Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Med Biol Res ; 56: e12854, 2023.
Article in English | MEDLINE | ID: mdl-37970920

ABSTRACT

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Histone Methyltransferases/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Chromatin Assembly and Disassembly/genetics , Synthetic Lethal Mutations/genetics , Cell Line , Transcription Factors/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism
2.
J Nat Prod ; 83(6): 1899-1908, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32407116

ABSTRACT

Disruption of the tumor suppressor PTEN, either at the protein or genomic level, plays an important role in human cancer development. The high frequency of PTEN deficiency reported across several cancer subtypes positions therapeutic approaches that exploit PTEN loss-of-function with the ability to significantly impact the treatment strategies of a large patient population. Here, we report that an endophytic fungus isolated from a medicinal plant produces an inhibitor of DNA double-strand-break repair. Furthermore, the novel alkaloid product, which we have named irrepairzepine (1), demonstrated synthetic lethal targeting in PTEN-deficient glioblastoma cells. Our results uncover a new therapeutic lead for PTEN-deficient cancers and an important molecular tool toward enhancing the efficacy of current cancer treatments.


Subject(s)
Brain Neoplasms/drug therapy , DNA Repair/drug effects , Endophytes/chemistry , Glioblastoma/drug therapy , PTEN Phosphohydrolase/genetics , Synthetic Lethal Mutations/genetics , Brain Neoplasms/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Comet Assay , DNA Breaks, Double-Stranded/drug effects , Drug Screening Assays, Antitumor , Ecuador , Glioblastoma/genetics , Humans , Molecular Structure , Mutagens/toxicity , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL