Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 590
Filter
1.
Biol Lett ; 20(6): 20230546, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38869044

ABSTRACT

Historical climate data indicate that the Earth has passed through multiple geological periods with much warmer-than-present climates, including epochs of the Miocene (23-5.3 mya BP) with temperatures 3-4°C above present, and more recent interglacial stages of the Quaternary, for example, Marine Isotope Stage 11c (approx. 425-395 ka BP) and Middle Holocene thermal maximum (7.5-4.2 ka BP), during which continental glaciers may have melted entirely. Such warm periods would have severe consequences for ice-obligate fauna in terms of their distribution, biodiversity and population structure. To determine the impacts of these climatic events in the Nordic cryosphere, we surveyed ice habitats throughout mainland Norway and Svalbard ranging from maritime glaciers to continental ice patches (i.e. non-flowing, inland ice subjected to deep freezing overwinter), finding particularly widespread populations of ice-inhabiting bdelloid rotifers. Combined mitochondrial and nuclear DNA sequencing identified approx. 16 undescribed, species-level rotifer lineages that revealed an ancestry predating the Quaternary (> 2.58 mya). These rotifers also displayed robust freeze/thaw tolerance in laboratory experiments. Collectively, these data suggest that extensive ice refugia, comparable with stable ice patches across the contemporary Norwegian landscape, persisted in the cryosphere over geological time, and may have facilitated the long-term survival of ice-obligate Metazoa before and throughout the Quaternary.


Subject(s)
Rotifera , Animals , Arctic Regions , Norway , Rotifera/genetics , Rotifera/classification , Svalbard , Ice Cover , Phylogeny , DNA, Mitochondrial/genetics , Ecosystem
2.
Mar Environ Res ; 198: 106552, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788477

ABSTRACT

Arctic fjords ecosystems are highly dynamic, with organisms exposed to various natural stressors along with productivity clines driven by advection of water masses from shelves. The benthic response to these environmental clines has been extensively studied using traditional, morphology-based approaches mostly focusing on macroinvertebrates. In this study we analyse the effects of glacially mediated disturbance on the biodiversity of benthic macrofauna and meiobenthos (meiofauna and Foraminifera) in a Svalbard fjord by comparing morphology and eDNA metabarcoding. Three genetic markers targeting metazoans (COI), meiofauna (18S V1V2) and Foraminifera (18S 37f) were analyzed. Univariate measures of alpha diversity and multivariate compositional dissimilarities were calculated and tested for similarities in response to environmental gradients using correlation analysis. Our study showed different taxonomic composition of morphological and molecular datasets for both macrofauna and meiobenthos. Some taxonomic groups while abundant in metabarcoding data were almost absent in morphology-based inventory and vice versa. In general, species richness and diversity measures in macrofauna morphological data were higher than in metabarcoding, and similar for the meiofauna. Both methodological approaches showed different patterns of response to the glacially mediated disturbance for the macrofauna and the meiobenthos. Macrofauna showed an evident distinction in taxonomic composition and a dramatic cline in alpha diversity indices between the outer and inner parts of fjord, while the meiobenthos showed a gradual change and more subtle responses to environmental changes along the fjord axis. The two methods can be seen as complementing rather than replacing each other. Morphological approach provides more accurate inventory of larger size species and more reliable quantitative data, while metabarcoding allows identification of inconspicuous taxa that are overlooked in morphology-based studies. As different taxa may show different sensitivities to environmental changes, both methods shall be used to monitor marine biodiversity in Arctic ecosystems and its response to dramatically changing environmental conditions.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Estuaries , Geologic Sediments , Invertebrates , Arctic Regions , Animals , Invertebrates/genetics , Invertebrates/classification , Invertebrates/physiology , Aquatic Organisms/genetics , Foraminifera/genetics , Foraminifera/classification , Foraminifera/physiology , Ecosystem , Environmental Monitoring/methods , Svalbard
3.
Article in English | MEDLINE | ID: mdl-38722773

ABSTRACT

A yellow pigmented, Gram-stain-positive, motile, facultatively anaerobic and irregular rod-shaped bacteria (strain M0-14T) was isolated from a till sample collected from the foreland of a high Arctic glacier near the settlement of Ny-Ålesund in the Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that M0-14T formed a lineage within the family Cellulomonadaceae, suborder Micrococcineae. M0-14T represented a novel member of the genus Pengzhenrongella and had highest 16S rRNA gene sequence similarity to Pengzhenrongella sicca LRZ-2T (97.3 %). Growth occurred at 4-25 °C (optimum 4-18 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0-5 % (w/v) NaCl. The predominant menaquinone was MK-9(H4) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol, one undefined phospholipid and five undefined phosphoglycolipids. The cell-wall diamino acid was l-ornithine whereas rhamnose and mannose were the cell-wall sugars. Polyphosphate particles were found inside the cells of M0-14T. Polyphosphate kinase and polyphosphate-dependent glucokinase genes were detected during genomic sequencing of M0-14. In addition, the complete pstSCAB gene cluster and phnCDE synthesis genes, which are important for the uptake and transport of phosphorus in cells, were annotated in the genomic data. According to the genomic data, M0-14T has a metabolic pathway related to phosphorus accumulation. The DNA G+C content of the genomic DNA was 70.8 %. On the basis of its phylogenetic relationship, phenotypic properties and chemotaxonomic distinctiveness, strain M0-14T represents a novel species of the genus Pengzhenrongella, for which the name Pengzhenrongella phosphoraccumulans sp. nov. is proposed. The type strain is M0-14T (= CCTCC AB 2012967T = NRRL B-59105T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Ice Cover , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Arctic Regions , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , Ice Cover/microbiology , Phospholipids , Svalbard
4.
Article in English | MEDLINE | ID: mdl-38780584

ABSTRACT

Four yeast strains belonging to the basidiomycetous yeast genus Mrakia were isolated from diverse habitats in the Ny-Ålesund region (Svalbard, High Arctic): two from vascular plants, one from seawater and one from freshwater. Phylogenetic analysis, based on the ITS region and the D1/D2 domain of the 28S rRNA gene, identified these four strains as representing two novel species within the genus Mrakia. The names Mrakia polaris sp. nov. (MycoBank number: MB 852063) and Mrakia amundsenii sp. nov. (MycoBank number: MB 852064) are proposed. These two new species show distinct psychrophilic adaptations, as they exhibit optimal growth at temperatures between 10 and 15°C, while being unable to grow at 25°C. The holotype of M. polaris sp. nov. is CPCC 300345T, and the holotype of M. amundsenii sp. nov. is CPCC 300572T.


Subject(s)
DNA, Fungal , Phylogeny , Seawater , Sequence Analysis, DNA , Arctic Regions , DNA, Fungal/genetics , Seawater/microbiology , Mycological Typing Techniques , Svalbard , RNA, Ribosomal, 28S/genetics , Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/isolation & purification , Fresh Water/microbiology , Ecosystem , Cold Temperature , Saccharomycetales/classification , Saccharomycetales/genetics , Saccharomycetales/isolation & purification
5.
Parasite ; 31: 26, 2024.
Article in English | MEDLINE | ID: mdl-38775717

ABSTRACT

Several studies have shown that the euryxenic trematode Derogenes varicus (Müller, 1784) represents a species complex. Four lineages have been designated (DV1-4) with the DV1 clade corresponding to D. varicus sensu stricto. Herein, we investigate newly collected specimens of D. varicus sensu lato from Scandinavian and Arctic waters using integrative taxonomy. The trematodes were collected from Melanogrammus aeglefinus, Eutrigla gurnardus, Trachinus draco, and Merluccius merluccius off the Atlantic coast of Sweden and from Hippoglossoides platessoides from Arctic Svalbard. 28S sequences of derogenids from Sweden were identical to D. varicus sensu stricto, confirming its euryxeny. The 28S sequences of Derogenes sp. from H. platessoides were identical to Derogenes DV2 and differed from D. varicus sensu stricto by 3% and from Derogenes DV3 by 2%. The 28S sequence divergences of Derogenes sp. from H. platessoides with D. ruber and D. lacustris were 3 and 10%, respectively. ITS2 and cox1 divergences between Derogenes sp. from H. platessoides and other Derogenes species/lineages were at levels of interspecific differences. The species from H. platessoides is described here as D. abba n. sp. We also examined the type material of Progonus muelleri (Levinsen, 1881), the type and only species of the genus Progonus, with redescription and designations of paralectotypes. Based on specimens from Theodor Odhner's collections at the Swedish Museum of Natural History, SMNH, Stockholm, we provide novel morphological and anatomical data for D. varicus sensu lato species complex. Lastly, we investigated Arthur Looss's "lost collection" of Trematodes at the SMNH and characterised a putative species Derogenes sp. "limula".


Title: Démêler le complexe d'espèces Derogenes varicus dans les eaux scandinaves et arctiques : description de Derogenes abba n. sp. (Trematoda, Derogenidae) parasite d'Hippoglossoides platessoides et nouveaux signalements d'hôtes pour D. varicus (Müller, 1784) sensu stricto. Abstract: Plusieurs études ont montré que le trématode euryxene Derogenes varicus (Müller, 1784) représente un complexe d'espèces. Quatre lignées ont été désignées (DV1­4), le clade DV1 correspondant à D. varicus sensu stricto. Ici, nous étudions des spécimens nouvellement collectés de D. varicus sensu lato dans les eaux scandinaves et arctiques en utilisant la taxonomie intégrative. Les trématodes ont été collectés de Melanogrammus aeglefinus, Eutrigla gurnardus, Trachinus draco et Merluccius merluccius au large de la côte atlantique de la Suède et d'Hippoglossoides platessoides du Svalbard arctique. Les séquences 28S des Derogenidae de Suède étaient identiques à D. varicus sensu stricto, confirmant son euryxénie. Les séquences 28S de Derogenes sp. de H. platessoides étaient identiques à Derogenes DV2 et différaient de D. varicus sensu stricto par 3% et de Derogenes DV3 par 2%. Les divergences des séquence 28S de Derogenes sp. de H. platessoides avec D. ruber et D. lacustris étaient respectivement de 3 et 10%. Les divergences ITS2 et cox1 entre Derogenes sp. de H. platessoides et d'autres espèces/lignées de Derogenes se situaient à des niveaux de différences interspécifiques. L'espèce de H. platessoides est décrite ici comme Derogenes abba n. sp. Nous avons également examiné le matériel type de Progonus muelleri (Levinsen, 1881), type et seule espèce du genre Progonus, avec une redescription et des désignations de paralectotypes. Sur la base de spécimens des collections de Theodor Odhner au Musée suédois d'histoire naturelle (SMNH), Stockholm, nous fournissons de nouvelles données morphologiques et anatomiques sur le complexe d'espèces de D. varicus sensu lato. Enfin, nous avons étudié la « collection perdue ¼ de Trématodes d'Arthur Looss au SMNH et caractérisé une espèce putative, Derogenes sp. « limula ¼.


Subject(s)
Phylogeny , Trematoda , Trematode Infections , Animals , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/isolation & purification , Trematoda/genetics , Arctic Regions , Trematode Infections/veterinary , Trematode Infections/parasitology , Sweden , Fish Diseases/parasitology , RNA, Ribosomal, 28S/genetics , Gadiformes/parasitology , Svalbard , DNA, Helminth
6.
Sci Total Environ ; 930: 172571, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38663592

ABSTRACT

Arctic fjords are considered to be one of the ecosystems changing most rapidly in response to climate change. In the Svalbard archipelago, fjords are experiencing a shift in environmental conditions due to the Atlantification of Arctic waters and the retreat of sea-terminating glaciers. These environmental changes are predicted to facilitate expansion of large, brown macroalgae, into new ice-free regions. The potential resilience of macroalgal benthic communities in these fjord systems will depend on their response to combined pressures from freshening due to glacial melt, exposure to warmer waters, and increased turbidity from meltwater runoff which reduces light penetration. Current predictions, however, have a limited ability to elucidate the future impacts of multiple-drivers on macroalgal communities with respect to ecosystem function and biogeochemical cycling in Arctic fjords. To assess the impact of these combined future environmental changes on benthic productivity and resilience, we conducted a two-month mesocosm experiment exposing mixed kelp communities to three future conditions comprising increased temperature (+ 3.3 and + 5.3°C), seawater freshening by ∼ 3.0 and ∼ 5.0 units (i.e., salinity of 30 and 28, respectively), and decreased photosynthetically active radiation (PAR, - 25 and - 40 %). Exposure to these combined treatments resulted in non-significant differences in short-term productivity, and a tolerance of the photosynthetic capacity across the treatment conditions. We present the first robust estimates of mixed kelp community production in Kongsfjorden and place a median compensation irradiance of ∼12.5 mmol photons m-2 h-1 as the threshold for positive net community productivity. These results are discussed in the context of ecosystem productivity and biological tolerance of kelp communities in future Arctic fjord systems.


Subject(s)
Climate Change , Estuaries , Kelp , Arctic Regions , Ecosystem , Svalbard , Seawater
7.
Glob Chang Biol ; 30(5): e17293, 2024 May.
Article in English | MEDLINE | ID: mdl-38687495

ABSTRACT

Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress-response genes that might be co/cross-selected or co-transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run-off from glaciers could contribute to the release and spread of plasmid-related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean.


Subject(s)
Plasmids , Plasmids/genetics , Arctic Regions , Drug Resistance, Bacterial/genetics , Svalbard , Drug Resistance, Microbial/genetics , Virulence/genetics , Wastewater/microbiology , Ice Cover/microbiology , Genes, Bacterial
8.
Syst Parasitol ; 101(3): 31, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642205

ABSTRACT

The rock ptarmigan (Lagopus muta) has a Holarctic breeding distribution and is found in arctic and sub-arctic regions. Isolated populations and glacial relicts occur in alpine areas south of the main range, like the Pyrenees in Europe, the Pamir mountains in Central Asia, and the Japanese Alps. In recent decades considerable effort has been made to clarify parasite infections in the rock ptarmigan. Seven Eimeria spp. have been reported parasitizing rock ptarmigan. Two of those species, E. uekii and E. raichoi parasitizing rock ptarmigan (L. m. japonica) in Japan, have been identified genetically. Here we compare partial sequences of nuclear (18S rRNA) and mitochondrial (COI) genes and we detail the morphology of sporulated oocysts of E. uekii and E. raichoi from Japan, E. muta and E. rjupa, from the rock ptarmigan (L. m. islandorum) in Iceland, and two undescribed eimerian morphotypes, Eimeria sp. A, and Eimeria sp. B, from rock ptarmigan (L. m. hyperborea) in Norway (Svalbard in the Norwegian Archipelago). Two morphotypes, ellipsoidal and spheroidal, are recognized for each of the three host subspecies. Our phylogenetic analysis suggests that the ellipsoidal oocyst types, E. uekii, E. muta, and Eimeria sp. A (Svalbard-Norway) are identical and infects rock ptarmigan in Japan, Iceland, and Svalbard-Norway, respectively. Eimeria uekii was first described in Japan in 1981 so that E. muta, described in Iceland in 2007, and Eimeria sp. A in Svalbard-Norway are junior synonyms of E. uekii. Also, phylogenetic analysis shows that the spheroidal oocyst types, E. rjupa and Eimeria sp. B (Svalbard-Norway), are identical, indicating that rock ptarmigan in Iceland and Svalbard-Norway are infected by the same Eimeria species and differ from E. raichoi in Japan.


Subject(s)
Eimeria , Galliformes , Animals , Eimeria/genetics , Svalbard , Japan , Iceland , Phylogeny , Galliformes/parasitology , Species Specificity , Norway
9.
Mar Pollut Bull ; 202: 116365, 2024 May.
Article in English | MEDLINE | ID: mdl-38608430

ABSTRACT

Plastic pollution threatens many organisms around the world. In particular, the northern fulmar, Fulmarus glacialis, is known to ingest high quantities of plastics. Since data are sparse in the Eurasian Arctic, we investigated plastic burdens in the stomachs of fulmar fledglings from Kongsfjorden, Svalbard. Fifteen birds were collected and only particles larger than 1 mm were extracted, characterised and analysed with Fourier Transform InfraRed spectroscopy. All birds ingested plastic. In total, 683 plastic particles were found, with an average of 46 ± 40 SD items per bird. The most common shape, colour and polymer were hard fragment, white, and polyethylene, respectively. Microplastics (< 5 mm) were slightly more represented than mesoplastics (> 5 mm). This study confirms high numbers of ingested plastics in fulmar fledglings from Svalbard and suggests that fulmar fledglings may be suitable for temporal monitoring of plastic pollution, avoiding potential biases caused by age composition or breeding state.


Subject(s)
Birds , Environmental Monitoring , Plastics , Animals , Plastics/analysis , Svalbard , Water Pollutants, Chemical/analysis , Microplastics/analysis , Arctic Regions
10.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38621717

ABSTRACT

The hydrographic variability in the fjords of Svalbard significantly influences water mass properties, causing distinct patterns of microbial diversity and community composition between surface and subsurface layers. However, surveys on the phytoplankton-associated bacterial communities, pivotal to ecosystem functioning in Arctic fjords, are limited. This study investigated the interactions between phytoplankton and heterotrophic bacterial communities in Svalbard fjord waters through comprehensive eDNA metabarcoding with 16S and 18S rRNA genes. The 16S rRNA sequencing results revealed a homogenous community composition including a few dominant heterotrophic bacteria across fjord waters, whereas 18S rRNA results suggested a spatially diverse eukaryotic plankton distribution. The relative abundances of heterotrophic bacteria showed a depth-wise distribution. By contrast, the dominant phytoplankton populations exhibited variable distributions in surface waters. In the network model, the linkage of phytoplankton (Prasinophytae and Dinophyceae) to heterotrophic bacteria, particularly Actinobacteria, suggested the direct or indirect influence of bacterial contributions on the fate of phytoplankton-derived organic matter. Our prediction of the metabolic pathways for bacterial activity related to phytoplankton-derived organic matter suggested competitive advantages and symbiotic relationships between phytoplankton and heterotrophic bacteria. Our findings provide valuable insights into the response of phytoplankton-bacterial interactions to environmental changes in Arctic fjords.


Subject(s)
Bacteria , Heterotrophic Processes , Phytoplankton , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Seasons , Phytoplankton/genetics , Phytoplankton/metabolism , Arctic Regions , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , DNA Barcoding, Taxonomic , Estuaries , Svalbard , Ice Cover/microbiology , Ecosystem , DNA, Bacterial/genetics , Biodiversity , Microbiota/genetics
11.
Antonie Van Leeuwenhoek ; 117(1): 60, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517574

ABSTRACT

The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).


Subject(s)
Methane , Methylococcaceae , Methane/analysis , Svalbard , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fatty Acids/analysis , Phylogeny , DNA, Bacterial/genetics , DNA, Bacterial/chemistry
12.
Sci Rep ; 14(1): 5825, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461150

ABSTRACT

Despite the well-documented, broad global distribution of sperm whales (Physeter macrocephalus), their distributional patterns remain poorly known in Arctic regions, where year-round monitoring is challenging. Adult male sperm whales are known to migrate seasonally between nutrient-rich high latitude waters and low latitude breeding grounds. However, knowledge is limited regarding fine-scale distribution and seasonal presence at high latitudes. To investigate the acoustic occurrence of this vocally active species in the High Arctic of the Northeast Atlantic, this study combined automated and manual click detection methods to analyze passive acoustic data collected at eight locations around the Svalbard Archipelago, Norway, between 2012 and 2021. The results revealed the presence of sperm whales at six recording sites and demonstrated sperm whale "hotspots" in ice-free areas in eastern Fram Strait along the shelf break and close to the west coast of Spitsbergen from May-January, with some variation between years and locations. Although acoustic presence decreased with increasing latitude, even the northern-most location (81° N) recorded sperm whale vocal activity between August and January. This study provides a baseline for sperm whale acoustic presence in the High Arctic, which will be essential in the context of detecting future changes and also for predicting future distribution patterns in the rapidly changing Arctic marine environment.


Subject(s)
Acoustics , Sperm Whale , Animals , Male , Svalbard , Arctic Regions , Norway
13.
Chemosphere ; 353: 141642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442773

ABSTRACT

We examined the presence of microplastics in blue mussels Mytilus spp. from the intertidal zone of western Spitsbergen in Arctic Svalbard. The optical microscopy technique detected a total of 148 microplastics, with the highest concentration per mussel being 24 particles. Microplastics were found in 84% of the examined mussels. The microplastics ranged in size from <0.5 mm to 5 mm and consisted of fibers (83%), fragments (13%), plates (3%), and spherules (1%). The micro-Raman spectroscopy technique revealed four different types of polymers: polyethylene (67%), nylon-12 (17%), low-density polyethylene (11%), and polypropylene (5%). Our research shows that Arctic coastal waters are polluted with microplastics notwithstanding their remoteness. These findings suggest that microplastic contamination may harm marine life and coastal ecosystems and require further research into long-term environmental effects. We also indicate that intertidal mussels may be beneficial for monitoring microplastics because they can be collected without involving diving.


Subject(s)
Mytilus edulis , Mytilus , Water Pollutants, Chemical , Animals , Mytilus/chemistry , Microplastics , Plastics , Svalbard , Ecosystem , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Mytilus edulis/chemistry
14.
Sci Total Environ ; 922: 171156, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417527

ABSTRACT

The present work provides the first data on the occurrence of different classes of pharmaceuticals and personal care products (PPCPs) in surface marine sediments from an Arctic fjord (Kongsfjorden, Svalbard Islands, Norway). The target compounds included: ciprofloxacin; enrofloxacin; amoxicillin; erythromycin; sulfamethoxazole; carbamazepine; diclofenac; ibuprofen; acetylsalicylic acid; paracetamol; caffeine; triclosan; N,N-diethyl-meta-toluamide; 17ß-estradiol; 17α-ethinyl estradiol and estrone. Sampling was performed in the late summer, when high sedimentation rates occur, and over 5 years (2018-2022). Based on the environmental concentrations (MECs) found of emerging contaminants and the relative predicted no-effect concentrations (PNECs), an environmental risk assessment (ERA) for sediments was performed, including the estimation of the Risk Quotients (RQs) of selection and propagation of antimicrobial resistance (AMR) in this Arctic marine ecosystem. Sediments were extracted by Pressurized Liquid Extraction (PLE) and the extracts were purified by Solid Phase Extraction (SPE). Analytical determination was conducted with liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS). PPCPs were detected in the sediments along the fjord in all the years investigated, with overall concentrations similar in most cases to those reported in urbanized areas of the planet and ranging from a minimum of 6.85 ng/g for triclosan to a maximum of 684.5 ng/g for ciprofloxacin. This latter was the only antibiotic detected but was the most abundant compound (32 %) followed by antipyretics (16 %), hormones (14 %), anti-inflammatories (13 %), insect repellents (11 %), stimulants (9 %), and disinfectants (5 %). Highest concentrations of all PPCPs detected were found close to the Ny-Ålesund research village, where human activities and the lack of appropriate wastewater treatment technologies were recognized as primary causes of local contamination. Finally, due to the presence in the sediments of the PPCPs investigated, the ERA highlights a medium (0.1 < RQ < 1) to high risk (RQ > 1) for organisms living in this Arctic marine ecosystem, including high risk of the spread of AMR.


Subject(s)
Cosmetics , Triclosan , Water Pollutants, Chemical , Humans , Environmental Monitoring , Ecosystem , Svalbard , Triclosan/analysis , Water Pollutants, Chemical/analysis , Cosmetics/analysis , Risk Assessment , Ciprofloxacin/analysis , Pharmaceutical Preparations
15.
PLoS One ; 19(2): e0299033, 2024.
Article in English | MEDLINE | ID: mdl-38394184

ABSTRACT

Animal vocalisations can often inform conspecifics about the behavioural context of production and the underlying affective states, hence revealing whether a situation should be approached or avoided. While this is particularly important for socially complex species, little is known about affective expression in wild colonial animals, and even less to about their young. We studied vocalisations of the little auk (Alle alle) chicks in the Hornsund breeding colony, Svalbard. Little auks are highly colonial seabirds, and adults convey complex behavioural contexts through their calls. We recorded chick calls during two contexts of opposite affective valence: handing by a human, and while they interact with their parents inside the nest. Using permuted discriminant function analysis and a series of linear mixed models, we examined the effect of the production context/associated affective valence on the acoustic parameters of those calls. Calls were reliably classified to their context, with over 97% accuracy. Calls uttered during handling had higher mean entropy, fundamental frequency, as well as lower spectral centre of gravity and a less steep spectral slope compared to calls produced during interactions with a parent inside the nest. The individuality of handling calls, assessed by information content, was lower than the individuality of calls uttered in the nest. These findings suggest that seabird chicks can effectively communicate behavioural/affective contexts through calls, conveying socially important messages early in development. Our results are mostly in line with emotional expression patterns observed across taxa, supporting their evolutionary continuity.


Subject(s)
Charadriiformes , Animals , Humans , Animals, Wild , Svalbard , Vocalization, Animal , Acoustics
16.
Article in English | MEDLINE | ID: mdl-38265430

ABSTRACT

Identified as a newly described species from a biocrust in Svalbard, Norway (78° 54' 8.27″ N 12° 01' 20.34″ E), isolate PAP01T has different characteristics from any known predatory bacteria. The isolate was vibrio-shaped strain that employed flagellar motility. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate clustered within the genus Bdellovibrio in the family Bdellovibrionaceae. 16S rRNA gene sequence similarities between strain PAP01T and the type strain (Bdellovibrio bacteriovorus HD100) was 95.7 %. The PAP01T genome has a size of 3.898 Mbp and possesses 3732 genes and a G+C content of 45.7 mol%. The results of genetic and physiological tests indicated the phenotypic differentiation of strain PAP01T from the two other Bdellovibrio species with validly published names. Based on the physiological and phylogenetic data, as well as the prey range spectrum and osmolality sensitivities, isolate PAP01T represents a novel species within the genus Bdellovibrio, for which the name Bdellovibrio svalbardensis sp. nov. is proposed. The type strain is PAP01T (=KCTC 92583T=DSM 115080T).


Subject(s)
Bdellovibrio , Svalbard , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Norway
17.
Mol Ecol ; 33(5): e17274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279681

ABSTRACT

Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.


Subject(s)
Reindeer , Animals , Reindeer/genetics , Animals, Wild , Gene Frequency , Genetic Drift , Svalbard
18.
Glob Chang Biol ; 30(1): e17009, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942571

ABSTRACT

The high Arctic is considered a pristine environment compared with many other regions in the northern hemisphere. It is becoming increasingly vulnerable to invasion by invasive alien species (IAS), however, as climate change leads to rapid loss of sea ice, changes in ocean temperature and salinity, and enhanced human activities. These changes are likely to increase the incidence of arrival and the potential for establishment of IAS in the region. To predict the impact of IAS, a group of experts in taxonomy, invasion biology and Arctic ecology carried out a horizon scanning exercise using the Svalbard archipelago as a case study, to identify the species that present the highest risk to biodiversity, human health and the economy within the next 10 years. A total of 114 species, currently absent from Svalbard, recorded once and/or identified only from environmental DNA samples, were initially identified as relevant for review. Seven species were found to present a high invasion risk and to potentially cause a significant negative impact on biodiversity and five species had the potential to have an economic impact on Svalbard. Decapod crabs, ascidians and barnacles dominated the list of highest risk marine IAS. Potential pathways of invasion were also researched, the most common were found associated with vessel traffic. We recommend (i) use of this approach as a key tool within the application of biosecurity measures in the wider high Arctic, (ii) the addition of this tool to early warning systems for strengthening existing surveillance measures; and (iii) that this approach is used to identify high-risk terrestrial and freshwater IAS to understand the overall threat facing the high Arctic. Without the application of biosecurity measures, including horizon scanning, there is a greater risk that marine IAS invasions will increase, leading to unforeseen changes in the environment and economy of the high Arctic.


Subject(s)
Biodiversity , Introduced Species , Humans , Svalbard , Ecology , Arctic Regions , Ecosystem
19.
Mar Pollut Bull ; 198: 115845, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039570

ABSTRACT

This study investigated the contamination levels of five typical organotin compounds in Arctic and Antarctic marine sediments. Organotin total concentrations ranged from not detected (ND) to 37.9 ng Sn/g dw and from ND to 34.0 ng Sn/g dw in surface sediments of Svalbard and Fildes Peninsula, respectively. Dibutyltin accounted for 11.3 %-100 % of butyltins in Arctic sediments, whilst diphenyltin was the predominant phenyltin species in both Arctic and Antarctic. However, the concentrations of tributyltin and triphenyltin were lower than low-substituted organotins in the study areas, indicating the effectiveness of international ban on the use of triorganotin-based antifouling paints. No significant difference in organotin contamination was found between Arctic and Antarctic, although the time suffered from human interference was shorter in the Antarctic. Overall, these data can provide a diagnosis of recent organotin inputs in polar regions and serve as a baseline for future study assessing their local applications.


Subject(s)
Organotin Compounds , Water Pollutants, Chemical , Humans , Geologic Sediments , Antarctic Regions , Svalbard , Water Pollutants, Chemical/analysis , Environmental Monitoring
20.
Sci Rep ; 13(1): 23019, 2023 12 27.
Article in English | MEDLINE | ID: mdl-38155192

ABSTRACT

Domestic reindeer (Rangifer tarandus) play a vital role in the culture and livelihoods of indigenous people across northern Eurasia. These animals are well adapted to harsh environmental conditions, such as extreme cold, limited feed availability and long migration distances. Therefore, understanding the genomics of reindeer is crucial for improving their management, conservation and utilisation. In this study, we have generated a new genome assembly for the Fennoscandian domestic reindeer with high contiguity, making it the most complete reference genome for reindeer to date. The new genome assembly was utilised to explore genetic diversity, population structure and selective sweeps in Eurasian Rangifer tarandus populations which was based on the largest population genomic dataset for reindeer, encompassing 58 individuals from diverse populations. Phylogenetic analyses revealed distinct genetic clusters, with the Finnish wild forest reindeer (Rangifer tarandus fennicus) standing out as a unique subspecies. Divergence time estimates suggested a separation of ~ 52 thousand years ago (Kya) between the northern European Rangifer tarandus fennicus and Rangifer tarandus tarandus. Our study identified four main genetic clusters: Fennoscandian, the eastern/northern Russian and Alaskan group, the Finnish forest reindeer, and the Svalbard reindeer. Furthermore, two independent reindeer domestication processes were inferred, suggesting separate origins for the domestic Fennoscandian and eastern/northern Russian reindeer. Notably, shared genes under selection, including retroviral genes, point towards molecular domestication processes that aided adaptation of this species to diverse environments.


Subject(s)
Reindeer , Humans , Animals , Reindeer/genetics , Phylogeny , Biological Evolution , Svalbard
SELECTION OF CITATIONS
SEARCH DETAIL
...