Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.070
Filter
2.
Rev Esc Enferm USP ; 58: e20230365, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38743953

ABSTRACT

OBJECTIVE: To map the evidence in the literature about the relationship between gastrointestinal symptoms and COVID-19 in the pediatric population. METHOD: This is a scoping review following the recommendations of the Joanna Briggs Institute and PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. The search was carried out on the following bases: Embase, Google Scholar, PubMed, Scopus, LILACS, CINAHL, Scielo, Web of Science and Virtual Health Library Portal, between July and August 2023. Original studies available in full, in any language, were included. RESULTS: Ten studies were chosen that pointed to three premises: (1) the ACE2 receptor is found in the epithelial cells of the gastrointestinal tract; (2) gastrointestinal symptoms are mediated by stress and infection is justified by the gut-brain axis; (3) it develops the process of Multisystem Inflammatory Syndrome in children, affecting the gastrointestinal tract. CONCLUSION: The synthesis of evidence provided three assumptions which guide the origin of gastrointestinal symptoms. The identification of gastrointestinal symptoms in children affected by COVID-19 can assist in the clinical approach and management of care and treatments.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/complications , Gastrointestinal Diseases/virology , Gastrointestinal Diseases/epidemiology , Child , Systemic Inflammatory Response Syndrome/physiopathology , Systemic Inflammatory Response Syndrome/diagnosis , Brain-Gut Axis/physiology , Angiotensin-Converting Enzyme 2/metabolism
3.
World J Pediatr ; 20(4): 307-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321331

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES: A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS: Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS: Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.


Subject(s)
COVID-19 , COVID-19/complications , Severity of Illness Index , Systemic Inflammatory Response Syndrome , Humans , COVID-19/immunology , Child , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/physiopathology
4.
Cell Mol Life Sci ; 79(2): 84, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35059851

ABSTRACT

The release of extracellular vesicles (EVs) is increased under cellular stress and cardiomyocyte damaging conditions. However, whether the cardiomyocyte-derived EVs eventually reach the systemic circulation and whether their number in the bloodstream reflects cardiac injury, remains unknown. Wild type C57B/6 and conditional transgenic mice expressing green fluorescent protein (GFP) by cardiomyocytes were studied in lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome (SIRS). EVs were separated both from platelet-free plasma and from the conditioned medium of isolated cardiomyocytes of the left ventricular wall. Size distribution and concentration of the released particles were determined by Nanoparticle Tracking Analysis. The presence of GFP + cardiomyocyte-derived circulating EVs was monitored by flow cytometry and cardiac function was assessed by echocardiography. In LPS-treated mice, systemic inflammation and the consequent cardiomyopathy were verified by elevated plasma levels of TNFα, GDF-15, and cardiac troponin I, and by a decrease in the ejection fraction. Furthermore, we demonstrated elevated levels of circulating small- and medium-sized EVs in the LPS-injected mice. Importantly, we detected GFP+ cardiomyocyte-derived EVs in the circulation of control mice, and the number of these circulating GFP+ vesicles increased significantly upon intraperitoneal LPS administration (P = 0.029). The cardiomyocyte-derived GFP+ EVs were also positive for intravesicular troponin I (cTnI) and muscle-associated glycogen phosphorylase (PYGM). This is the first direct demonstration that cardiomyocyte-derived EVs are present in the circulation and that the increased number of cardiac-derived EVs in the blood reflects cardiac injury in LPS-induced systemic inflammation (SIRS).


Subject(s)
Cell Movement , Extracellular Vesicles/metabolism , Myocardium/pathology , Myocytes, Cardiac/pathology , Systemic Inflammatory Response Syndrome/pathology , Animals , Cell Movement/drug effects , Clusterin/metabolism , Extracellular Vesicles/drug effects , Glycogen Phosphorylase/metabolism , Green Fluorescent Proteins/metabolism , Integrases/metabolism , Lipopolysaccharides , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Organ Specificity/drug effects , Phenotype , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/physiopathology , Tamoxifen/pharmacology , Troponin I/metabolism
6.
J Pediatr ; 241: 237-241.e1, 2022 02.
Article in English | MEDLINE | ID: mdl-34687695

ABSTRACT

At midterm follow-up visits performed at a median of 7 months (IQR 6.0-8.4 months), 16 patients with multisystem inflammatory syndrome in children had resolution of left ventricular dysfunction and most had resolution of coronary aneurysms. On cardiovascular magnetic resonance imaging, no patients had late gadolinium enhancement.


Subject(s)
COVID-19/complications , Coronary Aneurysm/diagnostic imaging , Magnetic Resonance Imaging , Systemic Inflammatory Response Syndrome/diagnostic imaging , Systemic Inflammatory Response Syndrome/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Adolescent , COVID-19/diagnostic imaging , COVID-19/physiopathology , Child , Child, Preschool , Coronary Aneurysm/virology , Disease Progression , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Prognosis , Retrospective Studies , Ventricular Dysfunction, Left/virology , Young Adult
7.
J Pediatr ; 240: 292-296, 2022 01.
Article in English | MEDLINE | ID: mdl-34560093

ABSTRACT

We compared cardiac findings in patients with multisystem inflammatory syndrome in children and Kawasaki disease in the first 6 months of the 2020 coronavirus disease pandemic to patients with Kawasaki disease during 2016-2019. We saw a high rate of coronary aneurysms in 2020, with a similar rate of coronary involvement but greater volume and incidence of cardiac dysfunction compared with previous years.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Coronary Aneurysm/physiopathology , Coronary Vessels/physiopathology , Mucocutaneous Lymph Node Syndrome/physiopathology , Systemic Inflammatory Response Syndrome/physiopathology , COVID-19/blood , Child , Child, Preschool , Coronary Aneurysm/complications , Echocardiography , Female , Humans , Immunoglobulin G , Infant , Los Angeles , Male , Mucocutaneous Lymph Node Syndrome/complications , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/complications , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/physiopathology
9.
Crit Care Med ; 50(1): e40-e51, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34387240

ABSTRACT

OBJECTIVES: Multicenter data on the characteristics and outcomes of children hospitalized with coronavirus disease 2019 are limited. Our objective was to describe the characteristics, ICU admissions, and outcomes among children hospitalized with coronavirus disease 2019 using Society of Critical Care Medicine Discovery Viral Infection and Respiratory Illness Universal Study: Coronavirus Disease 2019 registry. DESIGN: Retrospective study. SETTING: Society of Critical Care Medicine Viral Infection and Respiratory Illness Universal Study (Coronavirus Disease 2019) registry. PATIENTS: Children (< 18 yr) hospitalized with coronavirus disease 2019 at participating hospitals from February 2020 to January 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The primary outcome was ICU admission. Secondary outcomes included hospital and ICU duration of stay and ICU, hospital, and 28-day mortality. A total of 874 children with coronavirus disease 2019 were reported to Viral Infection and Respiratory Illness Universal Study registry from 51 participating centers, majority in the United States. Median age was 8 years (interquartile range, 1.25-14 yr) with a male:female ratio of 1:2. A majority were non-Hispanic (492/874; 62.9%). Median body mass index (n = 817) was 19.4 kg/m2 (16-25.8 kg/m2), with 110 (13.4%) overweight and 300 (36.6%) obese. A majority (67%) presented with fever, and 43.2% had comorbidities. A total of 238 of 838 (28.2%) met the Centers for Disease Control and Prevention criteria for multisystem inflammatory syndrome in children, and 404 of 874 (46.2%) were admitted to the ICU. In multivariate logistic regression, age, fever, multisystem inflammatory syndrome in children, and pre-existing seizure disorder were independently associated with a greater odds of ICU admission. Hospital mortality was 16 of 874 (1.8%). Median (interquartile range) duration of ICU (n = 379) and hospital (n = 857) stay were 3.9 days (2-7.7 d) and 4 days (1.9-7.5 d), respectively. For patients with 28-day data, survival was 679 of 787, 86.3% with 13.4% lost to follow-up, and 0.3% deceased. CONCLUSIONS: In this observational, multicenter registry of children with coronavirus disease 2019, ICU admission was common. Older age, fever, multisystem inflammatory syndrome in children, and seizure disorder were independently associated with ICU admission, and mortality was lower among children than mortality reported in adults.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Child, Hospitalized/statistics & numerical data , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/physiopathology , Adolescent , Age Factors , Body Mass Index , COVID-19/mortality , Child , Child, Preschool , Comorbidity , Female , Hospital Mortality/trends , Humans , Infant , Intensive Care Units/statistics & numerical data , Logistic Models , Male , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/mortality
10.
Microvasc Res ; 140: 104303, 2022 03.
Article in English | MEDLINE | ID: mdl-34914941

ABSTRACT

Systemic inflammatory response, as observed in sepsis and severe COVID-19, may lead to endothelial damage. Therefore, we aim to compare the extent of endothelial injury and its relationship to inflammation in both diseases. We included patients diagnosed with sepsis (SEPSIS group, n = 21), mild COVID-19 (MILD group, n = 31), and severe COVID-19 (SEVERE group, n = 24). Clinical and routine laboratory data were obtained, circulating cytokines (INF-γ, TNF-α, and IL-10) and endothelial injury markers (E-Selectin, Tissue Factor (TF) and von Willebrand factor (vWF)) were measured. Compared to the SEPSIS group, patients with severe COVID-19 present similar clinical and laboratory data, except for lower circulating IL-10 and E-Selectin levels. Compared to the MILD group, patients in the SEVERE group showed higher levels of TNF-α, IL-10, and TF. There was no clear relationship between cytokines and endothelial injury markers among the three studied groups; however, in SEVERE COVID-19 patients, there is a positive relationship between INF-γ with TF and a negative relationship between IL-10 and vWF. In conclusion, COVID-19 and septic patients have a similar pattern of cytokines and endothelial dysfunction markers. These findings highlight the importance of endothelium dysfunction in COVID-19 and suggest that endothelium should be better evaluated as a therapeutic target for the disease.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , SARS-CoV-2 , Sepsis/pathology , Systemic Inflammatory Response Syndrome/blood , Aged , Aged, 80 and over , Biomarkers , Blood Cell Count , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , E-Selectin/blood , Female , Humans , Interferon-gamma/blood , Interleukin-10/blood , Male , Middle Aged , Retrospective Studies , Sepsis/blood , Sepsis/complications , Sepsis/physiopathology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/physiopathology , Thromboplastin/analysis , Tumor Necrosis Factor-alpha/analysis , von Willebrand Factor/analysis
12.
Clin Pediatr (Phila) ; 61(2): 188-193, 2022 02.
Article in English | MEDLINE | ID: mdl-34859714

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide pediatric clinical spectrum. Initial reports suggested that children had milder symptoms compared with adults; then diagnosis of multisystem inflammatory syndrome in children (MIS-C) emerged. We performed a retrospective cohort study of hospitalized patients at a children's hospital over 1 year. Our objectives were to study the demographic and clinical profile of pediatric SARS-CoV-2-associated diagnoses. Based on the clinical syndrome, patients were classified into coronavirus disease 2019 (COVID-19; non-MIS-C) and MIS-C cohorts. Among those who tested positive, 67% were symptomatic. MIS-C was diagnosed in 24 patients. Both diagnoses were more frequent in Caucasians. Both cohorts had different symptom profiles. Inflammatory markers were several-fold higher in MIS-C patients. These patients had critical care needs and longer hospital stays. More COVID-19 patients had respiratory complications, while MIS-C cohort saw cardiovascular involvement. Health care awareness of both syndromes is important for early recognition, diagnosis, and prompt treatment.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Syndrome , Adolescent , COVID-19/classification , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Cohort Studies , Female , Humans , Male , Retrospective Studies , Systemic Inflammatory Response Syndrome/classification , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/physiopathology
13.
J Mol Cell Cardiol ; 164: 69-82, 2022 03.
Article in English | MEDLINE | ID: mdl-34838588

ABSTRACT

The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , SARS-CoV-2 , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Clinical Trials as Topic , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , HMGB1 Protein/physiology , Humans , Macaca mulatta , Mice , Neuropilin-1/physiology , Oxidative Stress , Reactive Oxygen Species , Receptors, Virus/physiology , Scavenger Receptors, Class B/physiology , Severity of Illness Index , Signal Transduction , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/physiopathology , Thrombophilia/etiology , Thrombophilia/physiopathology , Vascular Endothelial Growth Factor A/physiology , Vasculitis/etiology , Vasculitis/immunology , Vasculitis/physiopathology , Young Adult
14.
Pediatr Infect Dis J ; 41(1): e21-e25, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34889874

ABSTRACT

Comparing first and second wave MIS-C cohorts at our quaternary pediatric institution, second wave were older, presented more frequently with shortness of breath, higher maximum troponin and N-terminal BNP, and more frequently required advanced respiratory and inotropic support. Despite increased severity in the second cohort, both cohorts had similar rates of coronary artery abnormalities, systolic dysfunction, and length of stay.


Subject(s)
COVID-19/complications , Systemic Inflammatory Response Syndrome/physiopathology , COVID-19/physiopathology , Coronary Artery Disease/pathology , Female , Humans , Infant , Infant, Newborn , Length of Stay/statistics & numerical data , Male , Prospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index
15.
Shock ; 57(2): 221-229, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34559743

ABSTRACT

ABSTRACT: Hemorrhagic shock/resuscitation (HS/R) is closely associated with overwhelming oxidative stress and systemic inflammation. As an effective activator of the nuclear factor-erythroid factor 2 related factor 2 (Nrf2) pathway, sulforaphane (SFN) exerts antioxidant and anti-inflammatory effects. We explored SFN's effects on alveolar macrophages (AMs), systemic inflammation, and pulmonary damage in an isolated murine HS/R model. Male C57/BL6 wild type and transgenic antioxidant response element (ARE)-luciferase (luc) mice (both n = 6 per group) were exposed to either pressure-controlled HS/R (mean arterial pressure 35-45 mm Hg for 90 min) or sham procedure (surgery without HS/R) or were sacrificed without intervention (control group). Fluid resuscitation was performed via the reinfusion of withdrawn blood and 0.9% saline. Sulforaphane or 0.9% saline (vehicle) was administrated intraperitoneally. Mice were sacrificed 6, 24, or 72 h after resuscitation. Bioluminescence imaging of ARE-luc mice was conducted to measure pulmonary Nrf2 activity. Plasma was collected to determine systemic cytokine levels. Alveolar macrophages were isolated before measuring cytokines in the supernatant and performing immunofluorescence staining, as well as Western blot for intracellular Nrf2. Histological damage was assessed via the acute lung injury score and wet/dry ratio.Hemorrhagic shock/resuscitation was associated with pulmonary Nrf2 activation. Sulforaphane enhanced pulmonary Nrf2 activity and the Nrf2 activation of AM, while it decreased lung damage. Sulforaphane exerted down-regulatory effects on AM-generated and systemic pro-inflammatory mediators, while it did not have such effects on IL-10.In conclusion, SFN beneficially enhances pulmonary Nrf2 activity and promotes Nrf2 accumulation in AMs' nuclei. This may exert not only local protective effects but also systemic effects via the down-regulation of pro-inflammatory cytokines. The administration of Nrf2 activator post-HS/R may represent an innovative treatment strategy.


Subject(s)
Acute Lung Injury/physiopathology , Isothiocyanates/pharmacology , Macrophages/drug effects , NF-E2-Related Factor 2/physiology , Sulfoxides/pharmacology , Systemic Inflammatory Response Syndrome/physiopathology , Up-Regulation/drug effects , Acute Lung Injury/etiology , Animals , Male , Mice , Mice, Inbred C57BL , Resuscitation , Shock, Hemorrhagic/complications , Systemic Inflammatory Response Syndrome/etiology
16.
JCI Insight ; 6(23)2021 12 08.
Article in English | MEDLINE | ID: mdl-34877937

ABSTRACT

Severe injuries, such as burns, provoke a systemic inflammatory response syndrome (SIRS) that imposes pathology on all organs. Simultaneously, severe injury also elicits activation of the fibrinolytic protease plasmin. While the principal adverse outcome of plasmin activation in severe injury is compromised hemostasis, plasmin also possesses proinflammatory properties. We hypothesized that, following a severe injury, early activation of plasmin drives SIRS. Plasmin activation was measured and related to injury severity, SIRS, coagulopathy, and outcomes prospectively in burn patients who are not at risk of hemorrhage. Patients exhibited early, significant activation of plasmin that correlated with burn severity, cytokines, coagulopathy, and death. Burn with a concomitant, remote muscle injury was employed in mice to determine the role of plasmin in the cytokine storm and inflammatory cascades in injured tissue distant from the burn injury. Genetic and pharmacologic inhibition of plasmin reduced the burn-induced cytokine storm and inflammatory signaling in injured tissue. These findings demonstrate (a) that severe injury-induced plasmin activation is a key pathologic component of the SIRS-driven cytokine storm and SIRS-activated inflammatory cascades in tissues distant from the inciting injury and (b) that targeted inhibition of plasmin activation may be effective for limiting both hemorrhage and tissue-damaging inflammation following injury.


Subject(s)
Burns/complications , Fibrinolysin/adverse effects , Systemic Inflammatory Response Syndrome/blood , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Prospective Studies , Systemic Inflammatory Response Syndrome/physiopathology , Young Adult
17.
Front Immunol ; 12: 723654, 2021.
Article in English | MEDLINE | ID: mdl-34737740

ABSTRACT

With the appearance of the SARS-CoV-2 virus in December 2019, all countries in the world have implemented different strategies to prevent its spread and to intensively search for effective treatments. Initially, severe cases of the disease were considered in adult patients; however, cases of older school-age children and adolescents who presented fever, hypotension, severe abdominal pain and cardiac dysfunction, positive for SARS-CoV-2 infection, have been reported, with increased pro-inflammatory cytokines and tissue damage, condition denominated multisystemic inflammatory syndrome (MIS-C); The emerging data from patients with MIS-C have suggested unique characteristics in the immunological response and also clinical similarities with other inflammatory syndromes, which can support as a reference in the search for molecular mechanisms involved in MIS-C. We here in propose that oxidative stress (OE) may play a very important role in the pathophysiology of MIS-C, such as occurs in Kawasaki disease (KD), severe COVID-19 in adults and other processes with characteristics of vascular damage similar to MIS- C, for which we review the available information that can be correlated with possible redox mechanisms.


Subject(s)
COVID-19/complications , Oxidative Stress , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/physiopathology , Adolescent , COVID-19/diagnosis , COVID-19/immunology , COVID-19/physiopathology , Child , Cytokines/immunology , Humans , Inflammation , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/immunology
18.
BMC Cardiovasc Disord ; 21(1): 522, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34715788

ABSTRACT

BACKGROUND: With the high prevalence of COVID-19 infections worldwide, the multisystem inflammatory syndrome in adults (MIS-A) is becoming an increasingly recognized entity. This syndrome presents in patients several weeks after infection with COVID-19 and is associated with thrombosis, elevated inflammatory markers, hemodynamic compromise and cardiac dysfunction. Treatment is often with steroids and intravenous immunoglobulin (IVIg). The pathologic basis of myocardial injury in MIS-A, however, is not well characterized. In our case report, we obtained endomyocardial biopsy that revealed a pattern of myocardial injury similar to that found in COVID-19 cardiac specimens. CASE PRESENTATION: A 26-year-old male presented with fevers, chills, headache, nausea, vomiting, and diarrhea 5 weeks after his COVID-19 infection. His SARS-CoV-2 PCR was negative and IgG was positive, consistent with prior infection. He was found to be in cardiogenic shock with biventricular failure, requiring inotropes and diuretics. Given concern for acute fulminant myocarditis, an endomyocardial biopsy (EMB) was performed, showing an inflammatory infiltrate consisting predominantly of interstitial macrophages with scant T lymphocytes. The histologic pattern was similar to that of cardiac specimens from COVID-19 patients, helping rule out myocarditis as the prevailing diagnosis. His case was complicated by persistent hypoxemia, and a computed tomography scan revealed pulmonary emboli. He received IVIg, steroids, and anticoagulation with rapid recovery of biventricular function. CONCLUSIONS: MIS-A should be considered as the diagnosis in patients presenting several weeks after COVID-19 infection with severe inflammation and multi-organ involvement. In our case, EMB facilitated identification of MIS-A and guided therapy. The patient's biventricular function recovered with IVIg and steroids.


Subject(s)
Anticoagulants/administration & dosage , COVID-19 Drug Treatment , COVID-19 , Myocarditis/diagnosis , Shock, Cardiogenic , Systemic Inflammatory Response Syndrome , Adult , Biopsy/methods , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19/physiopathology , Cardiotonic Agents/administration & dosage , Diagnosis, Differential , Diuretics/administration & dosage , Electrocardiography/methods , Humans , Immunoglobulins, Intravenous/administration & dosage , Male , Myocardium/pathology , Radiography, Thoracic/methods , SARS-CoV-2 , Shock, Cardiogenic/diagnosis , Shock, Cardiogenic/drug therapy , Shock, Cardiogenic/etiology , Shock, Cardiogenic/physiopathology , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/physiopathology , Treatment Outcome
20.
Postgrad Med ; 133(8): 994-1000, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34605352

ABSTRACT

OBJECTIVES: Multisystem inflammatory syndrome in children (MIS-C) is a rare but severe condition resulting in excessive response of the immune system after SARS-CoV-2 infection. We report a single-center cohort of children with MIS-C, describing the spectrum of presentation, therapies, clinical course, and short-term outcomes. METHODS: This is a prospective observational study from to a tertiary pediatric rheumatology center including patients (aged 1 month to 21 years) diagnosed with MIS-C between April 2020-April 2021. Demographic, clinical, laboratory results and follow-up data were collected through the electronic patient record system and analyzed. RESULTS: A total of 67 patients with MIS-C were included in the study. Fever was detected in all patients; gastrointestinal system symptoms were found in 67.2% of the patients, rash in 38.8%, conjunctivitis in 31.3%, hypotension in 26.9% myocarditis, and/or pericarditis in 22.4%, respectively. Respiratory symptoms were only in five patients (7.5%). Kawasaki Disease like presentation was found 37.3% of the patients. The mean duration of hospitalization was 11.8 7.07 days. Fifty-seven patients (85%) received intravenous immunoglobulin (IVIG), 45 (67%) received corticosteroids, 17 (25.3%) received anakinra, and one (1.5%) received tocilizumab. Seven of the patients (10.4%) underwent therapeutic plasma exchange (TPE). In 21 (31.3%) patients, a pediatric intensive care unit (PICU) was required in a median of 2 days. The first finding to improve was fever, while the first parameter to decrease was ferritin (median 6.5 days (IQR, 4-11.2 days)). Sixty-five patients were discharged home with a median duration of hospital stay of 10 days (IQR, 7-15 days). CONCLUSION: Patients with MIS-C may have severe cardiac findings and intensive care requirements in admission and hospital follow-up. The vast majority of these findings improve with effective treatment without any sequelae until discharge and in a short time in follow-up. Although the pathogenesis and treatment plan of the disease are partially elucidated, follow-up studies are needed in terms of long-term prognosis and relapse probabilities.


Subject(s)
COVID-19/complications , Intensive Care Units, Pediatric/statistics & numerical data , Rheumatology/statistics & numerical data , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/physiopathology , Administration, Intravesical , Adolescent , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/therapeutic use , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunoglobulins/administration & dosage , Immunoglobulins/therapeutic use , Infant , Infant, Newborn , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Male , Oxytocin/administration & dosage , Oxytocin/analogs & derivatives , Oxytocin/therapeutic use , Plasma Exchange , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...