Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Nucl Med ; 58(6): 881-887, 2017 06.
Article in English | MEDLINE | ID: mdl-28209913

ABSTRACT

Cell death is an important target for imaging the early response of tumors to treatment. We describe here the validation of a phosphatidylserine-binding agent for detecting tumor cell death in vivo based on the C2A domain of synaptotagmin-I. Methods: The capability of near-infrared fluorophore-labeled and 99mTc- and 111In-labeled derivatives of C2Am for imaging tumor cell death, using planar near-infrared fluorescence imaging and SPECT, respectively, was evaluated in implanted and genetically engineered mouse models of lymphoma and in a human colorectal xenograft. Results: The fluorophore-labeled C2Am derivative showed predominantly renal clearance and high specificity and sensitivity for detecting low levels of tumor cell death (2%-5%). There was a significant correlation (R > 0.9, P < 0.05) between fluorescently labeled C2Am binding and histologic markers of cell death, including cleaved caspase-3, whereas there was no such correlation with a site-directed mutant of C2Am (iC2Am) that does not bind phosphatidylserine. 99mTc-C2Am and 111In-C2Am also showed favorable biodistribution profiles, with predominantly renal clearance and low nonspecific retention in the liver and spleen at 24 h after probe administration. 99mTc-C2Am and 111In-C2Am generated tumor-to-muscle ratios in drug-treated tumors of 4.3× and 2.2×, respectively, at 2 h and 7.3× and 4.1×, respectively, at 24 h after administration. Conclusion: Given the favorable biodistribution profile of 99mTc- and 111In-labeled C2Am, and their ability to produce rapid and cell death-specific image contrast, these agents have potential for clinical translation.


Subject(s)
Apoptosis , Molecular Imaging/methods , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Positron-Emission Tomography/methods , Synaptotagmin I/pharmacokinetics , Animals , Biomarkers/metabolism , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Protein Domains , Radiopharmaceuticals/pharmacokinetics , Synaptotagmin I/chemistry , Tissue Distribution
2.
J Nucl Med ; 52(4): 592-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21421722

ABSTRACT

UNLABELLED: The C2A domain of synaptotagmin I can target apoptotic cells by binding to exposed anionic phospholipids. The goal of this study was to synthesize and develop (18)F-labeled C2A-glutathione-S-transferase (GST) as a molecular imaging probe for the detection of apoptosis and to assess the response of paclitaxel chemotherapy in VX2 rabbit lung cancer. METHODS: (18)F-C2A-GST was prepared by labeling C2A-GST with N-succinimidyl 4-(18)F-fluorobenzoate ((18)F-SFB). (18)F-C2A-GST was confirmed by high-performance liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The binding of (18)F-C2A-GST toward apoptosis was validated in vitro using camptothecin-induced Jurkat cells. Biodistribution of (18)F-C2A-GST was determined in mice by a dissection method and small-animal PET. Single-dose paclitaxel was used to induce apoptosis in rabbits bearing VX2 tumors (n = 6), and 2 VX2 rabbits without treatment served as control. (18)F-C2A-GST PET was performed before and at 72 h after therapy, and (18)F-FDG PET/CT was also performed before treatment. To confirm the presence of apoptosis, tumor tissue was analyzed and activated caspase-3 was measured. RESULTS: (18)F-C2A-GST was obtained with more than 95% radiochemical purity and was stable for 4 h after formulation. (18)F-C2A-GST bound apoptotic cells specifically. Biodistribution in mice showed that (18)F-C2A-GST mainly excreted from the kidneys and rapidly cleared from blood and nonspecific organs. High focal uptake of (18)F-C2A-GST in the tumor area was determined after therapy, whereas no significant uptake before therapy was found in the tumor with (18)F-FDG-avid foci. The maximum standardized uptake value after therapy was 0.47 ± 0.28, significantly higher than that in the control (0.009 ± 0.001; P < 0.001). The apoptotic index was 79.81% ± 8.73% in the therapy group, significantly higher than that in the control (5.03% ± 0.81%; P < 0.001). Activated caspase-3 after paclitaxel treatment increased to 69.55% ± 16.27% and was significantly higher than that in the control (12.26% ± 5.39%; P < 0.001). CONCLUSION: (18)F-C2A-GST was easily synthesized by conjugation with (18)F-SFB and manifested a favorable biodistribution. Our results demonstrated the feasibility of (18)F-C2A-GST for the early detection of apoptosis after chemotherapy in a VX2 lung cancer model that could imitate the human lung cancer initiation, development, and progress.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Radiopharmaceuticals , Synaptotagmin I , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Caspase 3/metabolism , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Feasibility Studies , Fluorine Radioisotopes , Humans , Image Processing, Computer-Assisted , Indicators and Reagents , Isotope Labeling/methods , Jurkat Cells , Male , Mice , Molecular Imaging , Paclitaxel/therapeutic use , Positron-Emission Tomography , Rabbits , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Synaptotagmin I/chemistry , Synaptotagmin I/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...