Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.919
Filter
2.
Sci Rep ; 14(1): 10540, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719945

ABSTRACT

Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.


Subject(s)
Bacteriophages , Bivalvia , Gills , Metagenomics , Animals , Metagenomics/methods , Bacteriophages/genetics , Bacteriophages/isolation & purification , Gills/microbiology , Gills/virology , Gills/metabolism , Bivalvia/microbiology , Bivalvia/virology , Bivalvia/genetics , Gene Expression Profiling , Transcriptome , Virome/genetics , Bacteria/genetics , Bacteria/classification , Symbiosis/genetics , Metagenome
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732070

ABSTRACT

Wolbachia, a group of Gram-negative symbiotic bacteria, infects nematodes and a wide range of arthropods. Diaphorina citri Kuwayama, the vector of Candidatus Liberibacter asiaticus (CLas) that causes citrus greening disease, is naturally infected with Wolbachia (wDi). However, the interaction between wDi and D. citri remains poorly understood. In this study, we performed a pan-genome analysis using 65 wDi genomes to gain a comprehensive understanding of wDi. Based on average nucleotide identity (ANI) analysis, we classified the wDi strains into Asia and North America strains. The ANI analysis, principal coordinates analysis (PCoA), and phylogenetic tree analysis supported that the D. citri in Florida did not originate from China. Furthermore, we found that a significant number of core genes were associated with metabolic pathways. Pathways such as thiamine metabolism, type I secretion system, biotin transport, and phospholipid transport were highly conserved across all analyzed wDi genomes. The variation analysis between Asia and North America wDi showed that there were 39,625 single-nucleotide polymorphisms (SNPs), 2153 indels, 10 inversions, 29 translocations, 65 duplications, 10 SV-based insertions, and 4 SV-based deletions. The SV-based insertions and deletions involved genes encoding transposase, phage tail tube protein, ankyrin repeat (ANK) protein, and group II intron-encoded protein. Pan-genome analysis of wDi contributes to our understanding of the geographical population of wDi, the origin of hosts of D. citri, and the interaction between wDi and its host, thus facilitating the development of strategies to control the insects and huanglongbing (HLB).


Subject(s)
Genome, Bacterial , Phylogeny , Symbiosis , Wolbachia , Wolbachia/genetics , Wolbachia/classification , Symbiosis/genetics , Animals , Asia , North America , Hemiptera/microbiology , Hemiptera/genetics , Diptera/microbiology , Diptera/genetics , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 25(1): 529, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811885

ABSTRACT

BACKGROUND: The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions. Their taxonomic ranks are currently fluid. RESULTS: In this study, we recognize these three monophyletic linages as phyla, and use a balanced taxon sampling and broad taxonomic representation for phylogenomic analysis that rejects a hard polytomy and resolves Glomeromycota as sister to a clade composed of Mucoromycota and Mortierellomycota. Low copy numbers of genes associated with plant cell wall degradation could not be assigned to the transition to a plant symbiotic lifestyle but appears to be an ancestral phylogenetic signal. Both plant symbiotic lineages, Glomeromycota and Endogonales, lack numerous thiamine metabolism genes but the lack of fatty acid synthesis genes is specific to AM fungi. Many genes previously thought to be missing specifically in Glomeromycota are either missing in all analyzed phyla, or in some cases, are actually present in some of the analyzed AM fungal lineages, e.g. the high affinity phosphorus transporter Pho89. CONCLUSION: Based on a broad taxon sampling of fungal genomes we present a well-supported phylogeny for AM fungi and their sister lineages. We show that among these lineages, two independent evolutionary transitions to mutualistic plant symbiosis happened in a genomic background profoundly different from that known from the emergence of ectomycorrhizal fungi in Dikarya. These results call for further reevaluation of genomic signatures associated with plant symbiosis.


Subject(s)
Genomics , Mycorrhizae , Phylogeny , Symbiosis , Mycorrhizae/genetics , Mycorrhizae/physiology , Symbiosis/genetics , Genomics/methods , Evolution, Molecular , Genome, Fungal , Glomeromycota/genetics , Glomeromycota/physiology , Plants/microbiology
5.
PLoS Biol ; 22(5): e3002608, 2024 May.
Article in English | MEDLINE | ID: mdl-38713727

ABSTRACT

Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.


Subject(s)
Magnoliopsida , Mitochondrial Proteins , Phylogeny , Plastids , Plastids/metabolism , Plastids/genetics , Magnoliopsida/genetics , Magnoliopsida/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Evolution, Molecular , Biological Evolution , Mitochondria/metabolism , Mitochondria/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Proteome/metabolism , Symbiosis/genetics , Organelles/metabolism , Organelles/genetics
6.
Nat Commun ; 15(1): 4452, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789482

ABSTRACT

Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.


Subject(s)
Chlorophyta , Lichens , Phylogeny , Symbiosis , Lichens/genetics , Lichens/microbiology , Symbiosis/genetics , Chlorophyta/genetics , Gene Transfer, Horizontal , Evolution, Molecular , Biological Evolution , Transcriptome , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Genomics
7.
Genes (Basel) ; 15(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38790218

ABSTRACT

Phosphorus (P) is a vital nutrient element that is essential for plant growth and development, and arbuscular mycorrhizal fungi (AMF) can significantly enhance P absorption. The phosphate transporter protein 1 (PHT1) family mediates the uptake of P in plants. However, the PHT1 gene has not yet been characterized in Salvia miltiorrhiza. In this study, to gain insight into the functional divergence of PHT1 genes, nine SmPHT1 genes were identified in the S. miltiorrhiza genome database via bioinformatics tools. Phylogenetic analysis revealed that the PHT1 proteins of S. miltiorrhiza, Arabidopsis thaliana, and Oryza sativa could be divided into three groups. PHT1 in the same clade has a similar gene structure and motif, suggesting that the features of each clade are relatively conserved. Further tissue expression analysis revealed that SmPHT1 was expressed mainly in the roots and stems. In addition, phenotypic changes, P content, and PHT1 gene expression were analyzed in S. miltiorrhiza plants inoculated with AMF under different P conditions (0 mM, 0.1 mM, and 10 mM). P stress and AMF significantly affected the growth and P accumulation of S. miltiorrhiza. SmPHT1;6 was strongly expressed in the roots colonized by AMF, implying that SmPHT1;6 was a specific AMF-inducible PHT1. Taken together, these results provide new insights into the functional divergence and genetic redundancy of the PHT1 genes in response to P stress and AMF symbiosis in S. miltiorrhiza.


Subject(s)
Gene Expression Regulation, Plant , Mycorrhizae , Phosphate Transport Proteins , Phosphates , Phylogeny , Plant Proteins , Salvia miltiorrhiza , Stress, Physiological , Symbiosis , Mycorrhizae/genetics , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/microbiology , Symbiosis/genetics , Stress, Physiological/genetics , Phosphates/metabolism , Multigene Family , Plant Roots/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Genome, Plant
8.
Nat Commun ; 15(1): 4262, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802387

ABSTRACT

Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.


Subject(s)
Nitrogen Fixation , Phylogeny , Root Nodules, Plant , Symbiosis , Symbiosis/genetics , Nitrogen Fixation/genetics , Root Nodules, Plant/microbiology , Root Nodules, Plant/genetics , Evolution, Molecular , Biological Evolution , Plant Roots/microbiology , Plant Roots/genetics , Magnoliopsida/genetics , Magnoliopsida/microbiology
9.
Sci Rep ; 14(1): 12151, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802437

ABSTRACT

Coevolution describes evolutionary change in which two or more interacting species reciprocally drive each other's evolution, potentially resulting in trait diversification and ecological speciation. Much progress has been made in analysis of its dynamics and consequences, but relatively little is understood about how coevolution works in multispecies interactions, i.e., those with diverse suites of species on one or both sides of an interaction. Interactions among plant hosts and their mutualistic ectomycorrhizal fungi (ECM) may provide an ecologically unique arena to examine the nature of selection in multispecies interactions. Using native genotypes of Monterey pine (Pinus radiata), we performed a common garden experiment at a field site that contains native stands to investigate selection from ECM fungi on pine traits. We planted seedlings from all five native populations, as well as inter-population crosses to represent intermediate phenotypes/genotypes, and measured seedling traits and ECM fungal traits to evaluate the potential for evolution in the symbiosis. We then combined field estimates of selection gradients with estimates of heritability and genetic variance-covariance matrices for multiple traits of the mutualism to determine which fungal traits drive plant fitness variation. We found evidence that certain fungal operational taxonomic units, families and species-level morphological traits by which ECM fungi acquire and transport nutrients exert selection on plant traits related to growth and allocation patterns. This work represents the first field-based, community-level study measuring multispecific coevolutionary selection in nutritional symbioses.


Subject(s)
Mycorrhizae , Pinus , Symbiosis , Mycorrhizae/genetics , Mycorrhizae/physiology , Symbiosis/genetics , Pinus/microbiology , Selection, Genetic , Seedlings/microbiology , Seedlings/growth & development , Phenotype , Genotype , Biological Evolution
10.
Physiol Plant ; 176(3): e14341, 2024.
Article in English | MEDLINE | ID: mdl-38741264

ABSTRACT

Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Nitrogen Fixation , Plant Proteins , Plant Root Nodulation , Symbiosis , Glycine max/genetics , Glycine max/microbiology , Glycine max/physiology , Plant Root Nodulation/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Symbiosis/genetics , Rhizobium/physiology , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Root Nodules, Plant/metabolism , Plants, Genetically Modified , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/metabolism
11.
Nat Commun ; 15(1): 4571, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811551

ABSTRACT

Evolution results from the interaction of stochastic and deterministic processes that create a web of historical contingency, shaping gene content and organismal function. To understand the scope of this interaction, we examine the relative contributions of stochasticity, determinism, and contingency in shaping gene inactivation in 34 lineages of endosymbiotic bacteria, Sodalis, found in parasitic lice, Columbicola, that are independently undergoing genome degeneration. Here we show that the process of genome degeneration in this system is largely deterministic: genes involved in amino acid biosynthesis are lost while those involved in providing B-vitamins to the host are retained. In contrast, many genes encoding redundant functions, including components of the respiratory chain and DNA repair pathways, are subject to stochastic loss, yielding historical contingencies that constrain subsequent losses. Thus, while selection results in functional convergence between symbiont lineages, stochastic mutations initiate distinct evolutionary trajectories, generating diverse gene inventories that lack the functional redundancy typically found in free-living relatives.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Phylogeny , Stochastic Processes , Symbiosis , Symbiosis/genetics , Genome, Bacterial/genetics , Animals , Enterobacteriaceae/genetics , Enterobacteriaceae/metabolism , Mutation
12.
PLoS Biol ; 22(4): e3002581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593123

ABSTRACT

Symbiosis is an old idea with a contentious history. New genomic technologies and research paradigms are fueling a shift in some of its central tenets; we need to be humble and open-minded about what the data are telling us.


Subject(s)
Genomics , Symbiosis , Symbiosis/genetics
13.
PLoS Biol ; 22(4): e3002580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607979

ABSTRACT

Endosymbiosis drives evolutionary innovation and underpins the function of diverse ecosystems. The mechanistic origins of symbioses, however, remain unclear, in part because early evolutionary events are obscured by subsequent evolution and genetic drift. This Essay highlights how experimental studies of facultative, host-switched, and synthetic symbioses are revealing the important role of fitness trade-offs between within-host and free-living niches during the early-stage evolution of new symbiotic associations. The mutational targets underpinning such trade-offs are commonly regulatory genes, such that single mutations have major phenotypic effects on multiple traits, thus enabling and reinforcing the transition to a symbiotic lifestyle.


Subject(s)
Ecosystem , Symbiosis , Symbiosis/genetics , Exercise , Genetic Drift , Mutation/genetics
14.
PLoS One ; 19(4): e0297547, 2024.
Article in English | MEDLINE | ID: mdl-38625963

ABSTRACT

Most legumes are able to develop a root nodule symbiosis in association with proteobacteria collectively called rhizobia. Among them, the tropical species Aeschynomene evenia has the remarkable property of being nodulated by photosynthetic Rhizobia without the intervention of Nod Factors (NodF). Thereby, A. evenia has emerged as a working model for investigating the NodF-independent symbiosis. Despite the availability of numerous resources and tools to study the molecular basis of this atypical symbiosis, the lack of a transformation system based on Agrobacterium tumefaciens significantly limits the range of functional approaches. In this report, we present the development of a stable genetic transformation procedure for A. evenia. We first assessed its regeneration capability and found that a combination of two growth regulators, NAA (= Naphthalene Acetic Acid) and BAP (= 6-BenzylAminoPurine) allows the induction of budding calli from epicotyls, hypocotyls and cotyledons with a high efficiency in media containing 0,5 µM NAA (up to 100% of calli with continuous stem proliferation). To optimize the generation of transgenic lines, we employed A. tumefaciens strain EHA105 harboring a binary vector carrying the hygromycin resistance gene and the mCherry fluorescent marker. Epicotyls and hypocotyls were used as the starting material for this process. We have found that one growth medium containing a combination of NAA (0,5 µM) and BAP (2,2 µM) was sufficient to induce callogenesis and A. tumefaciens strain EHA105 was sufficiently virulent to yield a high number of transformed calli. This simple and efficient method constitutes a valuable tool that will greatly facilitate the functional studies in NodF-independent symbiosis.


Subject(s)
Fabaceae , Fabaceae/genetics , Fabaceae/microbiology , Agrobacterium tumefaciens/genetics , Symbiosis/genetics , Phenotype , Vegetables/genetics , Transformation, Genetic , Plants, Genetically Modified
15.
PLoS Biol ; 22(4): e3002577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626194

ABSTRACT

The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.


Subject(s)
Bacteria , Eukaryota , Animals , Bacteria/genetics , Eukaryota/genetics , Genome, Bacterial/genetics , Symbiosis/genetics , Bacterial Physiological Phenomena , Phylogeny
16.
Mol Ecol ; 33(9): e17342, 2024 May.
Article in English | MEDLINE | ID: mdl-38584356

ABSTRACT

Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbAncr), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.


Subject(s)
Anthozoa , Coral Reefs , Dinoflagellida , Symbiosis , Dinoflagellida/genetics , Symbiosis/genetics , Animals , Anthozoa/microbiology , Anthozoa/genetics , Australia , Temperature , Phylogeny
17.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673792

ABSTRACT

Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.


Subject(s)
Aquaporins , Droughts , Gene Expression Regulation, Plant , Mycorrhizae , Plant Proteins , Symbiosis , Zea mays , Zea mays/microbiology , Zea mays/genetics , Zea mays/metabolism , Mycorrhizae/physiology , Symbiosis/genetics , Aquaporins/metabolism , Aquaporins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/genetics , Drought Resistance
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673813

ABSTRACT

We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.


Subject(s)
Fat Body , Symbiosis , Transcriptome , Symbiosis/genetics , Animals , Fat Body/metabolism , Female , Gene Expression Profiling , Immune System/metabolism , Bacteroidetes/genetics , Bacteroidetes/metabolism , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/genetics
19.
New Phytol ; 242(4): 1448-1475, 2024 May.
Article in English | MEDLINE | ID: mdl-38581203

ABSTRACT

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Subject(s)
Biological Evolution , Models, Biological , Mycorrhizae , Mycorrhizae/physiology , Mycorrhizae/genetics , Ecology , Symbiosis/genetics , Basidiomycota/physiology , Basidiomycota/genetics
20.
Mol Ecol ; 33(11): e17347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38624248

ABSTRACT

Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.


Subject(s)
Gene Flow , Genetic Speciation , Genetics, Population , Perciformes , Animals , Perciformes/genetics , Sympatry , Australia , Phylogeny , Coral Reefs , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...