Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Metallomics ; 8(10): 1056-1070, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27513195

ABSTRACT

This review examines recent applications of stable copper, zinc and sulfur isotopes to medical cases and notably cancer. The distribution of the natural stable isotopes of a particular element among coexisting molecular species varies as a function of the bond strength, the ionic charge, and the coordination, and it also changes with kinetics. Ab initio calculations show that compounds in which a metal binds to oxygen- (sulfate, phosphate, lactate) and nitrogen-bearing moieties (histidine) favor heavy isotopes, whereas bonds with sulfur (cysteine, methionine) favor light isotopes. Oxidized cations (e.g., Cu(ii)) and low coordination numbers are expected to favor heavy isotopes relative to their reduced counterparts (Cu(i)) and high coordination numbers. Here we discuss the first observations of Cu, Zn, and S isotopic variations, three elements closely related along multiple biological pathways, with emphasis on serum samples of healthy volunteers and of cancer patients. It was found that heavy isotopes of Zn and to an even greater extent Cu are enriched in erythrocytes relative to serum, while the difference is small for sulfur. Isotopic variations related to age and sex are relatively small. The 65Cu/63Cu ratio in the serum of patients with colon, breast, and liver cancer is conspicuously low relative to healthy subjects. The characteristic time over which Cu isotopes may change with disease progression (a few weeks) is consistent with both the turnover time of the element and albumin half-life. A parallel effect on sulfur isotopes is detected in a few un-medicated patients. Copper in liver tumor tissue is isotopically heavy. In contrast, Zn in breast cancer tumors is isotopically lighter than in healthy breast tissue. 66Zn/64Zn is very similar in the serum of cancer patients and in controls. Possible reasons for Cu isotope variations may be related to the cytosolic storage of Cu lactate (Warburg effect), release of intracellular copper from cysteine clusters (metallothionein), or the hepatocellular and biosynthetic dysfunction of the liver. We suggest that Cu isotope metallomics will help evaluate the homeostasis of this element during patient treatment, notably by chelates and blockers of Cu trafficking, and understand the many biochemical pathways in which this element is essential.


Subject(s)
Copper/metabolism , Neoplasms/metabolism , Sulfur/metabolism , Zinc/metabolism , Animals , Copper/analysis , Copper/blood , Humans , Isotopes/analysis , Isotopes/blood , Isotopes/metabolism , Neoplasms/blood , Sulfur/analysis , Sulfur/blood , Sulfur Isotopes/analysis , Sulfur Isotopes/blood , Sulfur Isotopes/metabolism , Zinc/analysis , Zinc/blood , Zinc Isotopes/analysis , Zinc Isotopes/blood , Zinc Isotopes/metabolism
2.
Proc Natl Acad Sci U S A ; 112(4): 982-5, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25583489

ABSTRACT

The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper ((65)Cu/(63)Cu) and sulfur ((34)S/(32)S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is (63)Cu-enriched by ∼0.4‰ and sulfur is (32)S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The (32)S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.


Subject(s)
Carcinoma, Hepatocellular/blood , Copper/blood , Liver Neoplasms/blood , Sulfur/blood , Tumor Microenvironment , Adult , Aged , Female , Humans , Male , Middle Aged , Sulfur Isotopes/blood
3.
Animal ; 7(9): 1559-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23597321

ABSTRACT

Multielemental stable isotope ratio (SIR) analysis was used in lamb plasma, erythrocytes and muscle to detect the switch from a pasture- to a concentrate-based diet, with the aim of verifying the possibility to trace the change of feeding in animal tissues. During 89 days of experimental feeding, lambs were subjected to four dietary treatments: pasture (P), pasture followed by concentrate in the stall for either 14 days (P-S14) or 37 days (P-S37) or concentrate in the stall (S). Pasture and concentrate diets comprised C3 plants only and had different values of 13C/12C, 18O/16O, 2H/1H and 34S/32S ratios. Muscle 13C/12C and 34S/32S and plasma 13C/12C and 18O/16O ratios in P, P-S14 and P-S37 lambs were significantly different. A multivariate analytical approach revealed that 13C/12C and 18O/16O ratios in plasma were the most powerful variables for the discrimination among the dietary treatments.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Diet , Muscle, Skeletal/chemistry , Sheep/blood , Analysis of Variance , Animals , Carbon Isotopes/blood , Discriminant Analysis , Italy , Mass Spectrometry/veterinary , Multivariate Analysis , Oxygen Isotopes/blood , Sulfur Isotopes/blood , Tritium/blood
4.
Anal Bioanal Chem ; 405(9): 2889-99, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23052865

ABSTRACT

We have evaluated the use of (34)S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the (34)S-labelled yeast to laboratory animals to follow the fate and distribution of (34)S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of (34)S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Sulfur/analysis , Sulfur/metabolism , Animals , Chromatography, High Pressure Liquid/methods , Digestion , Electrophoresis, Polyacrylamide Gel , Feces/chemistry , Male , Rats , Rats, Wistar , Sulfur/blood , Sulfur/urine , Sulfur Isotopes/analysis , Sulfur Isotopes/blood , Sulfur Isotopes/metabolism , Sulfur Isotopes/urine , Tissue Distribution , Yeasts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...