Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Acta Neuropathol Commun ; 12(1): 84, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822421

ABSTRACT

Alpha-synuclein (αsyn) is an intrinsically disordered protein that aggregates in the brain in several neurodegenerative diseases collectively called synucleinopathies. Phosphorylation of αsyn at serine 129 (PSER129) was considered rare in the healthy human brain but is enriched in pathological αsyn aggregates and is used as a specific marker for disease inclusions. However, recent observations challenge this assumption by demonstrating that PSER129 results from neuronal activity and can be readily detected in the non-diseased mammalian brain. Here, we investigated experimental conditions under which two distinct PSER129 pools, namely endogenous-PSER129 and aggregated-PSER129, could be detected and differentiated in the mammalian brain. Results showed that in the wild-type (WT) mouse brain, perfusion fixation conditions greatly influenced the detection of endogenous-PSER129, with endogenous-PSER129 being nearly undetectable after delayed perfusion fixation (30-min and 1-h postmortem interval). Exposure to anesthetics (e.g., Ketamine or xylazine) before perfusion did not significantly influence endogenous-PSER129 detection or levels. In situ, non-specific phosphatase calf alkaline phosphatase (CIAP) selectively dephosphorylated endogenous-PSER129 while αsyn preformed fibril (PFF)-seeded aggregates and genuine disease aggregates (Lewy pathology and Papp-Lantos bodies in Parkinson's disease and multiple systems atrophy brain, respectively) were resistant to CIAP-mediated dephosphorylation. The phosphatase resistance of aggregates was abolished by sample denaturation, and CIAP-resistant PSER129 was closely associated with proteinase K (PK)-resistant αsyn (i.e., a marker of aggregation). CIAP pretreatment allowed for highly specific detection of seeded αsyn aggregates in a mouse model that accumulates non-aggregated-PSER129. We conclude that αsyn aggregates are impervious to phosphatases, and CIAP pretreatment increases detection specificity for aggregated-PSER129, particularly in well-preserved biological samples (e.g., perfusion fixed or flash-frozen mammalian tissues) where there is a high probability of interference from endogenous-PSER129. Our findings have important implications for the mechanism of PSER129-accumulation in the synucleinopathy brain and provide a simple experimental method to differentiate endogenous-from aggregated PSER129.


Subject(s)
Brain , Mice, Inbred C57BL , alpha-Synuclein , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Brain/pathology , Mice , Phosphorylation , Humans , Protein Aggregates/physiology , Male , Mice, Transgenic , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Alkaline Phosphatase/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology , Phosphoric Monoester Hydrolases/metabolism
2.
Neurobiol Dis ; 196: 106524, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705490

ABSTRACT

αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.


Subject(s)
alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Half-Life , Animals , Synucleinopathies/metabolism , Synucleinopathies/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , Proteostasis/physiology , Neurons/metabolism
3.
Nat Commun ; 15(1): 4150, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755164

ABSTRACT

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Subject(s)
Amyloid , Biofilms , Caenorhabditis elegans , Dopaminergic Neurons , Gastrointestinal Microbiome , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Humans , Biofilms/growth & development , Amyloid/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Parkinson Disease/metabolism , Parkinson Disease/microbiology , Parkinson Disease/pathology , Mice , Dopaminergic Neurons/metabolism , Autophagy , Neurodegenerative Diseases/metabolism , Mice, Inbred C57BL , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Brain/metabolism , Brain/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology
4.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732162

ABSTRACT

The synucleinopathies are a diverse group of neurodegenerative disorders characterized by the accumulation of aggregated alpha-synuclein (aSyn) in vulnerable populations of brain cells. Oxidative stress is both a cause and a consequence of aSyn aggregation in the synucleinopathies; however, noninvasive methods for detecting oxidative stress in living animals have proven elusive. In this study, we used the reactive oxygen species (ROS)-sensitive positron emission tomography (PET) radiotracer [18F]ROStrace to detect increases in oxidative stress in the widely-used A53T mouse model of synucleinopathy. A53T-specific elevations in [18F]ROStrace signal emerged at a relatively early age (6-8 months) and became more widespread within the brain over time, a pattern which paralleled the progressive development of aSyn pathology and oxidative damage in A53T brain tissue. Systemic administration of lipopolysaccharide (LPS) also caused rapid and long-lasting elevations in [18F]ROStrace signal in A53T mice, suggesting that chronic, aSyn-associated oxidative stress may render these animals more vulnerable to further inflammatory insult. Collectively, these results provide novel evidence that oxidative stress is an early and chronic process during the development of synucleinopathy and suggest that PET imaging with [18F]ROStrace holds promise as a means of detecting aSyn-associated oxidative stress noninvasively.


Subject(s)
Brain , Disease Models, Animal , Oxidative Stress , Positron-Emission Tomography , Synucleinopathies , alpha-Synuclein , Animals , Synucleinopathies/diagnostic imaging , Synucleinopathies/metabolism , Synucleinopathies/pathology , Positron-Emission Tomography/methods , Mice , alpha-Synuclein/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Fluorine Radioisotopes , Male , Mice, Transgenic , Radiopharmaceuticals , Reactive Oxygen Species/metabolism
5.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575601

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
6.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590155

ABSTRACT

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Synucleinopathies/complications , Synucleinopathies/pathology , Brain/diagnostic imaging , Brain/pathology , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Parkinson Disease/complications , Iron
7.
Int J Biol Macromol ; 267(Pt 2): 131423, 2024 May.
Article in English | MEDLINE | ID: mdl-38583832

ABSTRACT

This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.


Subject(s)
Glycyrrhizic Acid , Protein Aggregates , Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Cell Survival/drug effects , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Hydrogen Bonding , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Binding , Reactive Oxygen Species/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
8.
Biochemistry (Mosc) ; 89(3): 523-542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648770

ABSTRACT

Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.


Subject(s)
Amyloid , Gastrointestinal Microbiome , Parkinson Disease , Synucleinopathies , alpha-Synuclein , Humans , Synucleinopathies/metabolism , Synucleinopathies/microbiology , Synucleinopathies/pathology , Amyloid/metabolism , Parkinson Disease/metabolism , Parkinson Disease/microbiology , alpha-Synuclein/metabolism , Animals , Bacteria/metabolism , Bacterial Proteins/metabolism
9.
JAMA ; 331(15): 1298-1306, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38506839

ABSTRACT

Importance: Finding a reliable diagnostic biomarker for the disorders collectively known as synucleinopathies (Parkinson disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA], and pure autonomic failure [PAF]) is an urgent unmet need. Immunohistochemical detection of cutaneous phosphorylated α-synuclein may be a sensitive and specific clinical test for the diagnosis of synucleinopathies. Objective: To evaluate the positivity rate of cutaneous α-synuclein deposition in patients with PD, DLB, MSA, and PAF. Design, Setting, and Participants: This blinded, 30-site, cross-sectional study of academic and community-based neurology practices conducted from February 2021 through March 2023 included patients aged 40 to 99 years with a clinical diagnosis of PD, DLB, MSA, or PAF based on clinical consensus criteria and confirmed by an expert review panel and control participants aged 40 to 99 years with no history of examination findings or symptoms suggestive of a synucleinopathy or neurodegenerative disease. All participants completed detailed neurologic examinations and disease-specific questionnaires and underwent skin biopsy for detection of phosphorylated α-synuclein. An expert review panel blinded to pathologic data determined the final participant diagnosis. Exposure: Skin biopsy for detection of phosphorylated α-synuclein. Main Outcomes: Rates of detection of cutaneous α-synuclein in patients with PD, MSA, DLB, and PAF and controls without synucleinopathy. Results: Of 428 enrolled participants, 343 were included in the primary analysis (mean [SD] age, 69.5 [9.1] years; 175 [51.0%] male); 223 met the consensus criteria for a synucleinopathy and 120 met criteria as controls after expert panel review. The proportions of individuals with cutaneous phosphorylated α-synuclein detected by skin biopsy were 92.7% (89 of 96) with PD, 98.2% (54 of 55) with MSA, 96.0% (48 of 50) with DLB, and 100% (22 of 22) with PAF; 3.3% (4 of 120) of controls had cutaneous phosphorylated α-synuclein detected. Conclusions and Relevance: In this cross-sectional study, a high proportion of individuals meeting clinical consensus criteria for PD, DLB, MSA, and PAF had phosphorylated α-synuclein detected by skin biopsy. Further research is needed in unselected clinical populations to externally validate the findings and fully characterize the potential role of skin biopsy detection of phosphorylated α-synuclein in clinical care.


Subject(s)
Skin , Synucleinopathies , alpha-Synuclein , Aged , Female , Humans , Male , alpha-Synuclein/analysis , Biopsy , Cross-Sectional Studies , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Multiple System Atrophy/diagnosis , Multiple System Atrophy/pathology , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Synucleinopathies/diagnosis , Synucleinopathies/pathology , Phosphorylation , Skin/chemistry , Skin/pathology , Pure Autonomic Failure/diagnosis , Pure Autonomic Failure/pathology , Reproducibility of Results , Adult , Middle Aged , Aged, 80 and over , Single-Blind Method , Prospective Studies
10.
Eur J Pharmacol ; 970: 176505, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38503400

ABSTRACT

Alpha-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). Here, we explored the efficacy of N,N,N',N'-tetraethyl-10H-phenothiazine-3,7-diamine dihydrochloride (LETC), a protein aggregation inhibitor, on α-Syn aggregation. In both cellular models and transgenic mice, α-Syn aggregation was achieved by the overexpression of full-length human α-Syn fused with a signal sequence peptide. α-Syn accumulated in transfected DH60.21 neuroblastoma cells and α-Syn aggregation was inhibited by LETC with an EC50 of 0.066 ± 0.047 µM. Full-length human α-Syn overexpressing Line 62 (L62) mice accumulated neuronal α-Syn that was associated with a decreased motor performance in the open field and automated home cage. LETC, administered orally for 6 weeks at 10 mg/kg significantly decreased α-Syn-positive neurons in multiple brain regions and this resulted in a rescue of movement deficits in the open field in these mice. LETC however, did not improve activity deficits of L62 mice in the home cage environment. The results suggest that LETC may provide a potential disease modification therapy in synucleinopathies through the inhibition of α-Syn aggregation.


Subject(s)
Parkinson Disease , Synucleinopathies , Mice , Humans , Animals , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Synucleinopathies/pathology , Parkinson Disease/metabolism , Mice, Transgenic , Brain/metabolism
11.
Parkinsonism Relat Disord ; 122: 106077, 2024 May.
Article in English | MEDLINE | ID: mdl-38461037

ABSTRACT

These facts argue against the gain-of-function synucleinopathy hypothesis, which proposes that Lewy pathology causes Parkinson's disease: (1) most brains from people without neurological symptoms have multiple pathologies; (2) neither pathology type nor distribution correlate with disease severity or progression in Parkinson's disease; (3) aggregated α-synuclein in the form of Lewy bodies is not a space-occupying lesion but the insoluble fraction of its precursor, soluble monomeric α-synuclein; (4) pathology spread is passive, occurring by irreversible nucleation, not active replication; and (5) low cerebrospinal fluid α-synuclein levels predict brain atrophy and clinical disease progression. The transformation of α-synuclein into Lewy pathology may occur as a response to biological, toxic, or infectious stressors whose persistence perpetuates the nucleation process, depleting normal α-synuclein and eventually leading to Parkinson's symptoms from neuronal death. We propose testing the loss-of-function synucleinopenia hypothesis by evaluating the clinical and neurodegenerative rescue effect of replenishing the levels of monomeric α-synuclein.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Humans , alpha-Synuclein/metabolism , Brain/metabolism , Brain/pathology , Lewy Bodies/pathology , Lewy Bodies/metabolism , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
12.
J Neuropathol Exp Neurol ; 83(4): 245-250, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38408377

ABSTRACT

To determine the incidence of phosphorylated α-synuclein (p-syn) in skin nerves in very old subjects who are prone to developing incidental Lewy bodies, we prospectively performed skin biopsies on 33 elderly subjects, including 13 (>85 years old) and 20 patients (>70 years) suspected of having an acquired small fiber neuropathy. All subjects underwent neurological examination prior to the biopsy. Two screened female subjects (ages 102 and 98 years) were excluded from the study because they showed evidence of a slight bradykinetic-rigid extrapyramidal disorder on neurological examination and were not considered healthy; both showed p-syn in skin nerves. We did not identify p-syn in skin nerves in the remaining 31 subjects. A PubMed analysis of publications from 2013 to 2023 disclosed 490 healthy subjects tested for skin p-syn; one study reported p-syn in 4 healthy subjects, but the remaining subjects tested negative. Our data underscore the virtual absence of p-syn in skin nerves of healthy controls, including those who are very elderly. These data support skin biopsy as a highly specific tool for identifying an underlying synucleinopathy in patients in vivo.


Subject(s)
Parkinson Disease , Small Fiber Neuropathy , Synucleinopathies , Humans , Female , Aged , Aged, 80 and over , alpha-Synuclein , Skin/pathology , Parkinson Disease/pathology , Small Fiber Neuropathy/pathology , Synucleinopathies/pathology
13.
J Integr Neurosci ; 23(2): 44, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38419457

ABSTRACT

BACKGROUND: Recently, the hypothesis that pathological α-Synuclein propagates from the gut to the brain has gained attention. Although results from animal studies support this hypothesis, the specific mechanism remains unclear. This study focused on the intestinal fatty acid-binding protein (FABP2), which is one of the subtypes of fatty acid binding proteins localizing in the gut, with the hypothesis that FABP2 is involved in the gut-to-brain propagation of α-synuclein. The aim of this study was to clarify the pathological significance of FABP2 in the pathogenesis and progression of synucleinopathy. METHODS: We examined the relationship between FABP2 and α-Synuclein in the uptake of α-Synuclein into enteric neurons using primary cultured neurons derived from mouse small intestinal myenteric plexus. We also quantified disease-related protein concentrations in the plasma of patients with synucleinopathy and related diseases, and analyzed the relationship between plasma FABP2 level and progression of the disease. RESULTS: Experiments on α-Synuclein uptake in primary cultured enteric neurons showed that following uptake, α-Synuclein was concentrated in areas where FABP2 was localized. Moreover, analysis of the plasma protein levels of patients with Parkinson's disease revealed that the plasma FABP2 and α-Synuclein levels fluctuate with disease duration. The FABP2/α-Synuclein ratio fluctuated more markedly than either FABP2 or α-Synuclein alone, depending on the duration of disease, indicating a higher discriminant ability of early Parkinson's disease patients from healthy patients. CONCLUSIONS: These results suggest that FABP2 potentially contributes to the pathogenesis and progression of α-synucleinopathies. Thus, FABP2 is an important molecule that has the potential to elucidate the consistent mechanisms that lead from the prodromal phase to the onset and subsequent progression of synucleinopathies.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , alpha-Synuclein/metabolism , Fatty Acid-Binding Proteins/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
14.
Ann Clin Transl Neurol ; 11(3): 673-685, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263854

ABSTRACT

OBJECTIVE: Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia. METHODS: We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses. Multiple tau monoclonal antibodies were used to detect early (AT8, MC1) and mature (TauC3) epitopes of tangle progression. We used linear/logistic regression to compare groups and test the association between pathologies and clinical features. RESULTS: There were lower levels of tau pathology (ß = 1.86-2.96, p < 0.001) across all tau antibodies in the co-pathology group compared to the pure Alzheimer's pathology group. Among individuals with alpha-synucleinopathy, higher alpha-synuclein was associated with greater early tau (AT8 ß = 1.37, p < 0.001; MC1 ß = 1.2, p < 0.001) but not mature tau (TauC3 p = 0.18), whereas mature tau was associated with beta-amyloid (ß = 0.21, p = 0.01). Finally, lower tau, particularly TauC3 pathology, was associated with lower frequency of both core clinical features and categorical clinical diagnosis of dementia with Lewy bodies. INTERPRETATION: Mature tau may be more closely related to beta-amyloidosis than alpha-synucleinopathy, and pathophysiological processes of tangle maturation may influence the clinical features of dementia in mixed Lewy-Alzheimer's pathology.


Subject(s)
Alzheimer Disease , Parkinson Disease , Synucleinopathies , Humans , Alzheimer Disease/pathology , alpha-Synuclein , Lewy Bodies/pathology , Synucleinopathies/pathology , Parkinson Disease/pathology , tau Proteins , Amyloid beta-Peptides , Epitopes
15.
Acta Neuropathol Commun ; 12(1): 11, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238869

ABSTRACT

Multiple system atrophy (MSA) is a rare and fatal synucleinopathy characterized by insoluble alpha-synuclein (α-syn) cytoplasmic inclusions located within oligodendroglia. Neuroinflammation, demyelination, and neurodegeneration are correlated with areas of glia cytoplasmic inclusions (GCI) pathology, however it is not known what specifically drives disease pathogenesis. Recent studies have shown that disease pathologies found in post-mortem tissue from MSA patients can be modeled in rodents via a modified AAV overexpressing α-syn, Olig001-SYN, which has a 95% tropism for oligodendrocytes. In the Olig001-SYN mouse model, CD4+ T cells have been shown to drive neuroinflammation and demyelination, however the mechanism by which this occurs remains unclear. In this study we use genetic and pharmacological approaches in the Olig001-SYN model of MSA to show that the pro-inflammatory cytokine interferon gamma (IFNγ) drives neuroinflammation, demyelination, and neurodegeneration. Furthermore, using an IFNγ reporter mouse, we found that infiltrating CD4+ T cells were the primary producers of IFNγ in response to α-syn overexpression in oligodendrocytes. Results from these studies indicate that IFNγ expression from CD4+ T cells drives α-syn-mediated neuroinflammation, demyelination, and neurodegeneration. These results indicate that targeting IFNγ expression may be a potential disease modifying therapeutic strategy for MSA.


Subject(s)
Demyelinating Diseases , Multiple System Atrophy , Synucleinopathies , Animals , Humans , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Interferon-gamma/metabolism , Multiple System Atrophy/pathology , Neuroinflammatory Diseases , Oligodendroglia/pathology , Synucleinopathies/pathology
16.
Cell Commun Signal ; 22(1): 31, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216911

ABSTRACT

The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/therapeutic use , Synucleinopathies/metabolism , Synucleinopathies/pathology , Microglia/metabolism , Inflammation/metabolism , Homeostasis
17.
Neurobiol Dis ; 191: 106411, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228253

ABSTRACT

Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets. Here we characterized the neuroinflammatory gene expression profile of reactive microglia and astrocytes in the SNpc during early synucleinopathy in the rat α-syn pre-formed fibril (PFF) model. Rats received intrastriatal injection of α-syn PFFs and expression of immune genes was quantified with droplet digital PCR (ddPCR), after which fluorescent in situ hybridization (FISH) was used to localize gene expression to microglia or astrocytes in the SNpc. Genes previously associated with reactive microglia (Cd74, C1qa, Stat1, Axl, Casp1, Il18, Lyz2) and reactive astrocytes (C3, Gbp2, Serping1) were significantly upregulated in the SN of PFF injected rats. Localization of gene expression to SNpc microglia near α-syn aggregates identified a unique α-syn aggregate microglial gene expression profile characterized by upregulation of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 and Fcer1g. Importantly, significant microglial upregulation of Cd74 and C3 were only observed following injection of α-syn PFFs, not α-syn monomer, confirming specificity to α-syn aggregation. Serping1 expression also localized to astrocytes in the SNpc. Interestingly, C3 expression in the SNpc localized to microglia at 2- and 4-months post-PFF, but to astrocytes at 6-months post-PFF. We also observed expression of Rt1-a2 and Cxcl10 in SNpc dopamine neurons. Cumulatively our results identify a dynamic, yet reproducible gene expression profile of reactive microglia and astrocytes associated with early synucleinopathy in the rat SNpc.


Subject(s)
Parkinson Disease , Synucleinopathies , Animals , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Complement C1 Inhibitor Protein/genetics , Complement C1 Inhibitor Protein/metabolism , Dopaminergic Neurons/metabolism , In Situ Hybridization, Fluorescence , Neuroglia/metabolism , Neuroinflammatory Diseases , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Synucleinopathies/pathology , Transcriptome
18.
Exp Gerontol ; 187: 112366, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280659

ABSTRACT

synucleinopathies are diseases characterized by the aggregation of α-synuclein (α-syn), which forms fibrils through misfolding and accumulates in a prion-like manner. To detect the presence of these α-syn aggregates in clinical samples, seed amplification assays (SAAs) have been developed. These SAAs are capable of amplifying the α-syn seeds, allowing for their detection. αSyn-SAAs have been reported under the names 'protein misfolding cyclic amplification' (αSyn-PMCA) and 'real-time quaking-induced conversion'α-Syn-RT-QuIC. The α-Syn RT-QuIC, in particular, has been adapted to amplify and detect α-syn aggregates in various biospecimens, including cerebrospinal fluid (CSF), skin, nasal brushing, serum and saliva. The α-syn RT-QuIC assay has demonstrated good sensitivity and specificity in detecting pathological α-syn, particularly in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) cases, with an accuracy rate of up to 80 %. Additionally, differential diagnosis between DLB and PD, as well as PD and multiple system atrophy (MSA), can be achieved by utilizing certain kinetic thioflavin T (ThT) parameters and other parameters. Moreover, the positive detection of α-syn in the prodromal stage of synucleinopathies provides an opportunity for early intervention and management. In summary, the development of the α-syn RT-QuIC assay has greatly contributed to the field of synucleinopathies. Therefore, we review the development of α-syn RT-QuIC assay and describe in detail the recent advancements of α-syn RT-QuIC assay for detecting pathological α-syn in synucleinopathies.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein , Synucleinopathies/diagnosis , Synucleinopathies/pathology , Parkinson Disease/diagnosis
19.
CNS Neurosci Ther ; 30(2): e14393, 2024 02.
Article in English | MEDLINE | ID: mdl-37563872

ABSTRACT

RATIONALE: Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), share a distinct pathological feature, that is, a widespread accumulation of α-synuclein (α-syn) in the brain. There is a significant clinical unmet need for disease-modifying treatments for synucleinopathies. Recently, a seaweed-derived mixture of oligosaccharides sodium oligomannate, GV-971, was approved for Phase 2 clinical trials for PD. This study aimed to further evaluate the therapeutic effects of GV-971 on synucleinopathies using cellular and animal models and explore its associated molecular mechanisms. METHODS: α-Syn aggregation was assessed, in vitro and ex vivo, by ThT assay. A dopaminergic neuron cell line, Prnp-SNCAA53T mice, and brain slices from PD and DLB patients were used to determine the efficacy of GV-971 in ameliorating α-syn pathology. Measurements of motor functions, including pole, cylinder, and rotarod tests, were conducted on Prnp-SNCAA53T mice 4 weeks after intragastric administration of GV-971 (200 mg day-1 kg-1 ). RESULTS: GV-971 effectively prevented α-syn aggregation and even disassembled pre-aggregated α-syn fibrils, in vitro and ex vivo. In addition, GV-971 was able to rescue α-syn-induced neuronal damage and reduced release of extracellular vesicles (EVs), likely via modulating Alix expression. In the Prnp-SNCAA53T mouse model, when treated at the age of 5 months, GV-971 significantly decreased α-syn deposition in the cortex, midbrain, and cerebellum regions, along with ameliorating the motor dysfunctions. CONCLUSIONS: Our results indicate that GV-971, when administered at a relatively early stage of the disease process, significantly reduced α-syn accumulation and aggregation in Prnp-SNCAA53T mice. Furthermore, GV-971 corrected α-syn-induced inhibition of EVs release in neurons, contributing to neuronal protection. Future studies are needed to further assess GV-971 as a promising disease-modifying therapy for PD and other synucleinopathies.


Subject(s)
Mannose , Parkinson Disease , Synucleinopathies , Animals , Humans , Infant , Mice , alpha-Synuclein/metabolism , Dopaminergic Neurons/metabolism , Mannose/analogs & derivatives , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
20.
Brain ; 147(1): 81-90, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37526295

ABSTRACT

Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.


Subject(s)
Exosomes , Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/metabolism , Synucleinopathies/pathology , Parkinson Disease/metabolism , Exosomes/metabolism , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...