Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 15(11): e17683, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37724723

ABSTRACT

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.


Subject(s)
Muscular Atrophy, Spinal , Quality of Life , Animals , Humans , Infant , Mice , Exons , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/therapeutic use
2.
PLoS One ; 9(12): e115473, 2014.
Article in English | MEDLINE | ID: mdl-25514431

ABSTRACT

Spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an autosomal recessive disorder caused by the loss of SMN1 (survival motor neuron 1), which encodes the protein SMN. The loss of SMN1 causes a deficiency in SMN protein levels leading to motor neuron cell death in the anterior horn of the spinal cord. SMN2, however, can also produce some functional SMN to partially compensate for loss of SMN1 in SMA suggesting increasing transcription of SMN2 as a potential therapy to treat patients with SMA. A cAMP response element was identified on the SMN2 promoter, implicating cAMP activation as a step in the transcription of SMN2. Therefore, we investigated the effects of modulating the cAMP signaling cascade on SMN production in vitro and in silico. SMA patient fibroblasts were treated with the cAMP signaling modulators rolipram, salbutamol, dbcAMP, epinephrine and forskolin. All of the modulators tested were able to increase gem formation, a marker for SMN protein in the nucleus, in a dose-dependent manner. We then derived two possible mathematical models simulating the regulation of SMN2 expression by cAMP signaling. Both models fit well with our experimental data. In silico treatment of SMA fibroblasts simultaneously with two different cAMP modulators resulted in an additive increase in gem formation. This study shows how a systems biology approach can be used to develop potential therapeutic targets for treating SMA.


Subject(s)
Cyclic AMP/metabolism , Muscular Atrophy, Spinal/drug therapy , Promoter Regions, Genetic/genetics , Response Elements/genetics , Signal Transduction/genetics , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/therapeutic use , Albuterol/pharmacology , Bucladesine/pharmacology , Colforsin/pharmacology , Cyclic AMP/genetics , Epinephrine/pharmacology , Fibroblasts/metabolism , Fluorescent Antibody Technique , Humans , Models, Biological , Monomeric GTP-Binding Proteins/metabolism , Rolipram/pharmacology , Systems Biology/methods
3.
Mol Ther ; 22(4): 854-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24317636

ABSTRACT

Spinal muscular atrophy (SMA) is a fatal autosomal recessive disease caused by survival motor neuron (SMN) protein insufficiency due to SMN1 mutations. Boosting SMN2 expression is a potential therapy for SMA. SMN2 has identical coding sequence as SMN1 except for a silent C-to-T transition at the 6th nucleotide of exon 7, converting a splicing enhancer to a silencer motif. Consequently, most SMN2 transcripts lack exon 7. More than ten putative splicing regulatory elements (SREs) were reported to regulate exon 7 splicing. To investigate the relative strength of each negative SRE in inhibiting exon 7 inclusion, antisense oligonucleotides (AONs) were used to mask each element, and the fold increase of full-length SMN transcripts containing exon 7 were compared. The most potent negative SREs are at intron 7 (in descending order): ISS-N1, 3' splice site of exon 8 (ex8 3'ss) and ISS+100. Dual-targeting AONs were subsequently used to mask two nonadjacent SREs simultaneously. Notably, masking of both ISS-N1 and ex8 3'ss induced the highest fold increase of full-length SMN transcripts and proteins. Therefore, efforts should be directed towards the two elements simultaneously for the development of optimal AONs for SMA therapy.


Subject(s)
Muscular Atrophy, Spinal/therapy , Oligonucleotides, Antisense/therapeutic use , RNA Splicing/genetics , Enhancer Elements, Genetic/genetics , Exons/genetics , Genetic Therapy , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , RNA Splice Sites , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/antagonists & inhibitors , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/therapeutic use , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...