Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 253: 126734, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32302909

ABSTRACT

A bioscrubbing process named SONOVA has been developed, tested and assessed herein to valorize flue gases containing SOx. The process consists in a first scrubbing stage, to absorb and oxidize SO2 to sulfate, followed by a two-step biological stage. It consists of (1) an up-flow anaerobic sludge (UASB) reactor to reduce sulfate to sulfide with crude glycerol and (2) a continuous stirred tank reactor (CSTR) to partially oxidize sulfide to elemental sulfur (S0). SONOVA integrates the reutilization of resources, using the effluent of the biological stage as a sorbent agent and the residual heat of flue gases to dry the product. S0 is then obtained as a value-added product, which nowadays is produced from fossil fuels. In this research, SO2 concentrations up to 4000 ppmv were absorbed in 2 s of gas contact time in the spray-scrubber with removal efficiencies above 80%. The UASB reduced up to 9.3 kg S-Sulfate m-3 d-1 with sulfide productivities of 6 kg S m-3 d-1 at an hydraulic retention time (HRT) as low as 2 h. Finally, CSTR was fed with the UASB effluent and operated at HRT ranging from 12 h to 4 h without biomass wash-out. Sulfide was fully oxidized to S0 with a productivity of 2.3 kg S m-3 d-1 at the lowest HRT tested. Overall, this research has explored not only maximum capabilities of each SONOVA stage but has also assessed the interactions between the different units, which opens up the possibility of recovering S0 from harmful SOx emissions, optimizing resources utilization and costs.


Subject(s)
Bioreactors/microbiology , Sewage/chemistry , Sulfur Oxides/isolation & purification , Sulfur/isolation & purification , Waste Disposal, Fluid/methods , Wastewater/chemistry , Adsorption , Anaerobiosis , Biomass , Feasibility Studies , Gases/chemistry , Sewage/microbiology , Wastewater/microbiology
2.
Environ Technol ; 36(1-4): 106-14, 2015.
Article in English | MEDLINE | ID: mdl-25409589

ABSTRACT

The carbonation of flue gas desulphurization (FGD) gypsum using a CO2/N2 gas mixture was investigated to study the feasibility of using the flue gas directly in the gypsum carbonation. The effect of the reaction temperature on the carbonation reaction and the carbonation conversion efficiency of the samples were considered. In this study, the carbonation conversion efficiency was calculated using a new method for decreasing the error range from a sample containing unreacted gypsum. The carbonation reaction at 40°C was nearly twice as fast as the reaction at room temperature. In addition, the carbonation conversion efficiency at 40°C (96%) was nearly the same as that at room temperature. However, the efficiency decreased significantly with temperature, especially above 60°C. It can, therefore, be concluded that the direct use of flue gas in gypsum carbonation is most feasible at 40°C. The temperature of carbonation strongly affected the CaCO3 polymorphs and the morphological characteristics. Calcite with various shapes was the dominant (40-90%) phase at all temperatures. At temperatures below 40°C, spherical-shaped vaterite was pronounced, while needle-flower-shaped aragonite was dominant at temperatures above 80°C.


Subject(s)
Air Pollutants/isolation & purification , Calcium Sulfate/chemistry , Carbon Dioxide/isolation & purification , Nitrogen/isolation & purification , Sulfur Oxides/chemistry , Air Pollutants/chemistry , Carbon Dioxide/chemistry , Complex Mixtures/chemistry , Complex Mixtures/isolation & purification , Computer Simulation , Environmental Restoration and Remediation/methods , Gases/chemistry , Models, Chemical , Nitrogen/chemistry , Sulfur Oxides/isolation & purification , Temperature , Waste Management/methods
3.
J Air Waste Manag Assoc ; 56(2): 219-24, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16568805

ABSTRACT

Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.


Subject(s)
Carbon/chemistry , Sulfur Oxides/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Ammonia/chemistry , Humidity , Hydrogen Sulfide/chemistry , Sulfur Oxides/chemistry , Waste Disposal, Fluid
4.
J Hazard Mater ; 101(3): 259-72, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12935758

ABSTRACT

During incineration, secondary pollutants such as acid gases, organic compounds, heavy metals and particulates are generated. Among these pollutants, the acid gases, including sulfur oxides (SO(x)) and hydrogen chloride (HCl), can cause corrosion of the incinerator piping and can generate acid rain after being emitted to the atmosphere. To address this problem, the present study used a novel combination of air pollution control devices (APCDs), composed of a fluidized bed adsorber integrated with a fabric filter. The major objective of the work is to demonstrate the performance of a fluidized bed adsorber for removal of acid gases from flue gas of an incinerator. The adsorbents added in the fluidized bed adsorber were mainly granular activated carbon (AC; with or without chemical treatment) and with calcium oxide used as an additive. The advantages of a fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of acid gases when using a dry method. On the other hand, because the fluidized bed can filter particles, fine particles prior to and after passing through the fluidized bed adsorber were investigated. The competing adsorption on activated carbon between different characteristics of pollutants was also given preliminary discussion. The results indicate that the removal efficiencies of the investigated acid gases, SO(2) and HCl, are higher than 94 and 87%, respectively. Thus, a fluidized bed adsorber integrated with a fabric filter has the potential to replace conventional APCDs, even when there are other pollutants at the same time.


Subject(s)
Air Pollution/prevention & control , Hydrochloric Acid/isolation & purification , Sulfur Oxides/isolation & purification , Adsorption , Calcium Compounds/chemistry , Carbon/chemistry , Incineration , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...