Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.535
Filter
1.
Plant Mol Biol ; 114(3): 60, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758412

ABSTRACT

Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.


Subject(s)
Glucose-6-Phosphate , Phosphoenolpyruvate , Pyruvate Kinase , Ribosemonophosphates , Synechocystis , Synechocystis/metabolism , Synechocystis/genetics , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Phosphoenolpyruvate/metabolism , Glucose-6-Phosphate/metabolism , Ribosemonophosphates/metabolism , Substrate Specificity , Hydrogen-Ion Concentration , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Kinetics , Temperature
2.
Nat Commun ; 15(1): 4126, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750051

ABSTRACT

Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.


Subject(s)
CRISPR-Cas Systems , Cryoelectron Microscopy , Gene Editing , Synechocystis , Gene Editing/methods , Humans , Synechocystis/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , T-Lymphocytes/metabolism , R-Loop Structures/genetics
3.
J Bacteriol ; 206(5): e0045423, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695523

ABSTRACT

The stoichiometry of photosystem II (PSII) and photosystem I (PSI) varies between photoautotrophic organisms. The cyanobacterium Synechocystis sp. PCC 6803 maintains two- to fivefold more PSI than PSII reaction center complexes, and we sought to modify this stoichiometry by changing the promoter region of the psaAB operon. We thus generated mutants with varied psaAB expression, ranging from ~3% to almost 200% of the wild-type transcript level, but all showing a reduction in PSI levels, relative to wild type, suggesting a role of the psaAB promoter region in translational regulation. Mutants with 25%-70% of wild-type PSI levels were photoautotrophic, with whole-chain oxygen evolution rates on a per-cell basis comparable to that of wild type. In contrast, mutant strains with <10% of the wild-type level of PSI were obligate photoheterotrophs. Variable fluorescence yields of all mutants were much higher than those of wild type, indicating that the PSI content is localized differently than in wild type, with less transfer of PSII-absorbed energy to PSI. Strains with less PSI saturate at a higher light intensity, enhancing productivity at higher light intensities. This is similar to what is found in mutants with reduced antennae. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea present, P700+ re-reduction kinetics in the mutants were slower than in wild type, consistent with the notion that there is less cyclic electron transport if less PSI is present. Overall, strains with a reduction in PSI content displayed surprisingly vigorous growth and linear electron transport. IMPORTANCE: Consequences of reduction in photosystem I content were investigated in the cyanobacterium Synechocystis sp. PCC 6803 where photosystem I far exceeds the number of photosystem II complexes. Strains with less photosystem I displayed less cyclic electron transport, grew more slowly at lower light intensity and needed more light for saturation but were surprisingly normal in their whole-chain electron transport rates, implying that a significant fraction of photosystem I is dispensable for linear electron transport in cyanobacteria. These strains with reduced photosystem I levels may have biotechnological relevance as they grow well at higher light intensities.


Subject(s)
Gene Expression Regulation, Bacterial , Photosystem I Protein Complex , Photosystem II Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/growth & development , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Photosynthesis , Electron Transport , Light , Promoter Regions, Genetic , Oxygen/metabolism
4.
Nat Commun ; 15(1): 4426, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789507

ABSTRACT

Iron and phosphorus are essential nutrients that exist at low concentrations in surface waters and may be co-limiting resources for phytoplankton growth. Here, we show that phosphorus deficiency increases the growth of iron-limited cyanobacteria (Synechocystis sp. PCC 6803) through a PhoB-mediated regulatory network. We find that PhoB, in addition to its well-recognized role in controlling phosphate homeostasis, also regulates key metabolic processes crucial for iron-limited cyanobacteria, including ROS detoxification and iron uptake. Transcript abundances of PhoB-targeted genes are enriched in samples from phosphorus-depleted seawater, and a conserved PhoB-binding site is widely present in the promoters of the target genes, suggesting that the PhoB-mediated regulation may be highly conserved. Our findings provide molecular insights into the responses of cyanobacteria to simultaneous iron/phosphorus nutrient limitation.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Phosphorus , Synechocystis , Phosphorus/metabolism , Phosphorus/deficiency , Synechocystis/metabolism , Synechocystis/genetics , Iron/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Promoter Regions, Genetic/genetics , Seawater/microbiology , Homeostasis , Reactive Oxygen Species/metabolism
5.
New Phytol ; 243(1): 162-179, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38706429

ABSTRACT

Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.


Subject(s)
Glycogen , Photosynthesis , Photosystem II Protein Complex , Synechocystis , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Synechocystis/genetics , Glycogen/metabolism , Electron Transport , Photosystem II Protein Complex/metabolism , Mutation/genetics , Glucose/metabolism , Carbon Dioxide/metabolism , Oxygen/metabolism , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glucose-1-Phosphate Adenylyltransferase/genetics , Phosphoglucomutase/metabolism , Phosphoglucomutase/genetics
6.
Braz J Microbiol ; 55(2): 1219-1229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705959

ABSTRACT

Cyanobacteria have developed acclimation strategies to adapt to harsh environments, making them a model organism. Understanding the molecular mechanisms of tolerance to abiotic stresses can help elucidate how cells change their gene expression patterns in response to stress. Recent advances in sequencing techniques and bioinformatics analysis methods have led to the discovery of many genes involved in stress response in organisms. The Synechocystis sp. PCC 6803 is a suitable microorganism for studying transcriptome response under environmental stress. Therefore, for the first time, we employed two effective feature selection techniques namely and support vector machine recursive feature elimination (SVM-RFE) and LASSO (Least Absolute Shrinkage Selector Operator) to pinpoint the crucial genes responsive to environmental stresses in Synechocystis sp. PCC 6803. We applied these algorithms of machine learning to analyze the transcriptomic data of Synechocystis sp. PCC 6803 under distinct conditions, encompassing light, salt and iron stress conditions. Seven candidate genes namely sll1862, slr0650, sll0760, slr0091, ssl3044, slr1285, and slr1687 were selected by both LASSO and SVM-RFE algorithms. RNA-seq analysis was performed to validate the efficiency of our feature selection approach in selecting the most important genes. The RNA-seq analysis revealed significantly high expression for five genes namely sll1862, slr1687, ssl3044, slr1285, and slr0650 under ion stress condition. Among these five genes, ssl3044 and slr0650 could be introduced as new potential candidate genes for further confirmatory genetic studies, to determine their roles in their response to abiotic stresses.


Subject(s)
Algorithms , Machine Learning , Stress, Physiological , Synechocystis , Synechocystis/genetics , Synechocystis/physiology , Stress, Physiological/genetics , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcriptome , Computational Biology/methods , Support Vector Machine , Gene Expression Profiling , Light , Genes, Bacterial
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732056

ABSTRACT

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Subject(s)
Mutation , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Spectroscopy, Fourier Transform Infrared/methods , Synechocystis/genetics , Synechocystis/metabolism , Chlorophyll/metabolism , Electron Transport/genetics , Chlorophyll A/metabolism
8.
Biochim Biophys Acta Bioenerg ; 1865(3): 149049, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38801856

ABSTRACT

Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.


Subject(s)
Bacterial Proteins , Energy Transfer , Phycobilisomes , Synechocystis , Phycobilisomes/metabolism , Phycobilisomes/chemistry , Synechocystis/metabolism , Synechocystis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/genetics , Peptides/metabolism , Peptides/chemistry
9.
Sci Rep ; 14(1): 7885, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570698

ABSTRACT

SbtB is a PII-like protein that regulates the carbon-concentrating mechanism (CCM) in cyanobacteria. SbtB proteins can bind many adenyl nucleotides and possess a characteristic C-terminal redox sensitive loop (R-loop) that forms a disulfide bridge in response to the diurnal state of the cell. SbtBs also possess an ATPase/ADPase activity that is modulated by the redox-state of the R-loop. To investigate the R-loop in the cyanobacterium Synechocystis sp. PCC 6803, site-specific mutants, unable to form the hairpin and permanently in the reduced state, and a R-loop truncation mutant, were characterized under different inorganic carbon (Ci) and light regimes. Growth under diurnal rhythm showed a role of the R-loop as sensor for acclimation to changing light conditions. The redox-state of the R-loop was found to impact the binding of the adenyl-nucleotides to SbtB, its membrane association and thereby the CCM regulation, while these phenotypes disappeared after truncation of the R-loop. Collectively, our data imply that the redox-sensitive R-loop provides an additional regulatory layer to SbtB, linking the CO2-related signaling activity of SbtB with the redox state of cells, mainly reporting the actual light conditions. This regulation not only coordinates CCM activity in the diurnal rhythm but also affects the primary carbon metabolism.


Subject(s)
Carbon , Synechocystis , Carbon/metabolism , R-Loop Structures , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nucleotides/metabolism , Oxidation-Reduction , Carbon Dioxide/metabolism , Photosynthesis
10.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678710

ABSTRACT

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Subject(s)
Biomarkers , Chlorophyll A , Diclofenac , Microcystis , Synechocystis , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Diclofenac/toxicity , Diclofenac/metabolism , Biomarkers/metabolism , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Chlorophyll A/metabolism , Microcystins/metabolism , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Photosynthesis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
11.
Bioresour Technol ; 400: 130664, 2024 May.
Article in English | MEDLINE | ID: mdl-38583672

ABSTRACT

Synechocystis sp. PCC 6803 (Synechocystis) is a unicellular photosynthetic microorganism that has been used as a model for photo-biochemical research. It comprises a potential cell factory for the generation of valuable bioactive compounds, therapeutic proteins, and possibly biofuels. Fusion constructs of recombinant proteins with the CpcA α-subunit or CpcB ß-subunit of phycocyanin in Synechocystis have enabled true over-expression of several isoprenoid pathway enzymes and biopharmaceutical proteins to levels of 10-20 % of the total cellular protein. The present work employed the human interferon α-2 protein, as a study case of over-expression and downstream processing. It advanced the state of the art in the fusion constructs for protein overexpression technology by developing the bioresource for target protein separation from the fusion construct and isolation in substantially enriched or pure form. The work brings the cyanobacterial cell factory concept closer to meaningful commercial application for the photosynthetic production of useful recombinant proteins.


Subject(s)
Recombinant Proteins , Synechocystis , Synechocystis/metabolism , Humans , Recombinant Proteins/metabolism , Interferon-alpha/metabolism , Interferon alpha-2 , Protein Biosynthesis
12.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612633

ABSTRACT

Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803.


Subject(s)
Sesquiterpenes , Synechococcus , Synechocystis , Limonene , Synechococcus/genetics , Synechocystis/genetics , Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Terpenes , Carbon Cycle
13.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609367

ABSTRACT

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Subject(s)
Hemeproteins , Synechocystis , Heme , Zinc , Histidine , Hemeproteins/genetics , Synechocystis/genetics , Carbon , Iron
14.
Sci Rep ; 14(1): 9640, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671026

ABSTRACT

Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2% biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi protected Synechocystis against the development of chlorosis. Transcriptomic analysis suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The CuSO4 stress can also mediate Synechocystis-fungi flocculation but at a lower flocculation efficiency than that caused by EM. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.


Subject(s)
Erythromycin , Flocculation , Synechocystis , Synechocystis/metabolism , Synechocystis/genetics , Erythromycin/pharmacology , Biomass , Coculture Techniques , Fungi/metabolism , Fungi/genetics
15.
J Agric Food Chem ; 72(13): 7021-7032, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38501582

ABSTRACT

Lakes and reservoirs worldwide are experiencing a growing problem with harmful cyanobacterial blooms (HCBs), which have significant implications for ecosystem health and water quality. Algaecide is an effective way to control HCBs effectively. In this study, we applied an active substructure splicing strategy for rapid discovery of algicides. Through this strategy, we first optimized the structure of the lead compound S5, designed and synthesized three series of thioacetamide derivatives (series A, B, C), and then evaluated their algicidal activities. Finally, compound A3 with excellent performance was found, which accelerated the process of discovering and developing new algicides. The biological activity assay data showed that A3 had a significant inhibitory effect on M. aeruginosa. FACHB905 (EC50 = 0.46 µM) and Synechocystis sp. PCC6803 (EC50 = 0.95 µM), which was better than the commercial algicide prometryn (M. aeruginosa. FACHB905, EC50 = 6.52 µM; Synechocystis sp. PCC6803, EC50 = 4.64 µM) as well as better than lead compound S5 (M. aeruginosa. FACHB905, EC50 = 8.80 µM; Synechocystis sp. PCC6803, EC50 = 7.70 µM). The relationship between the surface electrostatic potential, chemical reactivity, and global electrophilicity of the compounds and their activities was discussed by density functional theory (DFT). Physiological and biochemical studies have shown that A3 might affect the photosynthesis pathway and antioxidant system in cyanobacteria, resulting in the morphological changes of cyanobacterial cells. Our work demonstrated that A3 might be a promising candidate for the development of novel algicides and provided a new active skeleton for the development of subsequent chemical algicides.


Subject(s)
Herbicides , Synechocystis , Thioacetamide , Ecosystem , Herbicides/chemistry
16.
J Proteome Res ; 23(4): 1174-1187, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38427982

ABSTRACT

Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.


Subject(s)
Photosynthesis , Synechocystis , Photosynthesis/genetics , Synechocystis/genetics , Synechocystis/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Phycocyanin/metabolism
17.
Int J Mol Sci ; 25(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474026

ABSTRACT

Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.


Subject(s)
Cyanobacteria , Synechocystis , Light , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Photosynthesis , Chromatography, Gel , Synechocystis/metabolism
18.
Photosynth Res ; 160(2-3): 61-75, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488942

ABSTRACT

The low-molecular-weight PsbM and PsbT proteins of Photosystem II (PS II) are both located at the monomer-monomer interface of the mature PS II dimer. Since the extrinsic proteins are associated with the final step of assembly of an active PS II monomer and, in the case of PsbO, are known to impact the stability of the PS II dimer, we have investigated the potential cooperativity between the PsbM and PsbT subunits and the PsbO, PsbU and PsbV extrinsic proteins. Blue-native polyacrylamide electrophoresis and western blotting detected stable PS II monomers in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO mutants that retained sufficient oxygen-evolving activity to support reduced photoautotrophic growth. In contrast, the ∆PsbM:∆PsbU and ∆PsbT:∆PsbU mutants assembled dimeric PS II at levels comparable to wild type and supported photoautotrophic growth at rates similar to those obtained with the corresponding ∆PsbM and ∆PsbT cells. Removal of PsbV was more detrimental than removal of PsbO. Only limited levels of dimeric PS II were observed in the ∆PsbM:∆PsbV mutant and the overall reduced level of assembled PS II in this mutant resulted in diminished rates of photoautotrophic growth and PS II activity below those obtained in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO strains. In addition, the ∆PsbT:∆PsbV mutant did not assemble active PS II centers although inactive monomers could be detected. The inability of the ∆PsbT:∆PsbV mutant to grow photoautotrophically, or to evolve oxygen, suggested a stable oxygen-evolving complex could not assemble in this mutant.


Subject(s)
Photosystem II Protein Complex , Synechocystis , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Synechocystis/metabolism , Synechocystis/genetics , Synechocystis/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mutation , Protein Subunits/metabolism , Oxygen/metabolism
19.
Plant Cell Physiol ; 65(5): 790-797, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38441322

ABSTRACT

Cyanobacteria inhabit areas with a broad range of light, temperature and nutrient conditions. The robustness of cyanobacterial cells, which can survive under different conditions, may depend on the resilience of photosynthetic activity. Cyanothece sp. PCC 8801 (Cyanothece), a freshwater cyanobacterium isolated from a Taiwanese rice field, had a higher repair activity of photodamaged photosystem II (PSII) under intense light than Synechocystis sp. PCC 6803 (Synechocystis), another freshwater cyanobacterium. Cyanothece contains myristic acid (14:0) as the major fatty acid at the sn-2 position of the glycerolipids. To investigate the role of 14:0 in the repair of photodamaged PSII, we used a Synechocystis transformant expressing a T-1274 encoding a lysophosphatidic acid acyltransferase (LPAAT) from Cyanothece. The wild-type and transformant cells contained 0.2 and 20.1 mol% of 14:0 in glycerolipids, respectively. The higher content of 14:0 in the transformants increased the fluidity of the thylakoid membrane. In the transformants, PSII repair was accelerated due to an enhancement in the de novo synthesis of D1 protein, and the production of singlet oxygen (1O2), which inhibited protein synthesis, was suppressed. The high content of 14:0 increased transfer of light energy received by phycobilisomes to PSI and CP47 in PSII and the content of carotenoids. These results indicated that an increase in 14:0 reduced 1O2 formation and enhanced PSII repair. The higher content of 14:0 in the glycerolipids may be required as a survival strategy for Cyanothece inhabiting a rice field under direct sunlight.


Subject(s)
Light , Myristic Acid , Photosystem II Protein Complex , Synechocystis , Thylakoids , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism , Synechocystis/genetics , Myristic Acid/metabolism , Thylakoids/metabolism , Photosynthesis , Acyltransferases/metabolism , Acyltransferases/genetics , Singlet Oxygen/metabolism
20.
Bioelectrochemistry ; 158: 108695, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38531227

ABSTRACT

The development of carbon-neutral fuel sources is an essential step in addressing the global fossil energy crisis. Whole-cell biophotovoltaic systems (BPVs) are a renewable, non-polluting energy-generating device that utilizes oxygenic photosynthetic microbes (OPMs) to split water molecules and generate bioelectricity under the driving of light energy. Since 2006, BPVs have been widely studied, with the order magnitudes of power density increasing from 10-4 mW/m2 to 103 mW/m2. This review examines the extracellular electron transfer (EET) mechanisms and regulation techniques of BPVs from biofilm to external environment. It is found that the EET of OPMs is mainly mediated by membrane proteins, with terminal oxidase limiting the power output. Synechocystis sp. PCC6803 and Chlorella vulgaris are two species that produce high power density in BPVs. The use of metal nanoparticles mixing, 3D pillar array electrodes, microfluidic technology, and transient-state operation models can significantly enhance power density. Challenges and potential research directions are discussed, including a deeper analysis of EET mechanisms and dynamics, the development of modular devices, integration of multiple regulatory components, and the exploration of novel BPV technologies.


Subject(s)
Bioelectric Energy Sources , Renewable Energy , Photosynthesis , Electron Transport , Synechocystis/metabolism , Chlorella vulgaris/metabolism , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...