Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Sci Adv ; 10(21): eadj1564, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781347

ABSTRACT

Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.


Subject(s)
Casein Kinase II , Retinoblastoma Binding Proteins , Humans , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Casein Kinase II/genetics , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , Female , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Carboplatin/pharmacology , Synthetic Lethal Mutations , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology
2.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Article in English | MEDLINE | ID: mdl-38617536

ABSTRACT

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Subject(s)
Colorectal Neoplasms , Synthetic Lethal Mutations , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt , Phosphorylation , Cytoplasm , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , PTEN Phosphohydrolase/genetics
3.
Cells ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38607047

ABSTRACT

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Subject(s)
Cohesins , Heterocyclic Compounds, 3-Ring , Maleimides , Neoplasms , Humans , Synthetic Lethal Mutations/genetics , Wnt Signaling Pathway/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Glycogen Synthase Kinase 3/metabolism , Neoplasms/genetics , Neoplasms/pathology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
4.
J Med Chem ; 67(9): 7620-7634, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38634707

ABSTRACT

Meisoindigo (Mei) has long been recognized in chronic myeloid leukemia (CML) treatment. To elucidate its molecular target and mechanisms, we embarked on designing and synthesizing a series of Mei-derived PROTACs. Through this endeavor, VHL-type PROTAC 9b was identified to be highly cytotoxic against SW620, SW480, and K562 cells. Employing DiaPASEF-based quantitative proteomic analysis, in combination with extensive validation assays, we unveiled that 9b potently and selectively degraded ATM across SW620 and SW480 cells in a ubiquitin-proteasome-dependent manner. 9b-induced selective ATM degradation prompted DNA damage response cascades, thereby leading to the cell cycle arrest and cell apoptosis. This pioneering discovery renders the advent of ATM degradation for anti-cancer therapy. Notably, 9b-induced ATM degradation synergistically enhanced the efficacy of ATR inhibitor AZD6738 both in vitro and in vivo. This work establishes the synthetic lethality-inducing properties of ATR inhibitors in the ATM-deficient context, thereby providing new avenues to innovative therapies for colorectal cancer.


Subject(s)
Antineoplastic Agents , Ataxia Telangiectasia Mutated Proteins , Colorectal Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Drug Discovery , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Mice, Nude , Proteolysis/drug effects , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/therapeutic use , Structure-Activity Relationship , Synthetic Lethal Mutations
5.
Expert Opin Ther Pat ; 34(3): 159-169, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38578210

ABSTRACT

INTRODUCTION: The multi-subunit SWI/SNF chromatin remodeling complex is a key epigenetic regulator for many cellular processes, and several subunits are found to be mutated in human cancers. The inactivating mutations of SMARCA4, the ATPase subunit of the complex, result in cellular dependency on the paralog SMARCA2 for survival. This observed synthetic lethal relationship posits targeting SMARCA2 in SMARCA4-deficient settings as an attractive therapeutic target in oncology. AREAS COVERED: This review covers patent literature disclosed during the 2019-30 June 2023 period which claim ATPase inhibitors and PROTAC degraders that bind to the ATPase domain of SMARCA2 and/or SMARCA4. A total of 16 documents from 6 applicants are presented. EXPERT OPINION: The demonstration of cellular dependence on SMARCA2 ATPase activity in SMARCA4-deficient settings has prompted substantial research toward SMARCA2-targeting therapies. Although selectively targeting the ATPase domain of SMARCA2 is viewed as challenging, several ATPase inhibitor scaffolds have been disclosed within the last five years. Most early compounds are weakly selective, but these efforts have culminated in the first dual SMARCA2/SMARCA4 ATPase inhibitor to enter clinical trials. Data from the ongoing clinical trials, as well as continued advancement of SMARCA2-selective ATPase inhibitors, are anticipated to significantly impact the field of therapies, targeting SMARCA4-deficient tumors.


Subject(s)
Antineoplastic Agents , DNA Helicases , Molecular Targeted Therapy , Neoplasms , Nuclear Proteins , Patents as Topic , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Antineoplastic Agents/pharmacology , DNA Helicases/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/genetics , Animals , Synthetic Lethal Mutations , Mutation , Adenosine Triphosphatases/metabolism
6.
Nature ; 629(8011): 443-449, 2024 May.
Article in English | MEDLINE | ID: mdl-38658754

ABSTRACT

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Subject(s)
Antineoplastic Agents , Drug Discovery , Enzyme Inhibitors , Microsatellite Instability , Neoplasms , Synthetic Lethal Mutations , Werner Syndrome Helicase , Animals , Female , Humans , Mice , Administration, Oral , Allosteric Regulation/drug effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Damage/drug effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Domains , Reproducibility of Results , Suppression, Genetic , Synthetic Lethal Mutations/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Werner Syndrome Helicase/antagonists & inhibitors , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , Xenograft Model Antitumor Assays
7.
Sci Bull (Beijing) ; 69(9): 1286-1301, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38519399

ABSTRACT

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.


Subject(s)
Antineoplastic Agents , Gallbladder Neoplasms , Metal-Organic Frameworks , Protein-Tyrosine Kinases , Pyrimidinones , Tumor Suppressor Protein p53 , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/pathology , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line, Tumor , Protein-Tyrosine Kinases/antagonists & inhibitors , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Synthetic Lethal Mutations , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays , Mutation , Mice, Nude , DNA Damage/drug effects , Female
8.
Adv Sci (Weinh) ; 11(19): e2307940, 2024 May.
Article in English | MEDLINE | ID: mdl-38482976

ABSTRACT

PARP inhibitors (PARPi)-based synthetic lethal therapy demonstrates limited efficacy for most cancer types that are homologous recombination (HR) proficient. To potentiate the PARPi application, a nanocarrier based on 5-azacytidine (AZA)-conjugated polymer (PAZA) for the codelivery of AZA and a PARP inhibitor, BMN673 (BMN) is developed. AZA conjugation significantly decreased the nanoparticle (NP) size and increased BMN loading. Molecular dynamics simulation and experimental validations shed mechanistic insights into the self-assembly of effective NPs. The small PAZA NPs demonstrated higher efficiency of tumor targeting and penetration than larger NPs, which is mediated by a new mechanism of active targeting that involves the recruitment of fibronectin from serum proteins following systemic administration of PAZA NPs. Furthermore, it is found that PAZA carrier sensitize the HR-proficient nonsmall cell lung cancer (NSCLC) to BMN, a combination therapy that is more effective at a lower AZA/BMN dosage. To investigate the underlying mechanism, the tumor immune microenvironment and various gene expressions by RNAseq are explored. Moreover, the BMN/PAZA combination increased the immunogenicity and synergized with PD-1 antibody in improving the overall therapeutic effect in an orthotopic model of lung cancer (LLC).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Fibronectins , Lung Neoplasms , Nanoparticles , Mice , Animals , Humans , Fibronectins/metabolism , Fibronectins/genetics , Nanoparticles/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Disease Models, Animal , Cell Line, Tumor , Azacitidine/pharmacology , Drug Carriers/chemistry , Synthetic Lethal Mutations/genetics , Epigenesis, Genetic/genetics
9.
JCI Insight ; 9(8)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483541

ABSTRACT

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Subject(s)
Aniline Compounds , Caprylates , Glioblastoma , Ketoglutarate Dehydrogenase Complex , Sulfides , Sulfonamides , Synthetic Lethal Mutations , Xenograft Model Antitumor Assays , bcl-X Protein , Animals , Humans , Mice , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Aniline Compounds/pharmacology , bcl-X Protein/metabolism , bcl-X Protein/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Cell Line, Tumor , Citric Acid Cycle/drug effects , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/drug therapy , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/pharmacology
10.
Drug Resist Updat ; 74: 101077, 2024 May.
Article in English | MEDLINE | ID: mdl-38518726

ABSTRACT

PURPOSE: Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS: The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS: SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS: SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.


Subject(s)
Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Protein Serine-Threonine Kinases , Synthetic Lethal Mutations , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Synthetic Lethal Mutations/drug effects , Xenograft Model Antitumor Assays
11.
Sci Adv ; 10(13): eadk8264, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552011

ABSTRACT

Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Lung Neoplasms/genetics , Lung Neoplasms/therapy , CRISPR-Cas Systems/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Gene Transfer Techniques , Synthetic Lethal Mutations , Endothelial Cells , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Gene Editing , Lung
12.
Clin Transl Med ; 14(2): e1583, 2024 02.
Article in English | MEDLINE | ID: mdl-38372449

ABSTRACT

BACKGROUND: Targeted therapy for triple-negative breast cancer (TNBC) remains a challenge. N6-methyladenosine (m6 A) is the most abundant internal mRNA modification in eukaryotes, and it regulates the homeostasis and function of modified RNA transcripts in cancer. However, the role of leucine-rich pentatricopeptide repeat containing protein (LRPPRC) as an m6 A reader in TNBC remains poorly understood. METHODS: Western blotting, reverse transcription-polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to investigate LRPPRC expression levels. Dot blotting and colorimetric enzyme linked immunosorbent assay (ELISA) were employed to detect m6 A levels. In vitro functional assays and in vivo xenograft mouse model were utilised to examine the role of LRPPRC in TNBC progression. Liquid chromatography-mass spectrometry/mass spectrometry and Seahorse assays were conducted to verify the effect of LRPPRC on glycolysis. MeRIP-sequencing, RNA-sequencing, MeRIP assays, RNA immunoprecipitation assays, RNA pull-down assays and RNA stability assays were used to identify the target genes of LRPPRC. Patient-derived xenografts and organoids were employed to substantiate the synthetic lethality induced by LRPPRC knockdown plus glutaminase inhibition. RESULTS: The expressions of LRPPRC and m6 A RNA were elevated in TNBC, and the m6 A modification site could be recognised by LRPPRC. LRPPRC promoted the proliferation, metastasis and glycolysis of TNBC cells both in vivo and in vitro. We identified lactate dehydrogenase A (LDHA) as a novel direct target of LRPPRC, which recognised the m6 A site of LDHA mRNA and enhanced the stability of LDHA mRNA to promote glycolysis. Furthermore, while LRPPRC knockdown reduced glycolysis, glutaminolysis was enhanced. Moreover, the effect of LRPPRC on WD40 repeat domain-containing protein 76 (WDR76) mRNA stability was impaired in an m6 A-dependent manner. Then, LRPPRC knockdown plus a glutaminase inhibition led to synthetic lethality. CONCLUSIONS: Our study demonstrated that LRPPRC promoted TNBC progression by regulating metabolic reprogramming via m6 A modification. These characteristics shed light on the novel combination targeted therapy strategies to combat TNBC.


Subject(s)
Glutamine , L-Lactate Dehydrogenase , Neoplasm Proteins , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Glycolysis/genetics , Leucine-Rich Repeat Proteins , Neoplasm Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synthetic Lethal Mutations , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , L-Lactate Dehydrogenase/genetics
13.
EMBO Mol Med ; 16(3): 475-505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360999

ABSTRACT

We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The KrasG12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated KrasG12D. Mechanistically, KrasG12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors.


Subject(s)
Carcinoma in Situ , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Piperazines , Thiazines , Animals , Mice , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/genetics , Caspase 3/genetics , Caspase 3/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Stress Granules , Synthetic Lethal Mutations
14.
Nature ; 627(8002): 130-136, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355793

ABSTRACT

Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.


Subject(s)
Genomic Instability , Micronuclei, Chromosome-Defective , Animals , Humans , Mice , Chromosomes/genetics , DNA Damage , Genomic Instability/genetics , Phenotype , Sirtuin 1 , Synthetic Lethal Mutations
15.
Curr Treat Options Oncol ; 25(2): 237-260, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300479

ABSTRACT

OPINION STATEMENT: Homologous recombination deficiency (HRD) is an important biomarker guiding selection of ovarian cancer patients who will derive the most benefit from poly(ADP-ribose) polymerase inhibitors (PARPi). HRD prevents cells from repairing double-stranded DNA damage with high fidelity, PARPis limit single-stranded repair, and together these deficits induce synthetic lethality. Germline or somatic BRCA mutations represent the narrowest definition of HRD, but do not reflect all patients who will have a durable PARPi response. HRD can also be defined by its downstream consequences, which are measured by different metrics depending on the test used. Ideally, all patients will undergo genetic counseling and germline testing shortly after diagnosis and have somatic testing sent once an adequate tumor sample is available. Should barriers to one test be higher, pursuing germline testing with reflex to somatic testing for BRCA wildtype patients or somatic testing first strategies are both evidence-based. Ultimately both tests offer complementary information, germline testing should be pursued for any patient with a history of ovarian cancer, and somatic testing is valuable at recurrence if not performed in the upfront setting. There is a paucity of data to suggest superiority of one germline or somatic assay; therefore, selection should optimize turnaround time, cost to patients, preferred result format, and logistical burden. Each clinic should implement a standard testing strategy for all ovarian cancer patients that ensures HRD status is known at the time of upfront chemotherapy completion to facilitate comprehensive counseling about anticipated maintenance PARPi benefit.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/etiology , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Synthetic Lethal Mutations , Homologous Recombination
16.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38316463

ABSTRACT

Radiation therapy (RT) is one of the most commonly used anticancer therapies. However, the landscape of cellular response to irradiation, especially to a single high-dose irradiation, remains largely unknown. In this study, we performed a whole-genome CRISPR loss-of-function screen and revealed temporal inherent and acquired responses to RT. Specifically, we found that loss of the IL1R1 pathway led to cellular resistance to RT. This is in part because of the involvement of radiation-induced IL1R1-dependent transcriptional regulation, which relies on the NF-κB pathway. Moreover, the mitochondrial anti-apoptotic pathway, particularly the BCL2L1 gene, is crucially important for cell survival after radiation. BCL2L1 inhibition combined with RT dramatically impeded tumor growth in several breast cancer cell lines and syngeneic models. Taken together, our results suggest that the combination of an apoptosis inhibitor such as a BCL2L1 inhibitor with RT may represent a promising anticancer strategy for solid cancers including breast cancer.


Subject(s)
Breast Neoplasms , Synthetic Lethal Mutations , bcl-X Protein , Female , Humans , bcl-X Protein/genetics , bcl-X Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Synthetic Lethal Mutations/genetics
17.
Biomed Pharmacother ; 172: 116288, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377739

ABSTRACT

Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.


Subject(s)
Neoplasms , Synthetic Lethal Mutations , Cell Death , DNA Repair , Neoplasms/drug therapy , Neoplasms/genetics
18.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255825

ABSTRACT

DNA-targeted drugs constitute a specialized category of pharmaceuticals developed for cancer treatment, directly influencing various cellular processes involving DNA. These drugs aim to enhance treatment efficacy and minimize side effects by specifically targeting molecules or pathways crucial to cancer growth. Unlike conventional chemotherapeutic drugs, recent discoveries have yielded DNA-targeted agents with improved effectiveness, and a new generation is anticipated to be even more specific and potent. The sequencing of the human genome in 2001 marked a transformative milestone, contributing significantly to the advancement of targeted therapy and precision medicine. Anticipated progress in precision medicine is closely tied to the continuous development in the exploration of synthetic lethality, DNA repair, and expression regulatory mechanisms, including epigenetic modifications. The integration of technologies like circulating tumor DNA (ctDNA) analysis further enhances our ability to elucidate crucial regulatory factors, promising a more effective era of precision medicine. The combination of genomic knowledge and technological progress has led to a surge in clinical trials focusing on precision medicine. These trials utilize biomarkers for identifying genetic alterations, molecular profiling for potential therapeutic targets, and tailored cancer treatments addressing multiple genetic changes. The evolving landscape of genomics has prompted a paradigm shift from tumor-centric to individualized, genome-directed treatments based on biomarker analysis for each patient. The current treatment strategy involves identifying target genes or pathways, exploring drugs affecting these targets, and predicting adverse events. This review highlights strategies incorporating DNA-targeted drugs, such as PARP inhibitors, SLFN11, methylguanine methyltransferase (MGMT), and ATR kinase.


Subject(s)
Neoplasms , Synthetic Lethal Mutations , Humans , DNA , DNA Repair , Neoplasms/drug therapy , Neoplasms/genetics , Epigenesis, Genetic , Genomics , Nuclear Proteins
19.
Nat Commun ; 15(1): 611, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38242869

ABSTRACT

Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.


Subject(s)
Cardiolipins , DNA, Mitochondrial , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Electron Transport Complex IV/metabolism , Synthetic Lethal Mutations , Mitochondria/genetics , Mitochondria/metabolism , Drosophila/genetics
20.
Eur J Med Chem ; 265: 116114, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38194775

ABSTRACT

The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Antineoplastic Agents/chemistry , BRCA2 Protein/antagonists & inhibitors , BRCA2 Protein/metabolism , Cell Line, Tumor , DNA Repair , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Rad51 Recombinase/antagonists & inhibitors , Rad51 Recombinase/metabolism , Synthetic Lethal Mutations
SELECTION OF CITATIONS
SEARCH DETAIL
...