Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.524
Filter
1.
Bioessays ; 46(6): e2400008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697917

ABSTRACT

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Subject(s)
Neuronal Plasticity , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/physiology , Animals , Neuronal Plasticity/genetics , Humans , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Synapses/genetics , Cerebellar Cortex/cytology , Cerebellar Cortex/metabolism , Cerebellar Cortex/physiology
3.
Nat Rev Neurosci ; 25(6): 393-413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600347

ABSTRACT

Parkinson disease (PD) is a neurodegenerative disorder marked by the preferential dysfunction and death of dopaminergic neurons in the substantia nigra. The onset and progression of PD is influenced by a diversity of genetic variants, many of which lack functional characterization. To identify the most high-yield targets for therapeutic intervention, it is important to consider the core cellular compartments and functional pathways upon which the varied forms of pathogenic dysfunction may converge. Here, we review several key PD-linked proteins and pathways, focusing on the mechanisms of their potential convergence in disease pathogenesis. These dysfunctions primarily localize to a subset of subcellular compartments, including mitochondria, lysosomes and synapses. We discuss how these pathogenic mechanisms that originate in different cellular compartments may coordinately lead to cellular dysfunction and neurodegeneration in PD.


Subject(s)
Parkinson Disease , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Humans , Animals , Mitochondria/genetics , Mitochondria/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Lysosomes/metabolism , Lysosomes/genetics , Synapses/pathology , Synapses/genetics , Synapses/metabolism
4.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119720, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582237

ABSTRACT

Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.


Subject(s)
Synapses , Humans , Synapses/metabolism , Synapses/genetics , Animals , Nitric Oxide/metabolism , Proteome/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Proteomics/methods , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Protein Processing, Post-Translational , Schizophrenia/metabolism , Schizophrenia/genetics , Schizophrenia/pathology
5.
PLoS Genet ; 20(3): e1011190, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38483970

ABSTRACT

A population of neurons interconnected by synapses constitutes a neural circuit, which performs specific functions upon activation. It is essential to identify both anatomical and functional entities of neural circuits to comprehend the components and processes necessary for healthy brain function and the changes that characterize brain disorders. To date, few methods are available to study these two aspects of a neural circuit simultaneously. In this study, we developed FLIPSOT, or functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango. FLIPSOT uses (1) trans-Tango to access postsynaptic neurons genetically, (2) optogenetic approaches to activate (FLIPSOTa) or inhibit (FLIPSOTi) postsynaptic neurons in a random and sparse manner, and (3) fluorescence markers tagged with optogenetic genes to visualize these neurons. Therefore, FLIPSOT allows using a presynaptic driver to identify the behavioral function of individual postsynaptic neurons. It is readily applied to identify functions of individual postsynaptic neurons and has the potential to be adapted for use in mammalian circuits.


Subject(s)
Drosophila , Optogenetics , Animals , Drosophila/genetics , Neurons/physiology , Optogenetics/methods , Synapses/genetics
6.
Nature ; 627(8004): 604-611, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448582

ABSTRACT

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Subject(s)
Aging , Astrocytes , Neurons , Prefrontal Cortex , Schizophrenia , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Aging/metabolism , Aging/pathology , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/pathology , Cholesterol/metabolism , Cognition , GABAergic Neurons/metabolism , Genetic Predisposition to Disease , Glutamine/metabolism , Health , Individuality , Neural Inhibition , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Single-Cell Gene Expression Analysis , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Synaptic Membranes/chemistry , Synaptic Membranes/metabolism
7.
Hum Mol Genet ; 33(11): 991-1000, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38484778

ABSTRACT

MUNC18-1 is an essential protein of the regulated secretion machinery. De novo, heterozygous mutations in STXBP1, the human gene encoding this protein, lead to a severe neurodevelopmental disorder. Here, we describe the electrophysiological characteristics of a unique case of STXBP1-related disorder caused by a homozygous mutation (L446F). We engineered this mutation in induced pluripotent stem cells from a healthy donor (STXBP1LF/LF) to establish isogenic cell models. We performed morphological and electrophysiological analyses on single neurons grown on glial micro-islands. Human STXBP1LF/LF neurons displayed normal morphology and normal basal synaptic transmission but increased paired-pulse ratios and charge released, and reduced synaptic depression compared to control neurons. Immunostainings revealed normal expression levels but impaired recognition by a mutation-specific MUNC18-1 antibody. The electrophysiological gain-of-function phenotype is in line with earlier overexpression studies in Stxbp1 null mouse neurons, with some potentially human-specific features. Therefore, the present study highlights important differences between mouse and human neurons critical for the translatability of pre-clinical studies.


Subject(s)
Homozygote , Induced Pluripotent Stem Cells , Munc18 Proteins , Neurons , Synaptic Transmission , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Synaptic Transmission/genetics , Induced Pluripotent Stem Cells/metabolism , Animals , Mice , Mutation , Synapses/metabolism , Synapses/genetics , Synapses/pathology
8.
Adv Sci (Weinh) ; 11(17): e2306630, 2024 May.
Article in English | MEDLINE | ID: mdl-38493494

ABSTRACT

The modification of synaptic and neural connections in adults, including the formation and removal of synapses, depends on activity-dependent synaptic and structural plasticity. MicroRNAs (miRNAs) play crucial roles in regulating these changes by targeting specific genes and regulating their expression. The fact that somatic and dendritic activity in neurons often occurs asynchronously highlights the need for spatial and dynamic regulation of protein synthesis in specific milieu and cellular loci. MicroRNAs, which can show distinct patterns of enrichment, help to establish the localized distribution of plasticity-related proteins. The recent study using atomic force microscopy (AFM)-based nanoscale imaging reveals that the abundance of miRNA(miR)-134 is inversely correlated with the functional activity of dendritic spine structures. However, the miRNAs that are selectively upregulated in potentiated synapses, and which can thereby support prospective changes in synaptic efficacy, remain largely unknown. Using AFM force imaging, significant increases in miR-132 in the dendritic regions abutting functionally-active spines is discovered. This study provides evidence for miR-132 as a novel positive miRNA regulator residing in dendritic shafts, and also suggests that activity-dependent miRNAs localized in distinct sub-compartments of neurons play bi-directional roles in controlling synaptic transmission and synaptic plasticity.


Subject(s)
MicroRNAs , Microscopy, Atomic Force , Neuronal Plasticity , Synapses , Animals , Mice , Dendritic Spines/metabolism , Dendritic Spines/genetics , Dendritic Spines/ultrastructure , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Microscopy, Atomic Force/methods , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Neurons/metabolism , Synapses/metabolism , Synapses/genetics
9.
Genes (Basel) ; 15(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38540396

ABSTRACT

After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.


Subject(s)
Gene Expression Regulation , Learning , Animals , Synapses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammals/genetics , Mammals/metabolism
10.
PLoS Genet ; 19(11): e1011045, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38011265

ABSTRACT

Electrical synapses are neuronal gap junction (GJ) channels associated with a macromolecular complex called the electrical synapse density (ESD), which regulates development and dynamically modifies electrical transmission. However, the proteomic makeup and molecular mechanisms utilized by the ESD that direct electrical synapse formation are not well understood. Using the Mauthner cell of zebrafish as a model, we previously found that the intracellular scaffolding protein ZO1b is a member of the ESD, localizing postsynaptically, where it is required for GJ channel localization, electrical communication, neural network function, and behavior. Here, we show that the complexity of the ESD is further diversified by the genomic structure of the ZO1b gene locus. The ZO1b gene is alternatively initiated at three transcriptional start sites resulting in isoforms with unique N-termini that we call ZO1b-Alpha, -Beta, and -Gamma. We demonstrate that ZO1b-Beta and ZO1b-Gamma are broadly expressed throughout the nervous system and localize to electrical synapses. By contrast, ZO1b-Alpha is expressed mainly non-neuronally and is not found at synapses. We generate mutants in all individual isoforms, as well as double mutant combinations in cis on individual chromosomes, and find that ZO1b-Beta is necessary and sufficient for robust GJ channel localization. ZO1b-Gamma, despite its localization to the synapse, plays an auxiliary role in channel localization. This study expands the notion of molecular complexity at the ESD, revealing that an individual genomic locus can contribute distinct isoforms to the macromolecular complex at electrical synapses. Further, independent scaffold isoforms have differential contributions to developmental assembly of the interneuronal GJ channels. We propose that ESD molecular complexity arises both from the diversity of unique genes and from distinct isoforms encoded by single genes. Overall, ESD proteomic diversity is expected to have critical impacts on the development, structure, function, and plasticity of electrical transmission.


Subject(s)
Electrical Synapses , Zebrafish , Animals , Electrical Synapses/physiology , Zebrafish/genetics , Proteomics , Synapses/genetics , Gap Junctions/physiology , Ion Channels , Protein Isoforms/genetics
11.
G3 (Bethesda) ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37757863

ABSTRACT

At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Synapses/genetics , Neuromuscular Junction/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Motor Neurons/metabolism , Peptides
12.
Science ; 381(6663): 1197-1205, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708280

ABSTRACT

Inactivation of the ubiquitin ligase Ube3a causes the developmental disorder Angelman syndrome, whereas increased Ube3a dosage is associated with autism spectrum disorders. Despite the enriched localization of Ube3a in the axon terminals including presynapses, little is known about the presynaptic function of Ube3a and mechanisms underlying its presynaptic localization. We show that developmental synapse elimination requires presynaptic Ube3a activity in Drosophila neurons. We further identified the domain of Ube3a that is required for its interaction with the kinesin motor. Angelman syndrome-associated missense mutations in the interaction domain attenuate presynaptic targeting of Ube3a and prevent synapse elimination. Conversely, increased Ube3a activity in presynapses leads to precocious synapse elimination and impairs synaptic transmission. Our findings reveal the physiological role of Ube3a and suggest potential pathogenic mechanisms associated with Ube3a dysregulation.


Subject(s)
Angelman Syndrome , Autism Spectrum Disorder , Drosophila Proteins , Drosophila melanogaster , Synaptic Transmission , Ubiquitin-Protein Ligases , Animals , Angelman Syndrome/enzymology , Angelman Syndrome/genetics , Autism Spectrum Disorder/enzymology , Autism Spectrum Disorder/genetics , Down-Regulation , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Synapses/enzymology , Synapses/genetics
13.
Nat Biotechnol ; 41(9): 1332-1344, 2023 09.
Article in English | MEDLINE | ID: mdl-36646931

ABSTRACT

Synapses are crucial structures that mediate signal transmission between neurons in complex neural circuits and display considerable morphological and electrophysiological heterogeneity. So far we still lack a high-throughput method to profile the molecular heterogeneity among individual synapses. In the present study, we develop a droplet-based single-cell (sc) total-RNA-sequencing platform, called Multiple-Annealing-and-Tailing-based Quantitative scRNA-seq in Droplets, for transcriptome profiling of individual neurites, primarily composed of synaptosomes. In the synaptosome transcriptome, or 'synaptome', profiling of both mouse and human brain samples, we detect subclusters among synaptosomes that are associated with neuronal subtypes and characterize the landscape of transcript splicing that occurs within synapses. We extend synaptome profiling to synaptopathy in an Alzheimer's disease (AD) mouse model and discover AD-associated synaptic gene expression changes that cannot be detected by single-nucleus transcriptome profiling. Overall, our results show that this platform provides a high-throughput, single-synaptosome transcriptome profiling tool that will facilitate future discoveries in neuroscience.


Subject(s)
Alzheimer Disease , Synapses , Humans , Mice , Animals , Synapses/genetics , Synapses/metabolism , Gene Expression Profiling/methods , Synaptosomes/metabolism , Transcriptome/genetics , Alzheimer Disease/genetics , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods
14.
Genetics ; 223(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36630525

ABSTRACT

The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Synapses/genetics , Caenorhabditis elegans Proteins/genetics , Signal Transduction
15.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675068

ABSTRACT

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.


Subject(s)
MicroRNAs , Prefrontal Cortex , Stress, Physiological , Stress, Psychological , Animals , Male , Rats , Down-Regulation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/physiology , Acute Disease/psychology , Chronic Disease/psychology , Stress, Physiological/genetics , Stress, Psychological/genetics , Stress, Psychological/psychology , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Dendritic Spines/genetics , Dendritic Spines/metabolism , Dendritic Spines/pathology
16.
Nat Commun ; 14(1): 379, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693856

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are essential for excitatory neurotransmission and synaptic plasticity. GluN2A and GluN2B, two predominant Glu2N subunits of NMDARs in the hippocampus and the cortex, display distinct clustered distribution patterns and mobility at synaptic and extrasynaptic sites. However, how GluN2A clusters are specifically organized and stabilized remains poorly understood. Here, we found that the previously reported GluN2A-specific binding partner Rabphilin-3A (Rph3A) has the ability to undergo phase separation, which relies on arginine residues in its N-terminal domain. Rph3A phase separation promotes GluN2A clustering by binding GluN2A's C-terminal domain. A complex formed by Rph3A, GluN2A, and the scaffolding protein PSD95 promoted Rph3A phase separation. Disrupting Rph3A's phase separation suppressed the synaptic and extrasynaptic surface clustering, synaptic localization, stability, and synaptic response of GluN2A in hippocampal neurons. Together, our results reveal the critical role of Rph3A phase separation in determining the organization and stability of GluN2A in the neuronal surface.


Subject(s)
Hippocampus , Neurons , Receptors, N-Methyl-D-Aspartate , Synapses , Adaptor Proteins, Signal Transducing/metabolism , Hippocampus/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/genetics , Synapses/metabolism , Vesicular Transport Proteins/metabolism , Neurons/metabolism , Rabphilin-3A
17.
RNA ; 29(2): 153-169, 2023 02.
Article in English | MEDLINE | ID: mdl-36442969

ABSTRACT

Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.


Subject(s)
Neuroglia , Neurons , RNA, Messenger/genetics , RNA, Messenger/metabolism , Neuroglia/metabolism , Neurons/metabolism , Axons/metabolism , Synapses/genetics , Synapses/metabolism , Neuronal Plasticity/genetics
18.
Semin Cell Dev Biol ; 139: 3-12, 2023 04.
Article in English | MEDLINE | ID: mdl-35918217

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.


Subject(s)
Alzheimer Disease , Cognition Disorders , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Synapses/genetics , Synapses/metabolism , Neurodegenerative Diseases/metabolism , Cognition Disorders/pathology , Risk Factors
19.
Cells ; 11(24)2022 12 09.
Article in English | MEDLINE | ID: mdl-36552747

ABSTRACT

Peroxisome Biogenesis Disorders (PBD) and Zellweger syndrome spectrum disorders (ZSD) are rare genetic multisystem disorders that include hearing impairment and are associated with defects in peroxisome assembly, function, or both. Mutations in 13 peroxin (PEX) genes have been found to cause PBD-ZSD with ~70% of patients harboring mutations in PEX1. Limited research has focused on the impact of peroxisomal disorders on auditory function. As sensory hair cells are particularly vulnerable to metabolic changes, we hypothesize that mutations in PEX1 lead to oxidative stress affecting hair cells of the inner ear, subsequently resulting in hair cell degeneration and hearing loss. Global deletion of the Pex1 gene is neonatal lethal in mice, impairing any postnatal studies. To overcome this limitation, we created conditional knockout mice (cKO) using Gfi1Creor VGlut3Cre expressing mice crossed to floxed Pex1 mice to allow for selective deletion of Pex1 in the hair cells of the inner ear. We find that Pex1 excision in inner hair cells (IHCs) leads to progressive hearing loss associated with significant decrease in auditory brainstem responses (ABR), specifically ABR wave I amplitude, indicative of synaptic defects. Analysis of IHC synapses in cKO mice reveals a decrease in ribbon synapse volume and functional alterations in exocytosis. Concomitantly, we observe a decrease in peroxisomal number, indicative of oxidative stress imbalance. Taken together, these results suggest a critical function of Pex1 in development and maturation of IHC-spiral ganglion synapses and auditory function.


Subject(s)
Cochlea , Hair Cells, Auditory, Inner , Hearing Loss , Synapses , Animals , Mice , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cochlea/innervation , Cochlea/metabolism , Deafness/genetics , Deafness/metabolism , Hair Cells, Auditory, Inner/metabolism , Hearing/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Mice, Knockout , Synapses/genetics , Synapses/metabolism
20.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232696

ABSTRACT

The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.


Subject(s)
Neurodegenerative Diseases , Neurodevelopmental Disorders , Receptors, N-Methyl-D-Aspartate , Animals , Disease Models, Animal , Growth and Development/genetics , Growth and Development/physiology , Mice , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/physiopathology , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Synapses/genetics , Synapses/metabolism , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...