Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.948
Filter
1.
BMC Vet Res ; 20(1): 239, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831363

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) infection inflicted substantial economic losses upon the global pig-breeding industry. This pathogen can infect all pigs and poses a particularly high fatality risk for suckling piglets. The S1 subunit of spike protein is a crucial target protein for inducing the particularly neutralizing antibodies that can intercept the virus-host interaction and neutralize virus infectivity. In the present study, the HEK293F eukaryotic expression system was successfully utilized to express and produce recombinant S1 protein. Through quantitative analysis, five monoclonal antibodies (mAbs) specifically targeting the recombinant S1 protein of PEDV were developed and subsequently evaluated using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and flow cytometry assay (FCA). The results indicate that all five mAbs belong to the IgG1 isotype, and their half-maximal effective concentration (EC50) values measured at 84.77, 7.42, 0.89, 14.64, and 7.86 pM. All these five mAbs can be utilized in ELISA, FCA, and IFA for the detection of PEDV infection. MAb 5-F9 exhibits the highest sensitivity to detect as low as 0.3125 ng/mL of recombinant PEDV-S1 protein in ELISA, while only 0.096 ng/mL of mAb 5-F9 is required to detect PEDV in FCA. The results from antigen epitope analysis indicated that mAb 8-G2 is the sole antibody capable of recognizing linear epitopes. In conclusion, this study has yielded a highly immunogenic S1 protein and five high-affinity mAbs specifically targeting the S1 protein. These findings have significant implications for early detection of PEDV infection and provide a solid foundation for further investigation into studying virus-host interactions.


Subject(s)
Antibodies, Monoclonal , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Porcine epidemic diarrhea virus , Spike Glycoprotein, Coronavirus , Porcine epidemic diarrhea virus/immunology , Antibodies, Monoclonal/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Swine , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Viral/immunology , Swine Diseases/virology , Swine Diseases/immunology , HEK293 Cells , Humans , Recombinant Proteins/immunology , Mice, Inbred BALB C , Mice , Fluorescent Antibody Technique, Indirect/veterinary
2.
Appl Microbiol Biotechnol ; 108(1): 355, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822832

ABSTRACT

Getah virus (GETV) is a re-emerging mosquito-borne alphavirus that is highly pathogenic, mainly to pigs and horses. There are no vaccines or treatments available for GETV in swine in China. Therefore, the development of a simple, rapid, specific, and sensitive serological assay for GETV antibodies is essential for the prevention and control of GETV. Current antibody monitoring methods are time-consuming, expensive, and dependent on specialized instrumentation, and these features are not conducive to rapid detection in clinical samples. To address these problem, we developed immunochromatographic test strips (ICTS) using eukaryotically expressed soluble recombinant p62-E1 protein of GETV as a labelled antigen, which has good detection sensitivity and no cross-reactivity with other common porcine virus-positive sera. The ICTS is highly compatible with IFA and ELISA and can be stored for 1 month at 37 °C and for at least 3 months at room temperature. Hence, p62-E1-based ICTS is a rapid, accurate, and convenient method for rapid on-site detection of GETV antibodies. KEY POINTS: • We established a rapid antibody detection method that can monitor GETV infection • We developed colloidal gold test strips with high sensitivity and specificity • The development of colloidal gold test strips will aid in the field serologic detection of GETV.


Subject(s)
Alphavirus , Antibodies, Viral , Gold Colloid , Sensitivity and Specificity , Animals , Gold Colloid/chemistry , Antibodies, Viral/blood , Antibodies, Viral/immunology , Alphavirus/immunology , Swine , Chromatography, Affinity/methods , Alphavirus Infections/diagnosis , Alphavirus Infections/immunology , Swine Diseases/diagnosis , Swine Diseases/virology , Reagent Strips , China , Enzyme-Linked Immunosorbent Assay/methods
3.
BMC Vet Res ; 20(1): 183, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720324

ABSTRACT

BACKGROUND: Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS: A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS: Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.


Subject(s)
Antibodies, Viral , Q Fever , Swine Diseases , Animals , Italy/epidemiology , Seroepidemiologic Studies , Swine , Risk Factors , Swine Diseases/epidemiology , Swine Diseases/microbiology , Swine Diseases/virology , Q Fever/epidemiology , Q Fever/veterinary , Female , Male , Antibodies, Viral/blood , Diarrhea Viruses, Bovine Viral/immunology , Antibodies, Bacterial/blood , Orthobunyavirus/immunology , Orthobunyavirus/isolation & purification , Coxiella burnetii/immunology , Coxiella burnetii/isolation & purification , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Pseudorabies/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary
4.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793635

ABSTRACT

Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78-99.80%.


Subject(s)
African Swine Fever , Circoviridae Infections , Circovirus , Coinfection , Phylogeny , Sus scrofa , Animals , Poland/epidemiology , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Swine , African Swine Fever/epidemiology , African Swine Fever/virology , Sus scrofa/virology , Prevalence , Circoviridae Infections/veterinary , Circoviridae Infections/epidemiology , Circoviridae Infections/virology , Coinfection/epidemiology , Coinfection/veterinary , Coinfection/virology , Genome, Viral , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , African Swine Fever Virus/classification , Swine Diseases/virology , Swine Diseases/epidemiology
5.
Front Cell Infect Microbiol ; 14: 1367975, 2024.
Article in English | MEDLINE | ID: mdl-38736750

ABSTRACT

The endemic outbreak of SADS-CoV has resulted in economic losses and potentially threatened the safety of China's pig industry. The molecular epidemiology of SADS-CoV in pig herds has been investigated in many provinces in China. However, there are no data over a long-time span, and there is a lack of extensive serological surveys to assess the prevalence of SADS-CoV in Chinese swine herds since the discovery of SADS-CoV. In this study, an indirect anti-SADS-CoV IgG enzyme-linked immunosorbent assay (ELISA) based on the SADS-CoV S1 protein was established to investigate the seroprevalence of SADS-CoV in Chinese swine herds. Cross-reactivity assays, indirect immunofluorescence, and western blotting assays showed that the developed ELISA had excellent SADS-CoV specificity. In total, 12,978 pig serum samples from 29 provinces/municipalities/autonomous regions in China were tested from 2022 to 2023. The results showed that the general seroprevalence of SADS-CoV in China was 59.97%, with seroprevalence ranging from 16.7% to 77.12% in different provinces and from 42.61% to 68.45% in different months. SADS-CoV is widely prevalent in China, and its seroprevalence was higher in Northeast China, North China, and Central China than in other regions. Among the four seasons, the prevalence of SADS-CoV was the highest in spring and the lowest in autumn. The results of this study provide the general seroprevalence profile of SADS-CoV in China, facilitating the understanding of the prevalence of SADS-CoV in pigs. More importantly, this study is beneficial in formulating preventive and control measures for SADS-CoV and may provide directions for vaccine development.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Enzyme-Linked Immunosorbent Assay , Swine Diseases , Animals , China/epidemiology , Seroepidemiologic Studies , Swine , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/blood , Swine Diseases/epidemiology , Swine Diseases/virology , Coronavirus Infections/veterinary , Coronavirus Infections/epidemiology , Coronavirus Infections/diagnosis , Immunoglobulin G/blood , Alphacoronavirus/immunology , Alphacoronavirus/genetics , Cross Reactions , Sensitivity and Specificity
6.
Arch Virol ; 169(6): 119, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753197

ABSTRACT

Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.


Subject(s)
Circoviridae Infections , Circovirus , Multiplex Polymerase Chain Reaction , Swine Diseases , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Swine , Animals , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/diagnosis , Swine Diseases/virology , Swine Diseases/diagnosis , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , Reproducibility of Results , DNA Primers/genetics , DNA, Viral/genetics
7.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735951

ABSTRACT

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Porcine epidemic diarrhea virus , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Antibodies, Monoclonal/immunology , Transistors, Electronic , Swine Diseases/diagnosis , Swine Diseases/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/immunology , Equipment Design
8.
Vet Res ; 55(1): 65, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773540

ABSTRACT

In 2020, a new genotype of swine H1N2 influenza virus (H1avN2-HA 1C.2.4) was identified in France. It rapidly spread within the pig population and supplanted the previously predominant H1avN1-HA 1C.2.1 virus. To characterize this new genotype which is genetically and antigenically distant from the other H1avNx viruses detected in France, an experimental study was conducted to compare the outcomes of H1avN2 and H1avN1 infections in pigs and evaluate the protection conferred by the only inactivated vaccine currently licensed in Europe containing an HA 1C (clade 1C.2.2) antigen. Infection with H1avN2 induced stronger clinical signs and earlier shedding than H1avN1. The neutralizing antibodies produced following H1avN2 infection were unable to neutralize H1avN1, and vice versa, whereas the cellular-mediated immunity cross-reacted. Vaccination slightly altered the impact of H1avN2 infection at the clinical level, but did not prevent shedding of infectious virus particles. It induced a cellular-mediated immune response towards H1avN2, but did not produce neutralizing antibodies against this virus. As in vaccinated animals, animals previously infected by H1avN1 developed a cross-reacting cellular immune response but no neutralizing antibodies against H1avN2. However, H1avN1 pre-infection induced a better protection against the H1avN2 infection than vaccination, probably due to higher levels of non-neutralizing antibodies and a mucosal immunity. Altogether, these results showed that the new H1avN2 genotype induced a severe respiratory infection and that the actual vaccine was less effective against this H1avN2-HA 1C.2.4 than against H1avN1-HA 1C.2.1, which may have contributed to the H1avN2 epizootic and dissemination in pig farms in France.


Subject(s)
Genotype , Influenza A Virus, H1N2 Subtype , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , France/epidemiology , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza Vaccines/immunology , Virulence , Antibodies, Neutralizing/blood , Immunity, Cellular
9.
Arch Virol ; 169(5): 115, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709425

ABSTRACT

Porcine circoviruses (PCVs) are a significant cause of concern for swine health, with four genotypes currently recognized. Two of these, PCV3 and PCV4, have been detected in pigs across all age groups, in both healthy and diseased animals. These viruses have been associated with various clinical manifestations, including porcine dermatitis and nephropathy syndrome (PDNS) and respiratory and enteric signs. In this study, we detected PCV3 and PCV4 in central China between January 2022 and February 2023. We tested fecal swabs and tissue samples from growing-finishing and suckling pigs with or without respiratory and systemic manifestations and found the prevalence of PCV3 to be 15.15% (15/99) and that of PCV3/PCV4 coinfection to be 4.04% (4/99). This relatively low prevalence might be attributed to the fact that most of the clinical samples were collected from pigs exhibiting respiratory signs, with only a few samples having been obtained from pigs with diarrhea. In some cases, PCV2 was also detected, and the coinfection rates of PCV2/3, PCV2/4, and PCV2/3/4 were 6.06% (6/99), 5.05% (5/99), and 3.03% (3/99), respectively. The complete genomic sequences of four PCV3 and two PCV4 isolates were determined. All four of the PCV3 isolates were of subtype PCV3b, and the two PCV4 isolates were of subtype PCV4b. Two mutations (A24V and R27K) were found in antibody recognition domains of PCV3, suggesting that they might be associated with immune escape. This study provides valuable insights into the molecular epidemiology and evolution of PCV3 and PCV4 that will be useful in future investigations of genotyping, immunogenicity, and immune evasion strategies.


Subject(s)
Circoviridae Infections , Circovirus , Genotype , Phylogeny , Swine Diseases , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Animals , Swine , China/epidemiology , Swine Diseases/virology , Swine Diseases/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/epidemiology , Coinfection/virology , Coinfection/veterinary , Coinfection/epidemiology , Genome, Viral/genetics , Feces/virology
10.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730463

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Subject(s)
Antiviral Agents , Histone Demethylases , Porcine epidemic diarrhea virus , Virus Replication , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/pharmacology , Virus Replication/drug effects , Histone Demethylases/antagonists & inhibitors , Swine , Chlorocebus aethiops , Swine Diseases/virology , Swine Diseases/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Vero Cells
11.
J Med Virol ; 96(6): e29712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38808555

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.


Subject(s)
Membrane Proteins , Serine Endopeptidases , Virus Internalization , Animals , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Swine , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Alphacoronavirus/genetics , Alphacoronavirus/physiology , Coronavirus Infections/virology , Coronavirus Infections/metabolism , Gabexate/analogs & derivatives , Gabexate/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , HEK293 Cells , Cell Line , Chlorocebus aethiops , Swine Diseases/virology , Esters , Guanidines
12.
Sci Rep ; 14(1): 12279, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811677

ABSTRACT

Practice of inoculating porcine epidemic diarrhea virus (PEDV) in piglets generating feedback material might influence the genetic evolution and attenuation of PEDV. The study was conducted to evaluate evolutionary rate and attenuation following serial in vitro and in vivo propagation. In the study, PED-JPFP0-PJ, Passage 0 (P0), was isolated from infected pigs and serially passaged in Vero cells for 5 consecutive times, P1-P5. P0, P2 and P5 were then subjected to orally inoculate 3-day-old piglets. At 24 h post inoculation, intestines of each passage (F1), were collected, and subsequently sub-passaged in piglets for 2 additional passages (F2-F3). Virus titration, PEDV genomic copies number, VH:CD ratios, and immunohistochemistry were evaluated. S and ORF3 genes were characterized. The results of the study demonstrated that virus titer and virulence were negatively correlated with increased passages, both in vitro and in vivo. Increased substitution rate was observed in higher passages. The evolutionary rate of S gene was higher than that of ORF3. Seven aa changes at positions 223, 291, 317, 607, 694, 1114 and 1199, with reduced N-linked glycan were observed in P5F3. In conclusion, serial passage of PEDV, both in vitro and in vivo, influence the genetic development and the attenuation of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Porcine epidemic diarrhea virus/pathogenicity , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , Swine , Virulence , Vero Cells , Chlorocebus aethiops , Swine Diseases/virology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Evolution, Molecular , Serial Passage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
PLoS Pathog ; 20(5): e1012240, 2024 May.
Article in English | MEDLINE | ID: mdl-38768240

ABSTRACT

Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis worldwide. HEV associated pregnancy mortality has been reported as up to 30% in humans. Recent findings suggest HEV may elicit effects directly in the reproductive system with HEV protein found in the testis, viral RNA in semen, and viral replication occurring in placental cell types. Using a natural host model for HEV infection, pigs, we demonstrate infectious HEV within the mature spermatozoa and altered sperm viability from HEV infected pigs. HEV isolated from sperm remained infectious suggesting a potential transmission route via sexual partners. Our findings suggest that HEV should be explored as a possible sexually transmittable disease. Our findings propose that infection routes outside of oral and intravenous infection need to be considered for their potential to contribute to higher mortality in HEV infections when pregnancy is involved and in HEV disease in general.


Subject(s)
Hepatitis E virus , Hepatitis E , Sperm Head , Male , Hepatitis E virus/physiology , Hepatitis E virus/pathogenicity , Animals , Hepatitis E/virology , Hepatitis E/transmission , Hepatitis E/veterinary , Swine , Sperm Head/virology , Female , Pregnancy , Swine Diseases/virology
14.
Virol J ; 21(1): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816738

ABSTRACT

BACKGROUND: The Porcine Epidemic Diarrhea Virus (PEDV) has caused significant economic losses in the global swine industry. As a potential drug for treating diarrhea, the antiviral properties of attapulgite deserve further study. METHODS: In this study, various methods such as RT-qPCR, Western blot, viral titer assay, Cytopathic Effect, immunofluorescence analysis and transmission electron microscopy were used to detect the antiviral activity of attapulgite and to assess its inhibitory effect on PEDV. RESULTS: When exposed to the same amount of virus, there was a significant decrease in the expression of the S protein, resulting in a viral titer reduction from 10-5.613 TCID50/mL to 10-2.90 TCID50/mL, which represents a decrease of approximately 102.6 folds. Results of cytopathic effect and indirect immunofluorescence also indicate a notable decrease in viral infectivity after attapulgite treatment. Additionally, it was observed that modified materials after acidification had weaker antiviral efficacy compared to powdered samples that underwent ultrasonic disintegration, which showed the strongest antiviral effects. CONCLUSION: As a result, Attapulgite powders can trap and adsorb viruses to inhibit PEDV in vitro, leading to loss of viral infectivity. This study provides new materials for the development of novel disinfectants and antiviral additives.


Subject(s)
Antiviral Agents , Porcine epidemic diarrhea virus , Silicon Compounds , Porcine epidemic diarrhea virus/drug effects , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , Animals , Antiviral Agents/pharmacology , Silicon Compounds/pharmacology , Silicon Compounds/chemistry , Chlorocebus aethiops , Magnesium Compounds/pharmacology , Swine , Vero Cells , Viral Load/drug effects , Cytopathogenic Effect, Viral/drug effects , Swine Diseases/virology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Microscopy, Electron, Transmission
15.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
16.
Front Immunol ; 15: 1397118, 2024.
Article in English | MEDLINE | ID: mdl-38812505

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.


Subject(s)
Adaptive Immunity , Antibodies, Viral , Coronavirus Infections , Immunity, Maternally-Acquired , Porcine epidemic diarrhea virus , Swine Diseases , Vitamin A , Animals , Porcine epidemic diarrhea virus/immunology , Female , Swine , Pregnancy , Vitamin A/administration & dosage , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/blood , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Animals, Newborn , Lactation/immunology , Dietary Supplements , Vitamin A Deficiency/immunology , Immunization
17.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793542

ABSTRACT

The suboptimal performance of rotavirus (RV) vaccines in developing countries and in animals necessitates further research on the development of novel therapeutics and control strategies. To initiate infection, RV interacts with cell-surface O-glycans, including histo-blood group antigens (HBGAs). We have previously demonstrated that certain non-pathogenic bacteria express HBGA- like substances (HBGA+) capable of binding RV particles in vitro. We hypothesized that HBGA+ bacteria can bind RV particles in the gut lumen protecting against RV species A (RVA), B (RVB), and C (RVC) infection in vivo. In this study, germ-free piglets were colonized with HBGA+ or HBGA- bacterial cocktail and infected with RVA/RVB/RVC of different genotypes. Diarrhea severity, virus shedding, immunoglobulin A (IgA) Ab titers, and cytokine levels were evaluated. Overall, colonization with HBGA+ bacteria resulted in reduced diarrhea severity and virus shedding compared to the HBGA- bacteria. Consistent with our hypothesis, the reduced severity of RV disease and infection was not associated with significant alterations in immune responses. Additionally, colonization with HBGA+ bacteria conferred beneficial effects irrespective of the piglet HBGA phenotype. These findings are the first experimental evidence that probiotic performance in vivo can be improved by including HBGA+ bacteria, providing decoy epitopes for broader/more consistent protection against diverse RVs.


Subject(s)
Blood Group Antigens , Germ-Free Life , Rotavirus Infections , Rotavirus , Animals , Rotavirus Infections/immunology , Rotavirus Infections/virology , Swine , Rotavirus/immunology , Blood Group Antigens/metabolism , Blood Group Antigens/immunology , Diarrhea/virology , Diarrhea/microbiology , Diarrhea/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Virus Shedding , Bacteria/classification , Immunoglobulin A/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Cytokines/metabolism
18.
Emerg Microbes Infect ; 13(1): 2353292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712345

ABSTRACT

ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.


Subject(s)
Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Swine Diseases , Animals , Mink/virology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Swine , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/isolation & purification , Swine Diseases/virology , Swine Diseases/transmission , Spain , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Shedding
19.
Front Immunol ; 15: 1384417, 2024.
Article in English | MEDLINE | ID: mdl-38726013

ABSTRACT

Nipah virus (NiV) poses a significant threat to human and livestock populations across South and Southeast Asia. Vaccines are required to reduce the risk and impact of spillover infection events. Pigs can act as an intermediate amplifying host for NiV and, separately, provide a preclinical model for evaluating human vaccine candidate immunogenicity. The aim of this study was therefore to evaluate the immunogenicity of an mRNA vectored NiV vaccine candidate in pigs. Pigs were immunized twice with 100 µg nucleoside-modified mRNA vaccine encoding soluble G glycoprotein from the Malaysia strain of NiV, formulated in lipid nanoparticles. Potent antigen-binding and virus neutralizing antibodies were detected in serum following the booster immunization. Antibody responses effectively neutralized both the Malaysia and Bangladesh strains of NiV but showed limited neutralization of the related (about 80% amino acid sequence identity for G) Hendra virus. Antibodies were also capable of neutralizing NiV glycoprotein mediated cell-cell fusion. NiV G-specific T cell cytokine responses were also measurable following the booster immunization with evidence for induction of both CD4 and CD8 T cell responses. These data support the further evaluation of mRNA vectored NiV G as a vaccine for both pigs and humans.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Henipavirus Infections , Nipah Virus , Viral Vaccines , Animals , Nipah Virus/immunology , Nipah Virus/genetics , Swine , Henipavirus Infections/prevention & control , Henipavirus Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , RNA, Messenger/genetics , RNA, Messenger/immunology , Immunogenicity, Vaccine , Immunization, Secondary , Cytokines/immunology , Vaccines, Synthetic/immunology , Liposomes , Nanoparticles
20.
Emerg Microbes Infect ; 13(1): 2343907, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38738553

ABSTRACT

Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.


Subject(s)
Cattle Diseases , Orthomyxoviridae Infections , Phylogeny , Thogotovirus , Animals , China/epidemiology , Cattle , Thogotovirus/genetics , Thogotovirus/classification , Thogotovirus/isolation & purification , Thogotovirus/immunology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/transmission , Seroepidemiologic Studies , Swine , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/transmission , Goats , Swine Diseases/virology , Swine Diseases/epidemiology , Antibodies, Viral/blood , Humans , Deltainfluenzavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...