Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58.919
Filter
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38717261

ABSTRACT

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Subject(s)
Glutathione Transferase , Larva , Locomotion , Tenebrio , Zearalenone , Animals , Tenebrio/drug effects , Tenebrio/growth & development , Larva/growth & development , Larva/drug effects , Zearalenone/toxicity , Glutathione Transferase/metabolism , Locomotion/drug effects , Superoxide Dismutase/metabolism , Antioxidants/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1371220, 2024.
Article in English | MEDLINE | ID: mdl-38737551

ABSTRACT

Background and objective: Aberrant epigenetic regulation and increased oxidative stress in the placenta play a significant role in placental pathophysiology and fetal programming in preeclampsia, a hypertensive disorder in human pregnancy. The purpose of the study is to investigate if hypermethylation of histone H3K9 occurs in placental trophoblasts from preeclampsia. Methods: Trophoblasts were isolated and cultured from 14 placentas, 7 from normotensive pregnant women and 7 from preeclamptic pregnancies. Methylated H3K9 expression and antioxidant superoxide dismutase expression were determined by Western blot. We also examined consequences of oxidative stress and the downstream effects of histone methyltransferase inhibition on H3K9 expression associated with antioxidant CuZn-SOD and Mn-SOD expression in placental trophoblasts. Results: We found that expression of mono-, di-, and tri-methylation of histone H3 lysine 9 (H3K9me1, H3K9me2 and H3K9me3) was significantly increased, p<0.01, which correlated with downregulation of antioxidant superoxide dismutase CuZn-SOD and Mn-SOD expression, in trophoblasts from preeclamptic placentas compared to those from uncomplicated control placentas. We further demonstrated hypoxia could promote histone H3K9 methylation in placental trophoblasts, and hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression was reversible when hypoxic condition was removed. In addition, we also uncovered that inhibition of methyltransferase not only prevented hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression, but also abolished hypoxia-induced downregulation of CuZn-SOD and Mn-SOD expression in placental trophoblasts. Conclusions: These findings are noteworthy and provide further evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in placental trophoblasts in preeclampsia. Moreover, CuZn-SOD and Mn-SOD expression/activity are possibly H3K9 methylation-dependent in placental trophoblasts, which further suggest that oxidative stress and aberrant histone modification have significant impact on placental trophoblasts/fetal programming in preeclampsia.


Subject(s)
Histones , Oxidative Stress , Placenta , Pre-Eclampsia , Trophoblasts , Humans , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Trophoblasts/metabolism , Histones/metabolism , Adult , Placenta/metabolism , Methylation , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , DNA Methylation , Cells, Cultured , Lysine/metabolism
3.
Biomed Khim ; 70(2): 83-88, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711407

ABSTRACT

The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.


Subject(s)
Cerebral Cortex , Ethanol , Fatty Acids, Omega-3 , Nitric Oxide , Rats, Wistar , Superoxide Dismutase , Animals , Male , Rats , Fatty Acids, Omega-3/pharmacology , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Nitric Oxide/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Antioxidants/pharmacology , Malondialdehyde/metabolism
4.
Biol Open ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38752595

ABSTRACT

There is evidence that indicates that temperature modulates the reproduction of the tropical species Octopus maya, through the over- or under-expression of many genes in the brain. If the oxygen supply to the brain depends on the circulatory system, how temperature affects different tissues will begin in the heart, responsible for pumping the oxygen to tissues. The present study examines the impact of heat stress on the mitochondrial function of the systemic heart of adult O. maya. The mitochondrial metabolism and antioxidant defense system were measured in the systemic heart tissue of female organisms acclimated to different temperatures (24, 26, and 30°C). The results show that acclimation temperature affects respiratory State 3 and State 4o (oligomycin-induced) with higher values observed in females acclimated at 26°C. The antioxidant defense system is also affected by acclimation temperature with significant differences observed in superoxide dismutase, glutathione S-transferase activities, and glutathione levels. The results suggest that high temperatures (30°C) could exert physical limitations on the circulatory system through the heart pumping, affecting nutrient and oxygen transport to other tissues, including the brain, which exerts control over the reproductive system. The role of the cardiovascular system in supporting aerobic metabolism in octopus females is discussed.


Subject(s)
Antioxidants , Climate Change , Octopodiformes , Oxidative Phosphorylation , Animals , Female , Octopodiformes/metabolism , Octopodiformes/physiology , Antioxidants/metabolism , Acclimatization , Temperature , Heart/physiology , Myocardium/metabolism , Superoxide Dismutase/metabolism
5.
J Nanobiotechnology ; 22(1): 246, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735970

ABSTRACT

Excessive production of reactive oxygen species (ROS) and inflammation are the key problems that impede diabetic wound healing. In particular, dressings with ROS scavenging capacity play a crucial role in the process of chronic wound healing. Herein, Zr-based large-pore mesoporous metal-organic frameworks (mesoMOFs) were successfully developed for the construction of spatially organized cascade bioreactors. Natural superoxide dismutase (SOD) and an artificial enzyme were spatially organized in these hierarchical mesoMOFs, forming a cascade antioxidant defense system, and presenting efficient intracellular and extracellular ROS scavenging performance. In vivo experiments demonstrated that the SOD@HMUiO-MnTCPP nanoparticles (S@M@H NPs) significantly accelerated diabetic wound healing. Transcriptomic and western blot results further indicated that the nanocomposite could inhibit fibroblast senescence and ferroptosis as well as the stimulator of interferon genes (STING) signaling pathway activation in macrophages mediated by mitochondrial oxidative stress through ROS elimination. Thus, the biomimetic multi-enzyme cascade catalytic system with spatial ordering demonstrated a high potential for diabetic wound healing, where senescence, ferroptosis, and STING signaling pathways may be potential targets.


Subject(s)
Inflammation , Metal-Organic Frameworks , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Reactive Oxygen Species/metabolism , Animals , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Superoxide Dismutase/metabolism , Porosity , Oxidative Stress/drug effects , Signal Transduction/drug effects , RAW 264.7 Cells , Male , Ferroptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Diabetes Mellitus, Experimental , Nanoparticles/chemistry , Humans , Antioxidants/pharmacology , Nanocomposites/chemistry , Membrane Proteins
6.
Curr Genet ; 70(1): 7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743270

ABSTRACT

Fermented eggplant is a traditional fermented food, however lactic acid bacteria capable of producing exopolysaccharide (EPS) have not yet been exploited. The present study focused on the production and protective effects against oxidative stress of an EPS produced by Lacticaseibacillus paracasei NC4 (NC4-EPS), in addition to deciphering its genomic features and EPS biosynthesis pathway. Among 54 isolates tested, strain NC4 showed the highest EPS yield and antioxidant activity. The maximum EPS production (2.04 ± 0.11 g/L) was achieved by culturing in MRS medium containing 60 g/L sucrose at 37 °C for 48 h. Under 2 mM H2O2 stress, the survival of a yeast model Saccharomyces cerevisiae treated with 0.4 mg/mL NC4-EPS was 2.4-fold better than non-treated cells, which was in agreement with the catalase and superoxide dismutase activities measured from cell lysates. The complete genome of NC4 composed of a circular chromosome of 2,888,896 bp and 3 circular plasmids. The NC4 genome comprises more genes with annotated function in nitrogen metabolism, phosphorus metabolism, cell division and cell cycle, and iron acquisition and metabolism as compared to other reported L. paracasei. Of note, the eps gene cluster is not conserved across L. paracasei. Pathways of sugar metabolism for EPS biosynthesis were proposed for the first time, in which gdp pathway only present in few plant-derived bacteria was identified. These findings shed new light on the cell-protective activity and biosynthesis of EPS produced by L. paracasei, paving the way for future efforts to enhance yield and tailor-made EPS production for food and pharmaceutical industries.


Subject(s)
Fermentation , Lacticaseibacillus paracasei , Oxidative Stress , Polysaccharides, Bacterial , Solanum melongena , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism , Solanum melongena/microbiology , Solanum melongena/genetics , Solanum melongena/metabolism , Lacticaseibacillus paracasei/metabolism , Lacticaseibacillus paracasei/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Genome, Bacterial , Fermented Foods/microbiology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
7.
Braz Oral Res ; 38: e042, 2024.
Article in English | MEDLINE | ID: mdl-38747829

ABSTRACT

The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.


Subject(s)
Catalase , DNA Methylation , Interleukin-6 , Methotrexate , Mouth Mucosa , Stomatitis , Superoxide Dismutase , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/genetics , Child , Cross-Sectional Studies , Adolescent , Child, Preschool , Male , Female , Young Adult , Interleukin-6/genetics , Interleukin-6/analysis , Catalase/genetics , Mouth Mucosa/drug effects , Superoxide Dismutase/genetics , Methotrexate/therapeutic use , Methotrexate/adverse effects , Stomatitis/genetics , Stomatitis/chemically induced , Promoter Regions, Genetic/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/drug therapy , Reference Values , Antimetabolites, Antineoplastic/adverse effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Polymerase Chain Reaction , Statistics, Nonparametric , Mucositis/genetics , Mucositis/chemically induced , Case-Control Studies
8.
PLoS One ; 19(5): e0303145, 2024.
Article in English | MEDLINE | ID: mdl-38728268

ABSTRACT

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Subject(s)
Germination , Polyethylene Glycols , Seedlings , Seeds , Polyethylene Glycols/pharmacology , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Seeds/growth & development , Dehydration , Catalase/metabolism , Malondialdehyde/metabolism , Proline/metabolism , Superoxide Dismutase/metabolism , Water/metabolism
9.
Rev Assoc Med Bras (1992) ; 70(4): e20230990, 2024.
Article in English | MEDLINE | ID: mdl-38716935

ABSTRACT

OBJECTIVE: We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS: A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS: Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION: Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.


Subject(s)
Catalase , Cyclophosphamide , Malondialdehyde , Rats, Wistar , Superoxide Dismutase , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Female , Catalase/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects , Kidney/drug effects , Kidney/pathology , Rats , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Antioxidants/pharmacology , Oxidative Stress/drug effects
10.
J Nanobiotechnology ; 22(1): 271, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769545

ABSTRACT

BACKGROUND AND AIMS: Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS: We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS: Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1ß group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1ß group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION: The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.


Subject(s)
Chondrocytes , Exosomes , Osteoarthritis , Oxidative Stress , Superoxide Dismutase , Synovial Membrane , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Exosomes/metabolism , Mice , Oxidative Stress/drug effects , Chondrocytes/metabolism , Humans , Superoxide Dismutase/metabolism , Synovial Membrane/metabolism , Male , Disease Progression , Nanoparticles/chemistry , Mice, Inbred C57BL , Hydrogels/chemistry , Microspheres , Cartilage, Articular/metabolism , Extracellular Matrix/metabolism
11.
Clin Nutr ESPEN ; 61: 230-236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777439

ABSTRACT

BACKGROUND AND AIM: Frequent administration of blood in ß-thalassemia patients can lead to over-loaded iron, a reduction in the levels of antioxidant activities in the body, and oxidative stress. This study was done to evaluate the antioxidant and protective effect of aqueous oak (Quercus brantii) extract supplementation on these patients. METHODS: This clinical trial was performed on 60 major ß thalassemia patients dividing them into intervention and control groups. In addition to taking desferrioxamine (DFO), the control and intervention groups received respectively placebo capsule supplementation and aqueous Quercus extract capsules (300 mg/day) for 3 months. Serum lipid profiles (LDL-c, HDL-c, triglyceride), Total Antioxidant Capacity (TAC), Glucose, Uric acid, urea nitrogen (BUN), Creatinine, LFT (Liver Function Tests) such as SGOT, SGPT, ALP, Total bilirubin, Direct bilirubin, ferritin, MDA and carbonyl protein (CO) levels were measured before and after the period. In addition, the activity of catalase (CAT), and superoxide dismutase (SOD) was measured in the red blood cell. Furthermore, antioxidant activity and total phenolic content of aqueous Quercus were recorded to standardize capsule formulation. RESULTS: Mean serum MDA, and protein CO, significantly decreased in the intervention group with ß-TM after 3 months of treatment with Quercus extract. In addition, the superoxide dismutase (SOD) enzyme and Total antioxidant capacity (TAC) significantly increased in comparison with the control group. Changes in serum creatinine, BUN, and alanine transferase were not significant. In the study, Quercus extract capsules contain 48/56 mg gallic acid/g (dry extract) total phenol, 58/6 mg/g (dry extract), and flavonoids of 63/8 µg/ml antioxidant power which by GC/MS analysis has been measured. At the end of the study, serum MDA decreased from 48.65 ± 8.74 to 43.94 ± 10.39 µ mol/l after administration of oak extract and protein CO dropped from 2.44 ± 0.38 to 1.2 ± 0.31 nmol DNPH/mg protein after administration of the oak extract. At the end of the study serum, TAC increased in patients interventional group from 907 ± 319 to 977 ± 327 µmol FeSO4/l compared to the control group 916 ± 275 to 905.233 ± 233 µmol FeSO4/l with placebo, and SOD increased from 1577 ± 325 to 2079 ± 554 U/l (compared to 1687 ± 323 U/l with placebo). The treatment effect of Quercus was measured using a mixed-effects model of variance analysis for changes in MDA, protein CO, TAC, and SOD, with significant effects being demonstrated for each laboratory parameter (P = 0.15, P = 0.001, P = 0.02, and P < 0.003, respectively). CONCLUSIONS: Aqueous Quercus extract, due to its high antioxidant potential, reduced MDA, serum carbonyl protein, and increased superoxide dismutase activity effectively decreased serum OS and enhanced serum antioxidant capacity in patients with ß-thalassemia major. oak given as an adjuvant therapy to standard iron chelators may provide an improvement in the OS measurements obtained in these patients. REGISTRATION INFORMATION: This study was submitted, evaluated, and approved by the Iranian Registry of Clinical Trials (IRCT: http://www.irct.ir; IRCT2015101411819N4), which was established for national medical schools in Iran.


Subject(s)
Antioxidants , Oxidative Stress , Plant Extracts , Quercus , beta-Thalassemia , Humans , Quercus/chemistry , Oxidative Stress/drug effects , beta-Thalassemia/blood , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Female , Adult , Superoxide Dismutase/blood , Iran , Young Adult , Dietary Supplements , Catalase/blood , Deferoxamine/therapeutic use , Adolescent , Malondialdehyde/blood , Creatinine/blood
12.
Rev Assoc Med Bras (1992) ; 70(5): e20231333, 2024.
Article in English | MEDLINE | ID: mdl-38775505

ABSTRACT

OBJECTIVE: In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS: Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 µg), ACEA (7.5 µg), AM251 (0.25 µg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS: MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION: It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.


Subject(s)
Epilepsy , Leptin , Malondialdehyde , Piperidines , Pyrazoles , Rats, Wistar , Receptor, Cannabinoid, CB1 , Superoxide Dismutase , Animals , Leptin/pharmacology , Male , Receptor, Cannabinoid, CB1/agonists , Epilepsy/drug therapy , Epilepsy/chemically induced , Malondialdehyde/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/analysis , Piperidines/pharmacology , Pyrazoles/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/analysis , Arachidonic Acids/pharmacology , Rats , Oxidative Stress/drug effects , Disease Models, Animal , Penicillins , Cerebellum/drug effects , Cerebellum/metabolism , Cerebrum/drug effects , Cerebrum/metabolism , Enzyme-Linked Immunosorbent Assay , Cannabinoid Receptor Agonists/pharmacology
13.
PLoS One ; 19(5): e0303115, 2024.
Article in English | MEDLINE | ID: mdl-38776353

ABSTRACT

The detrimental effects of ultraviolet C (UVC) radiation on living organisms, with a specific focus on the fruit fly Drosophila melanogaster, were examined. This study investigated the impact of heightened UVC radiation exposure on D. melanogaster by assessing mortality and fertility rates, studying phenotypic mutations, and investigating the associated molecular mechanisms. The findings of this study revealed that UVC radiation increases mortality rates and decreases fertility rates in D. melanogaster. Additionally, phenotypic wing mutations were observed in the exposed flies. Furthermore, the study demonstrated that UVC radiation downregulates the expression of antioxidant genes, including superoxide dismutase (SOD), manganese-dependent superoxide dismutase (Mn-SOD), zinc-dependent superoxide dismutase (Cu-Zn-SOD), and the G protein-coupled receptor methuselah (MTH) gene. These results suggest that UVC radiation exerts a destructive effect on D. melanogaster by inducing oxidative stress, which is marked by the overexpression of harmful oxidative processes and a simultaneous reduction in antioxidant gene expression. In conclusion, this study underscores the critical importance of comprehending the deleterious effects of UVC radiation, not only to safeguard human health on Earth, but also to address the potential risks associated with space missions, such as the ongoing Emirate astronaut program.


Subject(s)
Drosophila melanogaster , Fertility , Mutation , Ultraviolet Rays , Animals , Drosophila melanogaster/radiation effects , Drosophila melanogaster/genetics , Ultraviolet Rays/adverse effects , Fertility/radiation effects , Fertility/genetics , Mutation/radiation effects , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Oxidative Stress/radiation effects , Oxidative Stress/genetics , Male , Female , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Gene Expression Regulation/radiation effects
14.
Int J Oral Sci ; 16(1): 41, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777841

ABSTRACT

The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.


Subject(s)
Cellular Senescence , Diet, High-Fat , Mesenchymal Stem Cells , Osteoporosis , Reactive Oxygen Species , Receptors, Calcitriol , Mesenchymal Stem Cells/metabolism , Animals , Receptors, Calcitriol/metabolism , Osteoporosis/etiology , Osteoporosis/metabolism , Mice , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Mice, Inbred C57BL , Male , Cell Proliferation , Osteogenesis/physiology , Signal Transduction , Multiomics
15.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731854

ABSTRACT

Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1ß, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.


Subject(s)
Antioxidants , Azoxymethane , Colorectal Neoplasms , beta-Glucans , Animals , beta-Glucans/pharmacology , Azoxymethane/toxicity , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Rats , Male , Antioxidants/pharmacology , Antioxidants/metabolism , Disease Models, Animal , Avena/chemistry , Superoxide Dismutase/metabolism , Colon/metabolism , Colon/pathology , Colon/drug effects , Oxidative Stress/drug effects , Rats, Wistar , C-Reactive Protein/metabolism
16.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38735875

ABSTRACT

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Subject(s)
Antioxidants , Autophagy , Oxidative Stress , Rats, Sprague-Dawley , Spermatic Cord Torsion , Testis , Xanthophylls , Male , Animals , Xanthophylls/pharmacology , Xanthophylls/administration & dosage , Autophagy/drug effects , Rats , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/administration & dosage , Apoptosis/drug effects , Malondialdehyde/metabolism , Random Allocation , Reperfusion Injury/prevention & control , Superoxide Dismutase/metabolism , Glutathione/metabolism
17.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722391

ABSTRACT

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Subject(s)
Antioxidants , Chlorella vulgaris , Chlorpyrifos , Cichlids , Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/drug effects , Cichlids/metabolism , Cichlids/microbiology , Cichlids/genetics , Chlorpyrifos/toxicity , Antioxidants/metabolism , Fish Diseases/microbiology , Streptococcal Infections/veterinary , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Catalase/metabolism , Catalase/genetics , Water Pollutants, Chemical/toxicity , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oxidative Stress/drug effects , Aquaculture/methods
18.
Nanoscale ; 16(20): 9985-9997, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695726

ABSTRACT

Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.


Subject(s)
Antioxidants , Fibroblasts , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Superoxide Dismutase , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Superoxide Dismutase/metabolism , Catalase/metabolism , Cell Survival/drug effects , Metallothionein/metabolism , Reactive Oxygen Species/metabolism
19.
PLoS One ; 19(5): e0297788, 2024.
Article in English | MEDLINE | ID: mdl-38743661

ABSTRACT

This study was conducted to evaluate the effects of phytosterols (PS) and phytosterol esters (PSE) on C57BL/6 mice. Three groups of 34 six-week-old C57BL/6 mice of specific pathogen free (SPF) grade, with an average initial body weight (IBW) of 17.7g, were fed for 24 days either natural-ingredient diets without supplements or diets supplemented with 89 mg/kg PS or diets supplemented with 400 mg/kg PSE. Growth performance, blood biochemistry, liver and colon morphology as well as intestinal flora status were evaluated. Both PS and PSE exhibited growth promotion and feed digestibility in mice. In blood biochemistry, the addition of both PS and PSE to the diet resulted in a significant decrease in Total Cholesterol (TC) and Triglyceride (TG) levels and an increase in Superoxide Dismutase (SOD) activity. No significant changes in liver and intestinal morphology were observed. Both increased the level of Akkermansia in the intestinal tract of mice. There was no significant difference between the effects of PS and PSE. It was concluded that dietary PS and PSE supplementation could improve growth performance, immune performance and gut microbiome structure in mice, providing insights into its application as a potential feed additive in animals production.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Phytosterols , Animals , Phytosterols/pharmacology , Phytosterols/administration & dosage , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Esters/pharmacology , Male , Cholesterol/blood , Triglycerides/blood , Animal Feed/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood
20.
PLoS One ; 19(5): e0303136, 2024.
Article in English | MEDLINE | ID: mdl-38743689

ABSTRACT

Superoxide dismutase (SOD) is an antioxidant enzyme that protects the body from free radicals. It has both antioxidant and immunomodulatory properties, inducing macrophage polarization from M1 to M2. Macrophages, key mediators of the innate immune response, are divided into the M1 (pro-inflammatory) and M2 (anti-inflammatory) subtypes. In this study, we aimed to assess the antioxidant and neuroprotective effects of SOD on nerve cells and its immunomodulatory effects on macrophages. We observed that SOD inhibited the accumulation of reactive oxygen species and enhanced the viability of H2O2-treated nerve cells. Furthermore, SOD reduced the degree of necrosis in nerve cells treated with the conditioned medium from macrophages, which induced inflammation. In addition, SOD promoted the M1 to M2 transition of macrophages. Our findings suggest that SOD protects nerve cells and regulates immune responses.


Subject(s)
Macrophages , Neuroprotective Agents , Reactive Oxygen Species , Superoxide Dismutase , Animals , Superoxide Dismutase/metabolism , Mice , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Humans , Neuroprotective Agents/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Neuroblastoma/immunology , Neuroblastoma/pathology , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Cell Survival/drug effects , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...