Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.296
Filter
1.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732547

ABSTRACT

Synbiotics modulate the gut microbiome and contribute to the prevention of liver diseases such as metabolic-dysfunction-associated fatty liver disease (MAFLD). This study aimed to evaluate the effect of a randomized, placebo-controlled, double-blinded seven-week intervention trial on the liver metabolism in 117 metabolically healthy male participants. Anthropometric data, blood parameters, and stool samples were analyzed using linear mixed models. After seven weeks of intervention, there was a significant reduction in alanine aminotransferase (ALT) in the synbiotic group compared to the placebo group (-14.92%, CI: -26.60--3.23%, p = 0.013). A stratified analysis according to body fat percentage revealed a significant decrease in ALT (-20.70%, CI: -40.88--0.53%, p = 0.045) in participants with an elevated body fat percentage. Further, a significant change in microbiome composition (1.16, CI: 0.06-2.25, p = 0.039) in this group was found, while the microbial composition remained stable upon intervention in the group with physiological body fat. The 7-week synbiotic intervention reduced ALT levels, especially in participants with an elevated body fat percentage, possibly due to modulation of the gut microbiome. Synbiotic intake may be helpful in delaying the progression of MAFLD and could be used in addition to the recommended lifestyle modification therapy.


Subject(s)
Alanine Transaminase , Gastrointestinal Microbiome , Liver , Synbiotics , Humans , Synbiotics/administration & dosage , Male , Double-Blind Method , Adult , Liver/metabolism , Alanine Transaminase/blood , Middle Aged , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/therapy , Feces/microbiology , Feces/chemistry
2.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732601

ABSTRACT

Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.


Subject(s)
Bacillus megaterium , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Synbiotics , Humans , Male , Female , Adult , Double-Blind Method , Synbiotics/administration & dosage , Eicosapentaenoic Acid/blood , Young Adult , Docosahexaenoic Acids/blood , Middle Aged , Biomarkers/blood , Healthy Volunteers , Fish Oils/administration & dosage
3.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732618

ABSTRACT

Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against Candida albicans ATCC10231. Six out of 41 cell-free supernatants demonstrated the most potent antibacterial and anticandidal activities. They also inhibited the clinical isolates of C. albicans, causing VVC and non-C. albicans. The synergistic effect between Lactobacillus crispatus 84/7 and Limosilactobacillus reuteri 89/4 was demonstrated by the lowest fractional inhibitory concentration index (FICI = 0.5). The synbiotic culture of bacterial combination, cultured with Jerusalem artichoke (H. tuberosus) extract, also exhibited the strongest inhibition against the tested C. albicans. Biofilm formation decreased after 12 h of incubation in the selected cell-free supernatants of this synbiotic culture. The anticandidal activity of crude extracts was lost after treatment with proteinase K and trypsin but not with heating conditions, suggesting that it may be a heat-stable substance. In conclusion, the combination of L. crispatus 84/7 and L. reuteri 89/4 with H. tuberosus may be a promising candidate for inhibiting Candida infection and biofilm formation, with the potential use as ingredients in vaginal biotherapeutic products.


Subject(s)
Candida albicans , Candidiasis, Vulvovaginal , Plant Extracts , Synbiotics , Candida albicans/drug effects , Plant Extracts/pharmacology , Female , Humans , Candidiasis, Vulvovaginal/microbiology , Candidiasis, Vulvovaginal/drug therapy , Vaginal Discharge/microbiology , Biofilms/drug effects , Lactobacillus/drug effects , Limosilactobacillus reuteri , Lactobacillus crispatus , Antifungal Agents/pharmacology
4.
Nutrients ; 16(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732625

ABSTRACT

Excess adipose tissue, as well as its distribution, correlates strongly with disorders of lipid and liver parameters and chronic inflammation. The pathophysiology of metabolic diseases caused by obesity is associated with the dysfunction of visceral adipose tissue. Effective and alternative interventions such as the Bioenteric Intragastric Balloon and bariatric surgeries such as the Roux-en-Y gastric bypass. The aim of this study was to assess the effect of modifying the recommended standard weight loss diet after bariatric surgery and procedures on reducing chronic inflammation in overweight patients. In the study, bioactive anti-inflammatory dietary components were used supportively. Changes in the concentrations of lipid parameters, liver parameters, antioxidant enzymes, cytokines, and chemokines were demonstrated. The enrichment of the diet, after bariatric surgery, with the addition of n-3 EFAs(Essential Fatty Acids), bioflavonoids, vitamins, and synbiotics resulted in higher weight losses in the patients in the study with a simultaneous reduction in parameters indicating liver dysfunction.


Subject(s)
Bariatric Surgery , Liver , Humans , Female , Liver/metabolism , Adult , Middle Aged , Weight Loss , Fatty Acids, Omega-3/administration & dosage , Obesity/surgery , Synbiotics/administration & dosage , Lipids/blood , Lipid Metabolism/drug effects , Diet, Reducing , Vitamins/administration & dosage , Cytokines/metabolism , Cytokines/blood , Inflammation
5.
Nutr Diabetes ; 14(1): 25, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729941

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Subject(s)
Gastrointestinal Microbiome , Glycemic Index , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prebiotics , Probiotics , Synbiotics , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Prebiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/administration & dosage , Synbiotics/administration & dosage , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/therapy , Insulin/blood
6.
Gut Microbes ; 16(1): 2350173, 2024.
Article in English | MEDLINE | ID: mdl-38738780

ABSTRACT

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Intestine, Small , Synbiotics , Humans , Synbiotics/administration & dosage , Gastrointestinal Microbiome/physiology , Male , Adult , Intestine, Small/microbiology , Intestine, Small/metabolism , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Feces/microbiology , Young Adult , Probiotics/administration & dosage , Metabolome , Healthy Volunteers , Spatio-Temporal Analysis
7.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794741

ABSTRACT

The aim of the study was to characterize effects of a multi-strain synbiotic in patients with moderate to severe irritable bowel syndrome (IBS) of all stool form types. A total of 202 adult IBS patients were randomized (1:1) and after a four-week treatment-free run-in phase and were treated either with the synbiotic or a placebo for 12 weeks. The primary endpoints were the assessment of the severity of IBS symptoms (IBS-SSS) and the improvement of IBS global symptoms (IBS-GIS). Secondary endpoints comprised adequate relief (IBS-AR scale), stool form type (Bristol Stool Form Scale), bowel movements, severity of abdominal pain and bloating, stool pressure, feeling of incomplete stool evacuation, and adverse events. A total of 201 patients completed the study. Synbiotic treatment, in comparison to placebo, significantly improved IBS-SSS and IBS-GIS scores. At the end of the treatment, 70% of patients in the synbiotic group achieved adequate relief. After 12 weeks of treatment, the secondary endpoints were favorably differentiated in the synbiotic group when compared with the placebo group. Two patients in the synbiotic group reported transient adverse events (headache). The results indicate that treatment of IBS patients with the synbiotic significantly improved all major symptoms of IBS and was well-tolerated. The ClinicalTrials.gov registration was NCT05731232.


Subject(s)
Irritable Bowel Syndrome , Synbiotics , Humans , Irritable Bowel Syndrome/therapy , Synbiotics/administration & dosage , Female , Male , Double-Blind Method , Adult , Middle Aged , Treatment Outcome , Primary Health Care , Severity of Illness Index , Feces/microbiology
9.
Gut Microbes ; 16(1): 2352175, 2024.
Article in English | MEDLINE | ID: mdl-38743045

ABSTRACT

The role of gut microbiome in health, a century-old concept, has been on the center stage of medical research recently. While different body sites, disease conditions, and populations have been targeted, neonatal and early infancy appear to be the most suitable period for such interventions. It is intriguing to note that, unlike traditional use in diarrhea and maintenance of gastrointestinal health, microbiome-mediating therapies have now addressed the most serious medical conditions in young infants such as necrotizing enterocolitis and neonatal sepsis. Unfortunately, almost all new endeavors in this space have been carried out in the Western world leaving behind millions of neonates that can benefit from such manipulations while serving as a large resource for further learning. In this review, an attempt has been made to quantify the global burden of neonatal morbidity and mortality, examples presented on interventions that have failed as a result of drawing from studies conducted in the West, and a case made for manipulating the neonatal gut microbiome to address the biggest killers in early life. A brief comparative analysis has been made to demonstrate the differences in the gut microbiota of North and South and a large clinical trial of synbiotics conducted by our group in a South Asian setting has been presented. Although challenging, the value of conducting such global health research is introduced with an intent to invite medical scientists to engage in well-planned, scientifically robust research endeavors. This can bring about innovation while saving and serving the most vulnerable citizens now and protecting them from the negative health consequences in the later part of their lives, ultimately shaping a resilient and equitable world as pledged by 193 United Nations member countries in 2015.


Subject(s)
Gastrointestinal Microbiome , Global Health , Humans , Infant, Newborn , Enterocolitis, Necrotizing/microbiology , Enterocolitis, Necrotizing/prevention & control , Infant , Synbiotics/administration & dosage , Neonatal Sepsis/microbiology , Neonatal Sepsis/prevention & control
10.
Clin Nutr ; 43(6): 1563-1583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754308

ABSTRACT

BACKGROUND & AIMS: Though probiotics, prebiotics and synbiotics have been shown to confer health benefits, their effects on cardiometabolic risk factors remain unclear. Therefore, we conducted an umbrella review to examine their effectiveness on anthropometric, cardiometabolic and inflammatory markers. METHODS: We conducted an umbrella review on eligible systematic reviews with meta-analysis (SRMA) published from journals' inception till 13 January 2023 retrieved from seven electronic databases (CINAHL, EMBASE, ProQuest, PubMed, Scopus, The Cochrane Library, and Web of Science). Methodological quality was appraised using the Assessment of Multiple Systematic Reviews 2 (AMSTAR2) tool and certainty of evidence was graded into five classes. Random-effects meta-analyses were performed on outcome effect sizes at the SRMA and primary study levels. Extent of overlapping articles were evaluated using corrected cover area. RESULTS: 24 systematic reviews representing 265 unique studies, 1076 unique effect sizes and 25,973 subjects were included. Synbiotics were evidently more effective in improving weight (-1.91 kg, 95%CI -3.45 kg to -0.37 kg, p = 0.02), total cholesterol (-12.17 mg/dl, 95%CI -17.89 mg/dl to -6.46 mg/dl, p < 0.001), low-density lipoprotein (-12.26 mg/dl, 95%CI -18.27 mg/dl to -6.25 mg/dl, p < 0.01), waist circumference (-1.85 cm, 95%CI -2.77 cm to -0.94 cm, p < 0.01), and fasting plasma glucose (-9.68 mg/dl, 95%CI -16.18 mg/dl to -3.18 mg/dl, p < 0.01). Prebiotics were more effective in improving body mass index (-0.34 kg/m2, 95%CI -0.48 kg/m2 to -0.20 kg/m2, p < 0.01), and HOMA-IR (-0.92, 95%CI -1.91 to 0.07, p = 0.06). Probiotics were shown to be more effective in reducing diastolic blood pressure (-1.34 mmHg, 95%CI -2.14 mmHg to -0.55 mmHg, P < 0.01) improving insulin level change (-0.84 mIU/mL, 95%CI -1.27 mIU/mL to -0.41 mIU/mL, p < 0.01), and the percentage of body fat (-0.66%, 95%CI -0.70% to -0.61%, p < 0.01). For all outcomes, the credibility of evidence was classified as class IV. CONCLUSION: Pre-, pro-, and synbiotics can significantly enhance anthropometric indices, glucose and lipid profiles, blood pressure, and inflammatory markers in individuals confronting obesity. While suggesting their supplementation holds promise for this population, the true clinical impact hinges on tailoring these interventions to specific indications and customizing treatment strategies to align with individual patient needs.


Subject(s)
Biomarkers , Prebiotics , Probiotics , Synbiotics , Humans , Synbiotics/administration & dosage , Probiotics/administration & dosage , Biomarkers/blood , Inflammation/blood , Anthropometry , Meta-Analysis as Topic , Cardiometabolic Risk Factors , Systematic Reviews as Topic
11.
Clin Nutr ; 43(6): 1433-1446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704983

ABSTRACT

The prevalence of childhood and adolescent obesity has globally reached alarming dimensions and many adolescents affected by obesity already present one or more obesity-related comorbidities. In recent years, emerging evidence supporting the role of gut microbiota in the pathophysiology of metabolic diseases has been reported and the use of prebiotics, probiotics, synbiotics and postbiotics as a strategy to manipulate gut microbiota has become popular. The aim of this review is to explore the relationship between gut microbiota and metabolic syndrome in adolescents and to discuss the potential use of prebiotics, probiotics, synbiotics and postbiotics for the prevention and treatment of this clinical picture in adolescence. According to the most recent literature, prebiotics, probiotics and synbiotics have no clear effect on MetS, but a possible modulation of anthropometric parameters has been observed after synbiotic supplementation. Only one study has examined the role of postbiotics in alleviating metabolic complications in children with obesity but not in adolescents. More extensive research is needed to support the conclusions drawn so far and to develop effective microbiome-based interventions that may help improving the quality of life of children and adolescents exposed to the increasing prevalence of MetS.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Pediatric Obesity , Prebiotics , Probiotics , Synbiotics , Humans , Metabolic Syndrome/therapy , Metabolic Syndrome/microbiology , Prebiotics/administration & dosage , Probiotics/administration & dosage , Probiotics/therapeutic use , Synbiotics/administration & dosage , Adolescent , Pediatric Obesity/therapy , Pediatric Obesity/microbiology , Child
12.
Trials ; 25(1): 307, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715143

ABSTRACT

BACKGROUND: Aging has been associated with a progressive loss of skeletal muscle quality, quantity and strength, which may result in a condition known as sarcopenia, leading to a decline in physical performance, loss of independence and reduced quality of life. While the cause of impaired physical functioning observed in elderly populations appears to be multifactorial, recent evidence suggests that age-associated alterations in gut microbiota could be a contributing factor. The primary objective will be to assess the effects of a dietary synbiotic formulation on sarcopenia-related functional outcomes such as handgrip strength, gait speed and physical performance within older individuals living independently. The secondary objective will be to examine associations between changes in gut microbiota composition, functional performance and lean muscle mass. METHODS: Seventy-four elderly (60-85 years) participants will be randomized in a double-blind, placebo-controlled fashion to either an intervention or control group. The intervention group (n = 37) will receive oral synbiotic formulation daily for 16 weeks. The control group (n = 37) will receive placebo. Assessments of physical performance (including Short Physical Performance Battery, handgrip strength and timed up-and-go tests) and muscle ultrasonography will be performed at 4 time points (baseline and weeks 8, 16 and 20). Likewise, body composition via bioelectric impedance analysis and blood and stool samples will be collected at each time point. Dual-energy X-ray absorptiometry will be performed at baseline and week 16. The primary outcomes will be between-group changes in physical performance from baseline to 16 weeks. Secondary outcomes include changes in body composition, muscle mass and architecture, fecal microbiota composition and diversity, and fecal and plasma metabolomics. DISCUSSION: Gut-modulating supplements appear to be effective in modifying gut microbiota composition in healthy older adults. However, it is unclear whether these changes translate into functional and/or health improvements. In the present study, we will investigate the effects of a synbiotic formulation on measures of physical performance, strength and muscle health in healthy older populations. TRIAL REGISTRATION: This study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000652774) in May 2022.


Subject(s)
Gastrointestinal Microbiome , Hand Strength , Muscle Strength , Muscle, Skeletal , Randomized Controlled Trials as Topic , Sarcopenia , Synbiotics , Humans , Double-Blind Method , Aged , Synbiotics/administration & dosage , Aged, 80 and over , Sarcopenia/physiopathology , Sarcopenia/prevention & control , Male , Middle Aged , Female , Australia , Physical Functional Performance , Dietary Supplements , Body Composition , Treatment Outcome , Walking Speed , Australasian People
13.
New Microbiol ; 47(1): 68-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38700886

ABSTRACT

We aimed to investigate the role of Synbiotic preparations on the interaction of gut microbiota with AD development. APP/PS1 mice were randomized into APP/PS1 and Synbiotics groups, and C57BL/6J mice were used as wild type (WT) control group. The mice in the Synbiotics group and the APP/PS1 group were given Synbiotics and xylo-oligosaccharides for 3 months, respectively. The mice in the WT group were given the same amount of normal saline. Cognitive function was measured. Positron emission computed tomography/magnetic resonance imaging (PET/MRI) was used to detect fasting blood glucose level. Immunohistochemical assay, ELISA, western blot and qRT-PCR were carried out to detect inflammatory factors. DNA extraction of fecal sample was performed to carry out sequencing. Bioinformatics analysis, metabolites sample preparation and Liquid Chromatograph Mass Spectrometer (LC/MS) analysis were also performed. Synbiotics treatment can significantly ameliorate learning and memory competence by inhibiting Aß protein deposition. Different bacteria in the intestine were significantly improved and changes in gut microbiota can affect the intestinal metabolism to affect multiple potential pathways after Synbiotics treatment. Synbiotics treatment can activate peroxisome proliferator activated receptor (PPARs) signaling pathway and significantly reduce neuroinflammation in APP/PS1 mice brains. Synbiotics treatment can effectively reduce neuro-inflammatory response through the regulation of intestinal microflora to delay AD development.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptors , Synbiotics , Animals , Mice , Synbiotics/administration & dosage , Peroxisome Proliferator-Activated Receptors/metabolism , Disease Progression , Signal Transduction , Male , Mice, Transgenic
14.
Front Endocrinol (Lausanne) ; 15: 1277921, 2024.
Article in English | MEDLINE | ID: mdl-38572479

ABSTRACT

Background: There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods: All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results: Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion: It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.


Subject(s)
Probiotics , Synbiotics , Pregnancy , Adult , Female , Humans , Male , Prebiotics , Overweight/drug therapy , Probiotics/therapeutic use , Obesity/drug therapy
15.
Int Wound J ; 21(4): e14838, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577937

ABSTRACT

Wound infection is a serious complication that impacts the prognosis of patients after colorectal surgery (CS). Probiotics and synbiotics (Pro and Syn) are live bacteria that produce bacteriostatic agents in the intestinal system and have a positive effect on postoperative wound infections. The purpose of this study was to evaluate the effect of Pro and Syn on complications of wound infection after CS. In November 2023, we searched relevant clinical trial reports from Pubmed, Cochrane Library, and Embase databases and screened the retrieved reports, extracted data, and finally analysed the data by using RevMan 5.3. A total of 12 studies with 1567 patients were included in the study. Pro and Syn significantly reduced total infection (OR, 0.44; 95% CI, 0.35, 0.56; p < 0.00001), surgical incision site infection (SSI) (OR, 0.61; 95% CI, 0.45, 0.81; p = 0.002), pneumonia (OR, 0.43; 95% CI, 0.25, 0.72; p = 0.001), urinary tract infection (OR, 0.28; 95% CI, 0.14, 0.56; p = 0.0003), and Pro and Syn did not reduce anastomotic leakage after colorectal surgery (OR, 0.84; 95% CI, 0.50, 1.41; p = 0.51). Pro and Syn can reduce postoperative wound infections in patients with colorectal cancer, which benefits patients' postoperative recovery.


Subject(s)
Colorectal Surgery , Digestive System Surgical Procedures , Probiotics , Synbiotics , Humans , Surgical Wound Infection/etiology , Surgical Wound Infection/prevention & control , Colorectal Surgery/adverse effects , Probiotics/therapeutic use , Postoperative Complications/prevention & control
16.
J Zhejiang Univ Sci B ; 25(4): 293-306, 2024 Apr 15.
Article in English, Chinese | MEDLINE | ID: mdl-38584092

ABSTRACT

The oyster mushroom (Pleurotus spp.) is one of the most widely cultivated mushroom species globally. The present study investigated the effect of synbiotics on the growth and quality of Pleurotus ostreatus and Pleurotus pulmonarius. Different synbiotics formulations were applied by spraying mushroom samples daily and measuring their growth parameters, yield, biological efficiency, proximate composition, mineral content, total phenolic content (TPC), and diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity. Results demonstrated that the most significant yield of oyster mushrooms was harvested from synbiotics sprayed with inulin and Lactobacillus casei (56.92 g). Likewise, the highest biological efficiency obtained with a similar synbiotic was 12.65%. Combining inulin and L. casei was the most effective method of improving the mushrooms' growth performance and nutrient content in both samples. Furthermore, synbiotics that combined inulin and L. casei resulted in the highest TPC (20.550 mg gallic acid equivalent (GAE)/g dry extract (DE)) in white oyster mushrooms (P. ostreatus). In comparison, in grey mushroom (P. pulmonarius) the highest TPC was yielded by L. casei (1.098 mg GAE/g DE) followed by inulin and L. casei (1.079 mg GAE/g DE). The DPPH results indicated that the oyster mushroom could be an efficient antioxidant. The results revealed that applying synbiotics improved the mushrooms' quality by increasing their antioxidant capacity with higher amounts of phenolic compounds and offering better health benefits with the increased levels of mineral elements. Together, these studies demonstrated the potential of using synbiotics as a biofertilizer, which is helpful for mushroom cultivation; therefore, it might solve the challenge of inconsistent quality mushroom growers face.


Subject(s)
Pleurotus , Synbiotics , Pleurotus/chemistry , Antioxidants , Inulin , Phenols , Gallic Acid , Minerals
17.
Gut Microbes ; 16(1): 2338946, 2024.
Article in English | MEDLINE | ID: mdl-38656273

ABSTRACT

Synbiotics combine the concepts of probiotics and prebiotics to synergistically enhance the health-associated effects of both components. Previously, we have shown that the intestinal persistence of inulin-utilizing L. plantarum Lp900 is significantly increased in rats fed an inulin-supplemented, high-calcium diet. Here we employed a competitive population dynamics approach to demonstrate that inulin and GOS can selectively enrich L. plantarum strains that utilize these substrates for growth during in vitro cultivation, but that such enrichment did not occur during intestinal transit in rats fed a GOS or inulin-supplemented diet. The intestinal persistence of all L. plantarum strains increased irrespective of their prebiotic utilization phenotype, which was dependent on the calcium level of the diet. Analysis of fecal microbiota and intestinal persistence decline rates indicated that prebiotic utilization capacity did not selectively stimulate intestinal persistence in prebiotic supplemented diets. Moreover, microbiota and organic acid profile analyses indicate that the prebiotic utilizing probiotic strains are vastly outcompeted by the endogenous prebiotic-utilizing microbiota, and that the collective enhanced persistence of all L. plantarum strains is most likely explained by their well-established tolerance to organic acids.


Subject(s)
Feces , Gastrointestinal Microbiome , Inulin , Prebiotics , Animals , Prebiotics/administration & dosage , Inulin/metabolism , Inulin/administration & dosage , Rats , Feces/microbiology , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Male , Probiotics/administration & dosage , Synbiotics/administration & dosage , Rats, Sprague-Dawley
18.
Ann Intern Med ; 177(4): JC45, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560898

ABSTRACT

SOURCE CITATION: Lau RI, Su Q, Lau IS, et al. A synbiotic preparation (SIM01) for post-acute COVID-19 syndrome in Hong Kong (RECOVERY): a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2024;24:256-265. 38071990.


Subject(s)
COVID-19 , Synbiotics , Adult , Humans , Post-Acute COVID-19 Syndrome , Hong Kong , Double-Blind Method
19.
Braz J Med Biol Res ; 57: e13205, 2024.
Article in English | MEDLINE | ID: mdl-38656071

ABSTRACT

Acute diarrhea is the second leading cause of morbidity and mortality attributed to infections in children under five years of age worldwide, with 1.7 million annual estimated cases and more than 500,000 deaths. Although hydroelectrolytic replacement is the gold standard in treating diarrhea, it does not interfere with the restoration of the intestinal microbiota. Several studies have searched for an adequate alternative in restructuring intestinal homeostasis, finding that treatments based on probiotics, prebiotics, and synbiotics are effective, which made such treatments increasingly present in clinical practice by reducing illness duration with minimal side effects. However, there are still controversies regarding some unwanted reactions in patients. The diversity of strains and the peculiarities of the pathogens that cause diarrhea require further studies to develop effective protocols for prevention and treatment. Here, we provide a descriptive review of childhood diarrhea, emphasizing treatment with probiotics, prebiotics, and synbiotics.


Subject(s)
Diarrhea , Prebiotics , Probiotics , Synbiotics , Humans , Probiotics/therapeutic use , Synbiotics/administration & dosage , Prebiotics/administration & dosage , Diarrhea/microbiology , Diarrhea/therapy , Diarrhea/prevention & control , Child , Gastrointestinal Microbiome/physiology , Child, Preschool
20.
mSystems ; 9(5): e0050324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38661344

ABSTRACT

The efficacy of prebiotics and probiotics (synbiotics when combined) to improve symptoms associated with autism spectrum disorder (ASD) has shown considerable inter-study variation, likely due to the complex, heterogeneous nature of the disorder and its associated behavioral, developmental, and gastrointestinal symptoms. Here, we present a precision synbiotic supplementation study in 296 children and adults diagnosed with ASD versus 123 age-matched neurotypical controls. One hundred seventy ASD participants completed the study. Baseline and post-synbiotic assessment of ASD and gastrointestinal (GI) symptoms and deep metagenomic sequencing were performed. Within the ASD cohort, there were significant differences in microbes between subpopulations based on the social responsiveness scale (SRS2) survey (Prevotella spp., Bacteroides, Fusicatenibacter, and others) and gluten and dairy-free diets (Bifidobacterium spp., Lactococcus, Streptococcus spp., and others). At the baseline, the ASD cohort maintained a lower taxonomic alpha diversity and significant differences in taxonomic composition, metabolic pathways, and gene families, with a greater proportion of potential pathogens, including Shigella, Klebsiella, and Clostridium, and lower proportions of beneficial microbes, including Faecalibacterium compared to controls. Following the 3-month synbiotic supplementation, the ASD cohort showed increased taxonomic alpha diversity, shifts in taxonomy and metabolic pathway potential, and improvements in some ASD-related symptoms, including a significant reduction in GI discomfort and overall improved language, comprehension, cognition, thinking, and speech. However, the open-label study design may include some placebo effects. In summary, we found that precision synbiotics modulated the gut microbiome and could be used as supplementation to improve gastrointestinal and ASD-related symptoms. IMPORTANCE: Autism spectrum disorder (ASD) is prevalent in 1 out of 36 children in the United States and contributes to health, financial, and psychological burdens. Attempts to identify a gut microbiome signature of ASD have produced varied results. The limited pre-clinical and clinical population sizes have hampered the success of these trials. To understand the microbiome associated with ASD, we employed whole metagenomic shotgun sequencing to classify microbial composition and genetic functional potential. Despite being one of the most extensive ASD post-synbiotic assessment studies, the results highlight the complexity of performing such a case-control supplementation study in this population and the potential for a future therapeutic approach in ASD.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Synbiotics , Humans , Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/diet therapy , Gastrointestinal Microbiome/drug effects , Male , Female , Pilot Projects , Child , Synbiotics/administration & dosage , Adult , Adolescent , Child, Preschool , Young Adult , Probiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...