Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 196: 965-973, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36889235

ABSTRACT

Lilacs have high ornamental value due to their strong aroma. However, the molecular regulatory mechanisms of aroma biosynthesis and metabolism in lilac were largely unclear. In this study, two varieties with distinct aroma, Syringa oblata 'Zi Kui' (faint aroma) and Syringa vulgaris 'Li Fei' (strong aroma), were used for exploring the regulation mechanism of aroma difference. Via GC-MS analysis, a total of 43 volatile components were identified. Terpene volatiles was the most abundant volatiles constituting the aroma of two varieties. Notably, 3 volatile secondary metabolites were unique in 'Zi Kui' and 30 volatile secondary metabolites were unique in 'Li Fei'. Then, a transcriptome analysis was performed to clarify the regulation mechanism of aroma metabolism difference between these two varieties, and identified 6411 differentially expressed genes (DEGs). Interestingly, ubiquinone and other terpenoid-quinone biosynthesis genes were significantly enriched in DEGs. We further conducted a correlation analysis between the volatile metabolome and transcriptome and found that TPS, GGPPS, and HMGS genes might be the key contributors to the differences in floral fragrance composition between the two lilac varieties. Our study improves the understanding in the regulation mechanism of Lilac aroma and would help improve the aroma of ornamental crops by metabolic engineering.


Subject(s)
Syringa , Syringa/genetics , Syringa/metabolism , Odorants , Gene Expression Profiling , Metabolome , Transcriptome/genetics , Terpenes/metabolism
2.
PLoS One ; 17(7): e0271633, 2022.
Article in English | MEDLINE | ID: mdl-35853031

ABSTRACT

DNA barcoding is a supplementary tool in plant systematics that is extensively used to resolve species-level controversies. This study assesses the significance of using two DNA barcoding loci (e.g., psbA-trnH and trnC-petN) in distinguishing 33 plant samples of the genus Syringa. Results showed that the average genetic distance K2P of psbA-trnH DNA marker was 0.0521, which is much higher than that of trnC-petN, which is 0.0171. A neighbor-joining phylogenetic tree based on psbA-trnH and trnC-petN indicated that the identification rate of psbA-trnH and trnC-petN alone were 75% and 62.5%, respectively. The barcode combination of psbA-trnH+trnC-petN could identify 33 samples of the genus Syringa accurately and effectively with an identification rate of 87.5%. The 33 Syringa samples were divided into four groups: Group I is series Syringa represented by Syringa oblata; Group II is series Villosae represented by Syringa villosa; Group III is series Pubescentes represented by Syringa meyeri; and Group IV is section Ligustrina represented by Syringa reticulata subsp. pekinensis. These research results provided strong evidence that the combinatorial barcode of psbA-trnH+trnC-petN had high-efficiency identification ability and application prospects in species of the genus Syringa.


Subject(s)
DNA, Chloroplast , Syringa , Chloroplasts/genetics , DNA Barcoding, Taxonomic/methods , DNA, Chloroplast/genetics , DNA, Plant/genetics , Genomics , Phylogeny , Sequence Analysis, DNA , Syringa/genetics
3.
Commun Biol ; 5(1): 686, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810211

ABSTRACT

Color change during flower opening is common; however, little is understood on the biochemical and molecular basis related. Lilac (Syringa oblata), a well-known woody ornamental plant with obvious petal color changes, is an ideal model. Here, we presented chromosome-scale genome assembly for lilac, resolved the flavonoids metabolism, and identified key genes and potential regulatory networks related to petal color change. The genome assembly is 1.05 Gb anchored onto 23 chromosomes, with a BUSCO score of 96.6%. Whole-genome duplication (WGD) event shared within Oleaceae was revealed. Metabolome quantification identified delphinidin-3-O-rutinoside (Dp3Ru) and cyanidin-3-O-rutinoside (Cy3Ru) as the major pigments; gene co-expression networks indicated WRKY an essential regulation factor at the early flowering stage, ERF more important in the color transition period (from violet to light nearly white), while the MBW complex participated in the entire process. Our results provide a foundation for functional study and molecular breeding in lilac.


Subject(s)
Syringa , Flowers/genetics , Flowers/metabolism , Light , Metabolome , Pigmentation/genetics , Syringa/genetics , Syringa/metabolism
4.
Plant J ; 111(3): 836-848, 2022 08.
Article in English | MEDLINE | ID: mdl-35673966

ABSTRACT

Lilacs (Syringa L.), a group of well-known ornamental and aromatic woody plants, have long been used for gardening, essential oils and medicine purposes in East Asia and Europe. The lack of knowledge about the complete genome of Syringa not only hampers effort to better understand its evolutionary history, but also prevents genome-based functional gene mining that can help in the variety improvement and medicine development. Here, a chromosome-level genome of Syringa oblata is presented, which has a size of 1.12 Gb including 53 944 protein coding genes. Synteny analysis revealed that a recent duplication event and parallel evolution of two subgenomes formed the current karyotype. Evolutionary analysis, transcriptomics and metabolic profiling showed that segment and tandem duplications contributed to scent formation in the woody aromatic species. Moreover, phylogenetic analysis indicated that S. oblata shared a common ancestor with Osmanthus fragrans and Olea europaea approximately 27.61 million years ago (Mya). Biogeographic reconstruction based on a resequenced data set of 26 species suggested that Syringa originated in the northern part of East Asia during the Miocene (approximately 14.73 Mya) and that the five Syringa groups initially formed before the Late Miocene (approximately 9.97 Mya). Furthermore, multidirectional dispersals accompanied by gene introgression among Syringa species from Northern China during the Miocene were detected by biogeographic reconstruction. Taken together, the results showed that complex gene introgression, which occurred during speciation history, greatly contributed to Syringa diversity.


Subject(s)
Oleaceae , Syringa , Chromosomes , Oleaceae/genetics , Phylogeny , Syringa/genetics , Transcriptome
5.
BMC Plant Biol ; 22(1): 132, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317751

ABSTRACT

BACKGROUND: Syringa pinnatifolia Hemsl. is a shrub belonging to the Oleaceae family. The peeled woody stems and roots of S. pinnatifolia are used in Chinese traditional medicine. This plant has been used for centuries, and modern pharmacological research has revealed its medicinal value. However, the wild populations of S. pinnatifolia have been decreasing, and it has been listed as an endangered plant in China. To elucidate the molecular mechanism leading to the synthesis of the major components of S. pinnatifolia for its further development and sustainable use, this study compared peeled stems and twigs at the metabolic and molecular levels. RESULTS: Peeled stems with the purple substance visible (SSP) and peeled twigs without the purple substance (TSP) were compared at different levels. Microscopic observation showed resin-like fillers in SSP and wood fiber cell walls approximately 1.0 µm thicker than those in TSP (wood fiber cell thickness approximately 2.7 µm). In addition, 104 volatile organic compounds and 870 non-volatile metabolites were detected in the non-targeted and widely-targeted metabolome analyses, respectively. Among the 76 differentially accumulated metabolites (DAMs) detected, 62 were up-accumulated in SSP. Most of these DAMs were terpenes, of which 90% were identified as sesquiterpenes in the volatile organic compound analysis. In the analysis of the non-volatile metabolites, 21 differentially accumulated lignans were identified, of which 18, including five subtypes, were accumulated in SSP. RNA sequencing revealed 4,421 upregulated differentially expressed genes (DEGs) and 5,522 downregulated DEGs in SSP compared with TSP, as well as 33,452 genes that were not differentially expressed. Analysis of the DEGs suggested that sesquiterpenes and lignans were mostly biosynthesized via the mevalonate and phenylpropanoid pathways, respectively. Additionally, in SSP, the enriched Gene Ontology terms included response to biotic stimulus and defense response, while the enriched Kyoto Encyclopedia of Genes and Genomes pathways included plant-pathogen interaction and many other pathways related to plant immunity. CONCLUSIONS: This study provides metabolome and transcriptome information for S. pinnatifolia, suggesting that biotic stimuli, including pathogens, are potential and valuable approaches to promoting the biosynthesis of the metabolites linked to the medicinal properties of this plant.


Subject(s)
Lignans , Sesquiterpenes , Syringa , Gene Expression Profiling , Metabolome/genetics , Plant Immunity , Syringa/genetics
6.
FEBS Open Bio ; 11(4): 1041-1053, 2021 04.
Article in English | MEDLINE | ID: mdl-33484622

ABSTRACT

Syringa pinnatifolia Hemsl. (Oleaceae) is a species of shrub with a limited distribution in China. Several chemical compounds with pharmacological effects have been isolated from S. pinnatifolia, including new lignans and sesquiterpenes. Studies of gene expression in this species require the identification of suitable reference genes that are stably expressed under different conditions and in different tissues. To identify candidate reference genes, here we used the geNorm, NormFinder, and BestKeeper algorithms to analyze the stability of 12 candidate genes. The geometric mean of the rankings generated with these algorithms was used to obtain a comprehensive ranking. TBP and PP2A were found to be appropriate reference genes for calli treated with different external stimuli, and TIP41 and TBP were found to be appropriate reference genes in differentiated tissues. When calli and differentiated tissues were considered together, TBP and TIP41 were found to be the most reliable reference genes. The selected genes were validated by analysis of HMGR expression in calli and differentiated tissues. This study is the first to screen candidate reference genes in the genus Syringa and could help guide future molecular studies in this genus.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Plant Physiological Phenomena/genetics , Syringa/genetics , Computational Biology/methods , Gene Expression Profiling , Molecular Sequence Annotation , Quantitative Trait, Heritable , RNA Stability
7.
BMC Plant Biol ; 20(1): 436, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32957917

ABSTRACT

BACKGROUND: Lilac (Syringa oblata) is an important woody plant with high ornamental value. However, very limited genetic marker resources are currently available, and little is known about the genetic architecture of important ornamental traits for S. oblata, which is hindering its genetic studies. Therefore, it is of great significance to develop effective molecular markers and understand the genetic architecture of complex floral traits for the genetic research of S. oblata. RESULTS: In this study, a total of 10,988 SSRs were obtained from 9864 unigene sequences with an average of one SSR per 8.13 kb, of which di-nucleotide repeats were the dominant type (32.86%, 3611). A set of 2042 primer pairs were validated, out of which 932 (45.7%) exhibited successful amplifications, and 248 (12.1%) were polymorphic in eight S. oblata individuals. In addition, 30 polymorphic EST-SSR markers were further used to assess the genetic diversity and the population structure of 192 cultivated S. oblata individuals. Two hundred thirty-four alleles were detected, and the PIC values ranged from 0.23 to 0.88 with an average of 0.51, indicating a high level of genetic diversity within this cultivated population. The analysis of population structure showed two major subgroups in the association population. Finally, 20 significant associations were identified involving 17 markers with nine floral traits using the mixed linear model. Moreover, marker SO104, SO695 and SO790 had significant relationship with more than one trait. CONCLUSION: The results showed newly developed markers were valuable resource and provided powerful tools for genetic breeding of lilac. Beyond that, our study could serve an efficient foundation for further facilitate genetic improvement of floral traits for lilac.


Subject(s)
Expressed Sequence Tags , Flowers/genetics , Microsatellite Repeats/genetics , Quantitative Trait, Heritable , Syringa/genetics , Chromosome Mapping , Genetic Association Studies , Genetic Markers/genetics , Genetic Variation/genetics , Syringa/anatomy & histology
8.
BMC Plant Biol ; 19(1): 487, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31711412

ABSTRACT

BACKGROUND: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. RESULTS: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress conditions from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. CONCLUSIONS: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.


Subject(s)
Flavonoids/biosynthesis , Light , Metabolome/radiation effects , Syringa/metabolism , Transcriptome/radiation effects , Biosynthetic Pathways , Gene Expression Profiling , Gene Expression Regulation, Plant , Syringa/genetics , Syringa/radiation effects
9.
Gene ; 635: 16-23, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28890377

ABSTRACT

The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species.


Subject(s)
Acyltransferases/genetics , Biosynthetic Pathways , Flavonoids/metabolism , Flowers/genetics , Acyltransferases/biosynthesis , Amino Acid Sequence/genetics , Anthocyanins/metabolism , Cloning, Molecular , Flavonoids/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Sequence Alignment , Syringa/enzymology , Syringa/genetics , Nicotiana/genetics , Nicotiana/growth & development
10.
PLoS One ; 10(11): e0142542, 2015.
Article in English | MEDLINE | ID: mdl-26587670

ABSTRACT

Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp), 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.


Subject(s)
Flowers/genetics , Plant Proteins/biosynthesis , Syringa/genetics , Transcriptome/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Plant Proteins/genetics , Syringa/growth & development
11.
Int J Biometeorol ; 58(8): 1789-97, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23775129

ABSTRACT

Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases-earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis 'Red Rothomagensis') at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is warranted. More studies investigating genotype-determined phenological variations will be useful for better understanding and prediction of the continental-scale patterns of biospheric responses to climate change.


Subject(s)
Acer/growth & development , Adaptation, Physiological , Forsythia/growth & development , Syringa/growth & development , Climate , Climate Change , Cloning, Molecular , Flowers/growth & development , Phenotype , Plant Leaves/growth & development , Seasons , Syringa/genetics , United States , Weather
12.
Genetika ; 45(1): 97-103, 2009 Jan.
Article in Russian | MEDLINE | ID: mdl-19239103

ABSTRACT

RAPD analysis was used to verify the varieties in an in vitro germplasm collection of lilac Syringa vulgaris L. RAPD patterns were obtained with 16 decanucleotide primers for 46 accessions (microclones and corresponding reference varieties). The RAPD patterns of a microclone and the corresponding reference variety often differed in composition; consequently, it was infeasible to verify the accessions by direct comparison of the RAPD patterns. Hence, evaluation of the relative genetic distances between accessions (microclones) and known varieties was proposed as a method to verify lilac in vitro germplasm collections.


Subject(s)
DNA, Plant/genetics , Genetic Variation , Syringa/genetics , Genetic Markers , Phylogeny , Random Amplified Polymorphic DNA Technique , Syringa/classification
13.
Plant Physiol ; 136(1): 2762-70, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15361583

ABSTRACT

Epifluorescence microscopic detection of organelle DNA in the mature generative cell is a rapid method for determining the potential for the mode of cytoplasmic inheritance. We used this method to examine 19 of the known 22 to 27 species in the genus Syringa. Organelle DNA was undetectable in seven species, all in the subgenus Syringa, but was detected in the 12 species examined of the subgenera Syringa and Ligustrina. Therefore, species within the genus Syringa display differences in the potential cytoplasmic inheritance. Closer examination revealed that the mature generative cells of the species in which organelle DNA was detected contained both mitochondria and plastids, but cells of the species lacking detectable organelle DNA contained only mitochondria, and the epifluorescent organelle DNA signals from the mature generative cells corresponded to plastid DNA. In addition, semiquantitative analysis was used to demonstrate that, during pollen development, the amount of mitochondrial DNA decreased greatly in the generative cells of the species examined, but the amount of plastid DNA increased remarkably in the species containing plastids in the generative cell. The results suggest that all Syringa species exhibit potential maternal mitochondrial inheritance, and a number of the species exhibit potential biparental plastid inheritance. The difference between the modes of potential plastid inheritance among the species suggests different phylogenies for the species; it also supports recent conclusions of molecular, systematic studies of the Syringa. In addition, the results provide new evidence for the mechanisms of maternal mitochondrial inheritance in angiosperms.


Subject(s)
Extrachromosomal Inheritance , Syringa/genetics , Cytoplasm/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , Microscopy, Fluorescence , Microscopy, Immunoelectron , Organelles/genetics , Plastids/genetics , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Species Specificity , Syringa/classification , Syringa/metabolism , Syringa/ultrastructure
14.
Genetika ; 40(1): 37-40, 2004 Jan.
Article in Russian | MEDLINE | ID: mdl-15027198

ABSTRACT

RAPD analysis was carried out with 22 accessions of the genus Syringa, including six species, one interspecific hybrid, and 15 cultivars. In total, 500 polymorphic fragments were detected; species-specific and cultivar-specific markers were identified. For the first time, genetic polymorphism and genome similarity coefficients were estimated and phylogenetic relationships were established for the genus Syringa.


Subject(s)
Genetic Markers , Syringa/genetics , DNA, Plant/genetics , Genome, Plant , Phylogeny , Random Amplified Polymorphic DNA Technique , Species Specificity , Syringa/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...