, urinary D0S0 expression was higher in participants with stable BP after sodium loading, and sodium-induced effects on this epitope were opposite in individuals with and without BP response to sodium. CONCLUSIONS: The C allele of rs2892799 in NDST3 exhibits higher BP in high sodium conditions when compared with low sodium conditions, whereas no differences were detected for the T allele. Concomitantly, both alleles demonstrate distinct expressions of D0S0, which, in turn, correlates with sodium-mediated BP elevation. These findings underscore the potential significance of genetic glycosaminoglycan variation in human BP regulation.


Subject(s)
Blood Pressure , Sulfotransferases , Humans , Male , Female , Middle Aged , Blood Pressure/genetics , Blood Pressure/physiology , Blood Pressure/drug effects , Sulfotransferases/genetics , Sulfotransferases/metabolism , Genotype , Heparitin Sulfate/metabolism , Heparitin Sulfate/urine , Adult , Glycosaminoglycans/urine , Glycosaminoglycans/metabolism , Sodium Chloride, Dietary/administration & dosage , Hypertension/genetics , Hypertension/physiopathology , Genetic Variation , Aged , Salt Tolerance/genetics , Polymorphism, Single Nucleotide , Cross-Over Studies , Prospective Studies , Alleles
3.
Cell Mol Life Sci ; 81(1): 350, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141086

ABSTRACT

Heparan sulfate (HS) proteoglycans are important regulators of cellular responses to soluble mediators such as chemokines, cytokines and growth factors. We profiled changes in expression of genes encoding HS core proteins, biosynthesis enzymes and modifiers during macrophage polarisation, and found that the most highly regulated gene was Sulf2, an extracellular HS 6-O-sulfatase that was markedly downregulated in response to pro-inflammatory stimuli. We then generated Sulf2+/- bone marrow chimeric mice and examined inflammatory responses in antigen-induced arthritis, as a model of rheumatoid arthritis. Resolution of inflammation was impaired in myeloid Sulf2+/- chimeras, with elevated joint swelling and increased abundance of pro-arthritic Th17 cells in synovial tissue. Transcriptomic and in vitro analyses indicated that Sulf2 deficiency increased type I interferon signaling in bone marrow-derived macrophages, leading to elevated expression of the Th17-inducing cytokine IL6. This establishes that dynamic remodeling of HS by Sulf2 limits type I interferon signaling in macrophages, and so protects against Th17-driven pathology.


Subject(s)
Macrophages , Mice, Inbred C57BL , Signal Transduction , Th17 Cells , Animals , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Macrophages/metabolism , Macrophages/immunology , Sulfatases/metabolism , Sulfatases/genetics , Sulfotransferases/metabolism , Sulfotransferases/genetics , Myeloid Cells/metabolism , Myeloid Cells/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Inflammation/metabolism , Inflammation/pathology , Mice, Knockout , Interleukin-6/metabolism , Interleukin-6/genetics , Heparitin Sulfate/metabolism
4.
Appl Microbiol Biotechnol ; 108(1): 440, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145804

ABSTRACT

Chondroitin sulfate E (CS-E) is a vital sulfated glycosaminoglycan with diverse biological functions and therapeutic potential. This study marks a significant milestone by achieving the first successful microbial production of chondroitin 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) in Escherichia coli, enabling recombinant CS-E biosynthesis. Initially, we identified sulfotransferases capable of converting chondroitin sulfate A (CS-A) to CS-E, but these enzymes were non-functional when expressed in E. coli. Moreover, there is no experimentally derived three-dimensional structure available for this specific sulfotransferase in the protein databases. To overcome this challenge, we developed a 3D model of GalNAc4S-6ST using AlphaFold2 and employed PROSS stability design to identify mutations that enhance enzyme solubility and stability with different N-terminal truncations. Experimental validation of these mutations led to the identification of several functional enzymes. Among various E. coli strains tested for enzyme expression, Origami B (DE3) emerged as the most effective host. This facilitated the enzymatic conversion of CS-A to CS-E, achieving a conversion rate of over 50%, and marking the first successful biosynthesis of animal-free CS-E. These findings represent a significant advancement towards the large-scale synthesis of CS-E using cost-effective carbon sources, offering a sustainable alternative to traditional sourcing from endangered animals like sharks. KEY POINTS: • Functional expression of GalNAc4S-6ST in a simple prokaryote was accomplished. • First-time biosynthesis of animal-free chondroitin sulfate E was accomplished.


Subject(s)
Chondroitin Sulfates , Escherichia coli , Recombinant Proteins , Sulfotransferases , Escherichia coli/genetics , Escherichia coli/metabolism , Chondroitin Sulfates/biosynthesis , Chondroitin Sulfates/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Models, Molecular , Enzyme Stability
5.
Genes Genomics ; 46(10): 1165-1174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153155

ABSTRACT

BACKGROUND: Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) catalyzes the sulfation of glucuronic acid residues in heparan sulfate proteoglycans, enabling these proteoglycans to interact with numerous ligands within tumor microenvironments. However, the prognostic role of HS2ST1 expression in cancer remains unclear. OBJECTIVE: This investigated HS2ST1 expression levels and their prognostic significance in various cancer types, demonstrated the prognostic value of HS2ST1 expression in hepatocellular carcinoma (HCC) patients, and identified molecular signatures associated with HS2ST1 expression. METHODS: HS2ST1 expression and patient survival data from The Cancer Genome Atlas (TCGA) datasets were analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) portal. We obtained gene expression and clinicopathological information on HCC patients from the TCGA and the Japan and France International Cancer Genome Consortium (ICGC) databases and performed survival analyses. We also examined relevant protein networks, differentially expressed genes, gene set enrichments, and tumor immune microenvironment features associated with HS2ST1 expression. RESULTS: HS2ST1 exhibited higher expression in eight tumor types compared with normal tissues and was associated with poor prognoses in five tumors, including HCC. HS2ST1 status correlated with poor prognosis in two ICGC HCC cohorts. Elevated HS2ST1 expression in HCC tumors was associated with signaling pathways involved in cell cycle progression, protein secretion, and mTORC1 signaling. Moreover, HS2ST1 expression levels were inversely correlated with immune cell infiltration in the tumor microenvironment. CONCLUSION: Our study elucidates the prognostic significance of HS2ST1 expression in HCC patients and provides insights into the potential roles of HS2ST1 in signaling pathways and the tumor microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sulfotransferases , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Prognosis , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Male , Female
6.
Biochemistry ; 63(18): 2310-2322, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194960

ABSTRACT

HYPOTHESIS: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION: SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.


Subject(s)
Cholesterol Esters , Cholesterol , Mitochondria , Mitochondrial Membranes , Sulfotransferases , Animals , Cholesterol/metabolism , Sulfotransferases/metabolism , Sulfotransferases/genetics , Mitochondria/metabolism , Cholesterol Esters/metabolism , Mitochondrial Membranes/metabolism , Mice , Cell Respiration/physiology , Cell Respiration/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Kidney/metabolism , Mice, Inbred C57BL
7.
Mol Cancer ; 23(1): 155, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095793

ABSTRACT

BACKGROUND: Immune checkpoint therapy (ICT) provides durable responses in select cancer patients, yet resistance remains a significant challenge, prompting the exploration of underlying molecular mechanisms. Tyrosylprotein sulfotransferase-2 (TPST2), known for its role in protein tyrosine O-sulfation, has been suggested to modulate the extracellular protein-protein interactions, but its specific role in cancer immunity remains largely unexplored. METHODS: To explore tumor cell-intrinsic factors influencing anti-PD1 responsiveness, we conducted a pooled loss-of-function genetic screen in humanized mice engrafted with human immune cells. The responsiveness of cancer cells to interferon-γ (IFNγ) was estimated by evaluating IFNγ-mediated induction of target genes, STAT1 phosphorylation, HLA expression, and cell growth suppression. The sulfotyrosine-modified target gene of TPST2 was identified by co-immunoprecipitation and mass spectrometry. The in vivo effects of TPST2 inhibition were evaluated using mouse syngeneic tumor models and corroborated by bulk and single-cell RNA sequencing analyses. RESULTS: Through in vivo genome-wide CRISPR screening, TPST2 loss-of-function emerged as a potential enhancer of anti-PD1 treatment efficacy. TPST2 suppressed IFNγ signaling by sulfating IFNγ receptor 1 at Y397 residue, while its downregulation boosted IFNγ-mediated signaling and antigen presentation. Depletion of TPST2 in cancer cells augmented anti-PD1 antibody efficacy in syngeneic mouse tumor models by enhancing tumor-infiltrating lymphocytes. RNA sequencing data revealed TPST2's inverse correlation with antigen presentation, and increased TPST2 expression is associated with poor prognosis and altered cancer immunity across cancer types. CONCLUSIONS: We propose TPST2's novel role as a suppressor of cancer immunity and advocate for its consideration as a therapeutic target in ICT-based treatments.


Subject(s)
Programmed Cell Death 1 Receptor , Sulfotransferases , Animals , Humans , Mice , Sulfotransferases/genetics , Sulfotransferases/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Cell Line, Tumor , Interferon-gamma/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , CRISPR-Cas Systems , Xenograft Model Antitumor Assays , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Disease Models, Animal
8.
Nat Commun ; 15(1): 7584, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217171

ABSTRACT

Heparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS. During development, this increases FGFR-, BM- and MEC-related gene expression, while in adult, it reduces MECs, increases BM and disrupts acinar polarity, resulting in salivary hypofunction. Defined 3-O-HS added to FGFR pulldown assays and primary organ cultures modulates FGFR signaling to regulate MEC BM synthesis, which is critical for secretory unit homeostasis and acinar function. Understanding how sulfated HS regulates development will inform the use of HS mimetics in organ regeneration.


Subject(s)
Basement Membrane , Cell Differentiation , Epithelial Cells , Heparitin Sulfate , Mice, Knockout , Salivary Glands , Signal Transduction , Sulfotransferases , Animals , Heparitin Sulfate/metabolism , Basement Membrane/metabolism , Salivary Glands/metabolism , Salivary Glands/cytology , Sulfotransferases/metabolism , Sulfotransferases/genetics , Mice , Epithelial Cells/metabolism , Epithelial Cells/cytology , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/genetics , Male , Fibroblast Growth Factors/metabolism
9.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000386

ABSTRACT

Cholangiocarcinoma (CCA), or bile duct cancer, is the second most common liver malignancy, with an increasing incidence in Western countries. The lack of effective treatments associated with the absence of early symptoms highlights the need to search for new therapeutic targets for CCA. Sulfatides (STs), a type of sulfoglycosphingolipids, have been found in the biliary tract, with increased levels in CCA and other types of cancer. STs are involved in protein trafficking and cell adhesion as part of the lipid rafts of the plasma membrane. We aimed to study the role of STs in CCA by the genetic targeting of GAL3ST1, an enzyme involved in ST synthesis. We used the CRISPR-Cas9 system to generate GAL3ST1-deficient TFK1 cells. GAL3ST1 KO cells showed lower proliferation and clonogenic activity and reduced glycolytic activity compared to TFK1 cells. Polarized TFK1 GAL3ST1 KO cells displayed increased transepithelial resistance and reduced permeability compared to TFK1 wt cells. The loss of GAL3ST1 showed a negative effect on growth in 30 out of 34 biliary tract cancer cell lines from the DepMap database. GAL3ST1 deficiency partially restored epithelial identity and barrier function and reduced proliferative activity in CCA cells. Sulfatide synthesis may provide a novel therapeutic target for CCA.


Subject(s)
Bile Duct Neoplasms , Cell Proliferation , Cholangiocarcinoma , Epithelial-Mesenchymal Transition , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Humans , Epithelial-Mesenchymal Transition/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Cell Line, Tumor , Sulfotransferases/metabolism , Sulfotransferases/genetics , Sulfotransferases/deficiency , Sulfoglycosphingolipids/metabolism , CRISPR-Cas Systems , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
10.
J Agric Food Chem ; 72(28): 15971-15984, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959404

ABSTRACT

Myristicin (MYR) mainly occurs in nutmeg and belongs to alkoxy-substituted allylbenzenes, a class of potentially toxic natural chemicals. RNA interaction with MYR metabolites in vitro and in vivo has been investigated in order to gain a better understanding of MYR toxicities. We detected two guanosine adducts (GA1 and GA2), two adenosine adducts (AA1 and AA2), and two cytosine adducts (CA1 and CA2) by LC-MS/MS analysis of total RNA extracts from cultured primary mouse hepatocytes and liver tissues of mice after exposure to MYR. An order of nucleoside adductions was found to be GAs > AAs > CAs, and the result of density functional theory calculations was in agreement with that detected by the LC-MS/MS-based approach. In vitro and in vivo studies have shown that MYR was oxidized by cytochrome P450 enzymes to 1'-hydroxyl and 3'-hydroxyl metabolites, which were then sulfated by sulfotransferases (SULTs) to form sulfate esters. The resulting sulfates would react with the nucleosides by SN1 and/or SN2 reactions, resulting in RNA adduction. The modification may alter the biochemical properties of RNA and disrupt RNA functions, perhaps partially contributing to the toxicities of MYR.


Subject(s)
Activation, Metabolic , Allylbenzene Derivatives , Cytochrome P-450 Enzyme System , RNA , Sulfotransferases , Tandem Mass Spectrometry , Animals , Mice , Sulfotransferases/metabolism , Sulfotransferases/genetics , Sulfotransferases/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Allylbenzene Derivatives/chemistry , Allylbenzene Derivatives/metabolism , RNA/metabolism , RNA/chemistry , Male , Hepatocytes/metabolism , Dioxolanes/metabolism , Dioxolanes/chemistry , Dioxolanes/toxicity , Liver/metabolism , Liver/enzymology , Disulfides/chemistry , Disulfides/metabolism , Myristica/chemistry , Myristica/metabolism
11.
Genes (Basel) ; 15(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062693

ABSTRACT

Cytosolic sulfotransferases (SULTs) are Phase 2 drug-metabolizing enzymes that catalyze the conjugation of sulfonate to endogenous and xenobiotic compounds, increasing their hydrophilicity and excretion from cells. To date, 13 human SULTs have been identified and classified into five families. SULT4A1 mRNA encodes two variants: (1) the wild type, encoding a 284 amino acid, ~33 kDa protein, and (2) an alternative spliced variant resulting from a 126 bp insert between exon 6 and 7, which introduces a premature stop codon that enhances nonsense-mediated decay. SULT4A1 is classified as an SULT based on sequence and structural similarities, including PAPS-domains, active-site His, and the dimerization domain; however, the catalytic pocket lid 'Loop 3' size is not conserved. SULT4A1 is uniquely expressed in the brain and localized in the cytosol and mitochondria. SULT4A1 is highly conserved, with rare intronic polymorphisms that have no outward manifestations. However, the SULT4A1 haplotype is correlated with Phelan-McDermid syndrome and schizophrenia. SULT4A1 knockdown revealed potential SULT4A1 functions in photoreceptor signaling and knockout mice display hampered neuronal development and behavior. Mouse and yeast models revealed that SULT4A1 protects the mitochondria from endogenously and exogenously induced oxidative stress and stimulates cell division, promoting dendritic spines' formation and synaptic transmission. To date, no physiological enzymatic activity has been associated with SULT4A1.


Subject(s)
Sulfotransferases , Animals , Humans , Sulfotransferases/genetics , Sulfotransferases/metabolism , Sulfotransferases/chemistry , Mice , Vertebrates/genetics , Conserved Sequence
12.
Matrix Biol ; 133: 134-149, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38944161

ABSTRACT

Heparan sulfate (HS) is an important component of the kidney anionic filtration barrier, the glomerular basement membrane (GBM). HS chains attached to proteoglycan protein cores are modified by sulfotransferases in a highly ordered series of biosynthetic steps resulting in immense structural diversity due to negatively charged sulfate modifications. 3-O-sulfation is the least abundant modification generated by a family of seven isoforms but creates the most highly sulfated HS domains. We analyzed the kidney phenotypes in the Hs3st3a1, Hs3st3b1 and Hs3st6 -knockout (KO) mice, the isoforms enriched in kidney podocytes. Individual KO mice show no overt kidney phenotype, although Hs3st3b1 kidneys were smaller than wildtype (WT). Furthermore, Hs3st3a1-/-; Hs3st3b1-/- double knockout (DKO) kidneys were smaller but also had a reduction in glomerular size relative to wildtype (WT). Mass spectrometry analysis of kidney HS showed reduced 3-O-sulfation in Hs3st3a1-/- and Hs3st3b1-/-, but not in Hs3st6-/- kidneys. Glomerular HS showed reduced HS staining and reduced ligand-and-carbohydrate engagement (LACE) assay, a tool that detects changes in binding of growth factor receptor-ligand complexes to HS. Interestingly, DKO mice have increased levels of blood urea nitrogen, although no differences were detected in urinary levels of albumin, creatinine and nephrin. Finally, transmission electron microscopy showed irregular and thickened GBM and podocyte foot process effacement in the DKO compared to WT. Together, our data suggest that loss of 3-O-HS domains disrupts the kidney glomerular architecture without affecting the glomerular filtration barrier and overall kidney function.


Subject(s)
Kidney Glomerulus , Mice, Knockout , Podocytes , Sulfotransferases , Animals , Mice , Sulfotransferases/genetics , Sulfotransferases/metabolism , Sulfotransferases/deficiency , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Podocytes/metabolism , Podocytes/pathology , Podocytes/ultrastructure , Heparitin Sulfate/metabolism , Glomerular Basement Membrane/metabolism , Glomerular Basement Membrane/pathology , Glomerular Basement Membrane/ultrastructure , Kidney/metabolism , Kidney/pathology
13.
Biosensors (Basel) ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38920579

ABSTRACT

Human sulfotransferase 1As (hSULT1As) play a crucial role in the metabolic clearance and detoxification of a diverse range of endogenous and exogenous substances, as well as in the bioactivation of some procarcinogens and promutagens. Pharmacological inhibiting hSULT1As activities may enhance the in vivo effects of most hSULT1As drug substrates and offer protective strategies against the hSULT1As-mediated bioactivation of procarcinogens. To date, a fluorescence-based high-throughput assay for the efficient screening of hSULT1As inhibitors has not yet been reported. In this work, a fluorogenic substrate (HN-241) for hSULT1As was developed through scaffold-seeking and structure-guided molecular optimization. Under physiological conditions, HN-241 could be readily sulfated by hSULT1As to form HN-241 sulfate, which emitted brightly fluorescent signals around 450 nm. HN-241 was then used for establishing a novel fluorescence-based microplate assay, which strongly facilitated the high-throughput screening of hSULT1As inhibitors. Following the screening of an in-house natural product library, several polyphenolic compounds were identified with anti-hSULT1As activity, while pectolinarigenin and hinokiflavone were identified as potent inhibitors against three hSULT1A isozymes. Collectively, a novel fluorescence-based microplate assay was developed for the high-throughput screening and characterization of hSULT1As inhibitors, which offered an efficient and facile approach for identifying potent hSULT1As inhibitors from compound libraries.


Subject(s)
High-Throughput Screening Assays , Sulfotransferases , Humans , Sulfotransferases/antagonists & inhibitors , Sulfotransferases/metabolism , Fluorescence , Enzyme Inhibitors/pharmacology
14.
Mol Cell Proteomics ; 23(7): 100793, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825040

ABSTRACT

Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the conditioned media of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed the importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration-dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited the invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP may regulate the physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.


Subject(s)
Protein Binding , Sulfotransferases , Humans , Cell Line, Tumor , Sulfotransferases/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Chondroitin Sulfates/metabolism , Sulfatases/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Movement/drug effects , Tumor Microenvironment , Heparan Sulfate Proteoglycans/metabolism , Antigens, Neoplasm , Biomarkers, Tumor
15.
Biol Lett ; 20(5): 20230585, 2024 05.
Article in English | MEDLINE | ID: mdl-38746983

ABSTRACT

Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii, transfer sulfate in vitro to the luciferin substrate, vargulin. We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous to known LSTs of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Reuse of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.


Subject(s)
Crustacea , Sulfotransferases , Animals , Sulfotransferases/metabolism , Sulfotransferases/genetics , Crustacea/enzymology , Crustacea/genetics , Crustacea/metabolism , Phylogeny , Evolution, Molecular , Luminescence
16.
J Obstet Gynaecol Res ; 50(8): 1334-1344, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777329

ABSTRACT

BACKGROUND: Sulfotransferase family 2B member 1 (SULT2B1) has been reported to play oncogenic role in many types of cancers. Nevertheless, the role that SULT2B1 played in ovarian cancer (OC) and the hidden molecular mechanism is obscure. METHODS: Expression of SULT2B1 in OC was analyzed by GEPIA database. qRT-PCR and western blot (WB) was applied for the appraisement of SULT2B1 and Annexin A9 (ANXA9) in OC cell lines. The capabilities of cells to proliferate, migrate and invade were assessed with CCK-8 assay, wound healing assay, along with transwell assay. Cell apoptotic level was estimated utilizing flow cytometry. WB was employed for the evaluation of migration- and apoptosis-related proteins. Bioinformatic analysis and co-immunoprecipitation were used to predict and verify the combination of SULT2B1 and ANXA9. RESULTS: The data showed that SULT2B1 and ANXA9 were upregulated in OC cells. SULT2B1 depletion suppressed the proliferative, migrative, and invasive capabilities of SKOV3 cells but facilitated the cell apoptosis. SULT2B1-regulated ANXA9 expression and were proved to bind to ANXA9. Additionally, ANXA9 deficiency exhibited the same impacts on cell migrative, invasive capability and apoptotic level as SULT2B1 silencing. Moreover, ANXA9 overexpression reversed the inhibitory impacts of SULT2B1 silencing on the proliferative, migrative, invasive, and apoptotic capabilities of SKOV3 cells. CONCLUSION: In summary, SULT2B1 silencing repressed OC progression by targeting ANXA9.


Subject(s)
Apoptosis , Cell Movement , Ovarian Neoplasms , Sulfotransferases , Female , Humans , Annexins/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Neoplasm Invasiveness , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Sulfotransferases/metabolism , Sulfotransferases/genetics
17.
Int J Mycobacteriol ; 13(1): 73-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771283

ABSTRACT

BACKGROUND: Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS: The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS: Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION: Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.


Subject(s)
Antitubercular Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis , United States Food and Drug Administration , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , United States , Sulfotransferases/metabolism , Sulfotransferases/chemistry , Sulfotransferases/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Approval , Humans , Ligands , Tuberculosis/microbiology , Tuberculosis/drug therapy
18.
Atherosclerosis ; 397: 117578, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38797615

ABSTRACT

BACKGROUND AND AIMS: High density lipoprotein (HDL) exerts an anti-atherosclerotic effect via reverse cholesterol transport (RCT). Several phases of RCT are transcriptionally controlled by Liver X receptors (Lxrs). Although macrophage Lxrs reportedly promote RCT, it is still uncertain whether hepatic Lxrs affect RCT in vivo. METHODS: To inhibit Lxr-dependent pathways in mouse livers, we performed hepatic overexpression of sulfotransferase family cytosolic 2B member 1 (Sult2b1) using adenoviral vector (Ad-Sult2b1). Ad-Sult2b1 or the control virus was intravenously injected into wild type mice and Lxrα/ß double knockout mice, under a normal or high-cholesterol diet. A macrophage RCT assay and an HDL kinetic study were performed. RESULTS: Hepatic Sult2b1 overexpression resulted in reduced expression of Lxr-target genes - ATP-binding cassette transporter G5/G8, cholesterol 7α hydroxylase and Lxrα itself - respectively reducing or increasing cholesterol levels in HDL and apolipoprotein B-containing lipoproteins (apoB-L). A macrophage RCT assay revealed that Sult2b1 overexpression inhibited fecal excretion of macrophage-derived 3H-cholesterol only under a high-cholesterol diet. In an HDL kinetic study, Ad-Sult2b1 promoted catabolism/hepatic uptake of HDL-derived cholesterol, thereby reducing fecal excretion. Finally, in Lxrα/ß double knockout mice, hepatic Sult2b1 overexpression increased apoB-L levels, but there were no differences in HDL levels or RCT compared to the control, indicating that Sult2b1-mediated effects on HDL/RCT and apoB-L were distinct: the former was Lxr-dependent, but not the latter. CONCLUSIONS: Hepatic Lxr inhibition negatively regulates circulating HDL levels and RCT by reducing Lxr-target gene expression.


Subject(s)
Cholesterol , Liver X Receptors , Liver , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Sulfotransferases , Animals , Liver X Receptors/metabolism , Liver X Receptors/genetics , Liver/metabolism , Biological Transport , Mice , Cholesterol/metabolism , Macrophages/metabolism , Sulfotransferases/metabolism , Sulfotransferases/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Cholesterol, Dietary , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Male , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins
19.
Int J Hyperthermia ; 41(1): 2353309, 2024.
Article in English | MEDLINE | ID: mdl-38749506

ABSTRACT

OBJECTIVE: Incomplete thermal ablation (ITA) fosters the malignancy of residual cells in Hepatocellular carcinoma (HCC) with unclear mechanisms now. This study aims to investigate the expression changes of NDST2 following ITA of HCC and its impact on residual cancer cells. METHODS: An in vitro model of heat stress-induced liver cancer was constructed to measure the expression of NDST2 using Quantitative Real-Time PCR and Western blotting experiments. The sequencing data from nude mice were used for validation. The clinical significance of NDST2 in HCC was evaluated by integrating datasets. Gene ontology and pathway analysis were conducted to explore the potential signaling pathways regulated by NDST2. Additionally, NDST2 was knocked down in heat stress-induced HCC cells, and the effects of NDST2 on these cells were verified using Cell Counting Kit-8 assays, scratch assays, and Transwell assays. RESULTS: NDST2 expression levels are elevated in HCC, leading to a decrease in overall survival rates of HCC patients. Upregulation of immune checkpoint levels in high NDST2-expressing HCC may contribute to immune evasion by liver cancer cells. Additionally, the low mutation rate of NDST2 in HCC suggests a relatively stable expression of NDST2 in this disease. Importantly, animal and cell models treated with ITA demonstrate upregulated expression of NDST2. Knockdown of NDST2 in heat stress-induced liver cancer cells results in growth inhibition associated with gene downregulation. CONCLUSION: The upregulation of NDST2 can accelerate the progression of residual HCC after ITA, suggesting a potential role for NDST2 in the therapeutic efficacy and prognosis of residual HCC.


Subject(s)
Amidohydrolases , Carcinoma, Hepatocellular , Hyperthermia, Induced , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Mice, Nude , Amidohydrolases/genetics , Amidohydrolases/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
20.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704385

ABSTRACT

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Subject(s)
Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL