Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.122
Filter
1.
Science ; 384(6698): eadh3707, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781393

ABSTRACT

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Prefrontal Cortex , Stress Disorders, Post-Traumatic , Systems Biology , Humans , Depressive Disorder, Major/genetics , Stress Disorders, Post-Traumatic/genetics , Prefrontal Cortex/metabolism , Male , Brain , Female , Adult , Gene Regulatory Networks , Middle Aged , Neurons/metabolism , Biomarkers/blood , Amygdala
2.
Bull Math Biol ; 86(7): 75, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758501

ABSTRACT

The landscape of computational modeling in cancer systems biology is diverse, offering a spectrum of models and frameworks, each with its own trade-offs and advantages. Ideally, models are meant to be useful in refining hypotheses, to sharpen experimental procedures and, in the longer run, even for applications in personalized medicine. One of the greatest challenges is to balance model realism and detail with experimental data to eventually produce useful data-driven models. We contribute to this quest by developing a transparent, highly parsimonious, first principle in silico model of a growing avascular tumor. We initially formulate the physiological considerations and the specific model within a stochastic cell-based framework. We next formulate a corresponding mean-field model using partial differential equations which is amenable to mathematical analysis. Despite a few notable differences between the two models, we are in this way able to successfully detail the impact of all parameters in the stability of the growth process and on the eventual tumor fate of the stochastic model. This facilitates the deduction of Bayesian priors for a given situation, but also provides important insights into the underlying mechanism of tumor growth and progression. Although the resulting model framework is relatively simple and transparent, it can still reproduce the full range of known emergent behavior. We identify a novel model instability arising from nutrient starvation and we also discuss additional insight concerning possible model additions and the effects of those. Thanks to the framework's flexibility, such additions can be readily included whenever the relevant data become available.


Subject(s)
Bayes Theorem , Computer Simulation , Mathematical Concepts , Models, Biological , Neoplasms , Stochastic Processes , Systems Biology , Humans , Neoplasms/pathology , Neovascularization, Pathologic/pathology
3.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38702075

ABSTRACT

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Subject(s)
Adipocytes , Adipogenesis , Body Fat Distribution , Humans , Adipocytes/metabolism , Male , Female , Adipogenesis/genetics , Body Mass Index , Adult , Gene Regulatory Networks , Middle Aged , Bayes Theorem , Waist-Hip Ratio , Adipose Tissue/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation/genetics , Systems Biology/methods
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731835

ABSTRACT

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Subject(s)
Leukemia, Myeloid, Acute , Systems Biology , Tretinoin , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Tretinoin/pharmacology , Systems Biology/methods , HL-60 Cells , Gene Expression Profiling , K562 Cells , Drug Discovery/methods , Transcriptome , Cell Line, Tumor , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Leukemic/drug effects , Tumor Necrosis Factor-alpha/metabolism
5.
Cell Rep Methods ; 4(5): 100773, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38744288

ABSTRACT

Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.


Subject(s)
Machine Learning , Humans , Algorithms , Cell Line, Tumor , Models, Biological , Computer Simulation , Systems Biology
6.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38726827

ABSTRACT

Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.


Subject(s)
Plants , Systems Biology , Plants/metabolism , Plants/genetics , Metabolic Networks and Pathways/genetics , Metabolic Flux Analysis , Models, Biological , Plant Physiological Phenomena
7.
Prog Mol Biol Transl Sci ; 205: 221-245, 2024.
Article in English | MEDLINE | ID: mdl-38789180

ABSTRACT

Drug repurposing, or drug repositioning, refers to the identification of alternative therapeutic applications for established medications that go beyond their initial indications. This strategy has becoming increasingly popular since it has the potential to significantly reduce the overall costs of drug development by around $300 million. System biology methodologies have been employed to facilitate medication repurposing, encompassing computational techniques such as signature matching and network-based strategies. These techniques utilize pre-existing drug-related data types and databases to find prospective repurposed medications that have minimal or acceptable harmful effects on patients. The primary benefit of medication repurposing in comparison to drug development lies in the fact that approved pharmaceuticals have already undergone multiple phases of clinical studies, thereby possessing well-established safety and pharmacokinetic properties. Utilizing system biology methodologies in medication repurposing offers the capacity to expedite the discovery of viable candidates for drug repurposing and offer novel perspectives for structure-based drug design.


Subject(s)
Drug Repositioning , Systems Biology , Humans
8.
BMC Bioinformatics ; 25(1): 199, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789933

ABSTRACT

BACKGROUND: Computational models in systems biology are becoming more important with the advancement of experimental techniques to query the mechanistic details responsible for leading to phenotypes of interest. In particular, Boolean models are well fit to describe the complexity of signaling networks while being simple enough to scale to a very large number of components. With the advance of Boolean model inference techniques, the field is transforming from an artisanal way of building models of moderate size to a more automatized one, leading to very large models. In this context, adapting the simulation software for such increases in complexity is crucial. RESULTS: We present two new developments in the continuous time Boolean simulators: MaBoSS.MPI, a parallel implementation of MaBoSS which can exploit the computational power of very large CPU clusters, and MaBoSS.GPU, which can use GPU accelerators to perform these simulations. CONCLUSION: These implementations enable simulation and exploration of the behavior of very large models, thus becoming a valuable analysis tool for the systems biology community.


Subject(s)
Computer Simulation , Software , Systems Biology/methods , Computational Biology/methods , Algorithms , Computer Graphics
10.
Sci Rep ; 14(1): 12082, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802422

ABSTRACT

Deep learning neural networks are often described as black boxes, as it is difficult to trace model outputs back to model inputs due to a lack of clarity over the internal mechanisms. This is even true for those neural networks designed to emulate mechanistic models, which simply learn a mapping between the inputs and outputs of mechanistic models, ignoring the underlying processes. Using a mechanistic model studying the pharmacological interaction between opioids and naloxone as a proof-of-concept example, we demonstrated that by reorganizing the neural networks' layers to mimic the structure of the mechanistic model, it is possible to achieve better training rates and prediction accuracy relative to the previously proposed black-box neural networks, while maintaining the interpretability of the mechanistic simulations. Our framework can be used to emulate mechanistic models in a large parameter space and offers an example on the utility of increasing the interpretability of deep learning networks.


Subject(s)
Deep Learning , Naloxone , Neural Networks, Computer , Systems Biology , Systems Biology/methods , Naloxone/pharmacology , Humans , Pharmacology/methods , Analgesics, Opioid/pharmacology , Computer Simulation
11.
Int Rev Neurobiol ; 176: 209-268, 2024.
Article in English | MEDLINE | ID: mdl-38802176

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.


Subject(s)
Amyotrophic Lateral Sclerosis , Genomics , Systems Biology , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/therapy , Systems Biology/methods , Genomics/methods , Proteomics/methods , Animals
12.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741151

ABSTRACT

MOTIVATION: Systems biology aims to better understand living systems through mathematical modelling of experimental and clinical data. A pervasive challenge in quantitative dynamical modelling is the integration of time series measurements, which often have high variability and low sampling resolution. Approaches are required to utilize such information while consistently handling uncertainties. RESULTS: We present BayModTS (Bayesian modelling of time series data), a new FAIR (findable, accessible, interoperable, and reusable) workflow for processing and analysing sparse and highly variable time series data. BayModTS consistently transfers uncertainties from data to model predictions, including process knowledge via parameterized models. Further, credible differences in the dynamics of different conditions can be identified by filtering noise. To demonstrate the power and versatility of BayModTS, we applied it to three hepatic datasets gathered from three different species and with different measurement techniques: (i) blood perfusion measurements by magnetic resonance imaging in rat livers after portal vein ligation, (ii) pharmacokinetic time series of different drugs in normal and steatotic mice, and (iii) CT-based volumetric assessment of human liver remnants after clinical liver resection. AVAILABILITY AND IMPLEMENTATION: The BayModTS codebase is available on GitHub at https://github.com/Systems-Theory-in-Systems-Biology/BayModTS. The repository contains a Python script for the executable BayModTS workflow and a widely applicable SBML (systems biology markup language) model for retarded transient functions. In addition, all examples from the paper are included in the repository. Data and code of the application examples are stored on DaRUS: https://doi.org/10.18419/darus-3876. The raw MRI ROI voxel data were uploaded to DaRUS: https://doi.org/10.18419/darus-3878. The steatosis metabolite data are published on FairdomHub: 10.15490/fairdomhub.1.study.1070.1.


Subject(s)
Bayes Theorem , Workflow , Animals , Rats , Humans , Mice , Systems Biology/methods , Liver/metabolism , Software , Magnetic Resonance Imaging/methods
13.
NPJ Syst Biol Appl ; 10(1): 53, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760412

ABSTRACT

Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-ß (TGFß)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFß induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFß induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFß induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Signal Transduction , Transforming Growth Factor beta , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Female , Signal Transduction/genetics , Systems Biology/methods , Gene Regulatory Networks/genetics , Gene Expression Regulation, Neoplastic/genetics
14.
C R Biol ; 347: 35-44, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771313

ABSTRACT

In nature, plants defend themselves against pathogen attack by activating an arsenal of defense mechanisms. During the last decades, work mainly focused on the understanding of qualitative disease resistance mediated by a few genes conferring an almost complete resistance, while quantitative disease resistance (QDR) remains poorly understood despite the fact that it represents the predominant and more durable form of resistance in natural populations and crops. Here, we review our past and present work on the dissection of the complex mechanisms underlying QDR in Arabidopsis thaliana. The strategies, main steps and challenges of our studies related to one atypical QDR gene, RKS1 (Resistance related KinaSe 1), are presented. First, from genetic analyses by QTL (Quantitative Trait Locus) mapping and GWAs (Genome Wide Association studies), the identification, cloning and functional analysis of this gene have been used as a starting point for the exploration of the multiple and coordinated pathways acting together to mount the QDR response dependent on RKS1. Identification of RKS1 protein interactors and complexes was a first step, systems biology and reconstruction of protein networks were then used to decipher the molecular roadmap to the immune responses controlled by RKS1. Finally, exploration of the potential impact of key components of the RKS1-dependent gene network on leaf microbiota offers interesting and challenging perspectives to decipher how the plant immune systems interact with the microbial communities' systems.


Dans la nature, les plantes se défendent contre les attaques pathogènes en activant tout un arsenal de mécanismes de défense. Au cours des décennies passées, la recherche s'est principalement focalisée sur la compréhension de la résistance qualitative médiée par quelques gènes majeurs conférant une résistance quasi complète, alors que la résistance quantitative (QDR) demeure peu comprise bien qu'elle représente la forme de résistance prédominante et la plus durable dans les populations naturelles ou les cultures. Nous donnons ici une revue de nos travaux passés et présents sur la dissection des mécanismes complexes qui sous-tendent la QDR chez Arabidopsis thaliana. Les stratégies, étapes clés et défis de nos études concernant un gène QDR atypique, RKS1 (Resistance related KinaSe 1), sont rapportés. En premier lieu, à partir d'analyses génétiques par cartographie de QTL et GWA, l'identification, le clonage et l'analyse fonctionnelle de ce gène ont été utilisés comme point de départ à l'exploration des voies multiples et coordonnées agissant ensemble pour le développement de la réponse QDR dépendante de RKS1. L'identification des interacteurs et complexes protéiques impliquant RKS1 a été une première étape, la biologie des systèmes et la reconstruction de réseaux d'interactions protéines-protéines ont ensuite été mises en œuvre pour décoder les voies moléculaires conduisant aux réponses immunitaires contrôlées par RKS1. Finalement, l'exploration de l'impact potentiel de composantes clés du réseau de gènes dépendant de RKS1 sur le microbiote, offre des perspectives intéressantes et ambitieuses pour comprendre comment le système immunitaire de la plante interagit avec le système des communautés microbiennes.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Systems Biology , Disease Resistance/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Plant Immunity/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plants/genetics , Plants/immunology , Genome-Wide Association Study , Arabidopsis Proteins/genetics
15.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622728

ABSTRACT

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Subject(s)
Alphainfluenzavirus , Drugs, Chinese Herbal , Influenza A virus , Influenza, Human , Orthomyxoviridae , Pneumonia , Mice , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Pneumonia/drug therapy , Pneumonia/genetics , Inflammation , Systems Biology , Gene Expression Profiling
16.
Sci Rep ; 14(1): 9582, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671040

ABSTRACT

Stress is an adaptive response to the stressors that adversely affects physiological and psychological health. Stress elicits HPA axis activation, resulting in cortisol release, ultimately contributing to oxidative, inflammatory, physiological and mental stress. Nutritional supplementations with antioxidant, anti-inflammatory, and stress-relieving properties are among widely preferred complementary approaches for the stress management. However, there is limited research on the potential combined impact of vitamins, minerals and natural ingredients on stress. In the present study, we have investigated the effect of a multi-nutrient botanical formulation, Nutrilite® Daily Plus, on clinical stress parameters. The stress-modulatory effects were quantified at population level using a customized sub-clinical inflammation mathematical model. The model suggested that combined intervention of botanical and micronutrients lead to significant decline in physical stress (75% decline), mental stress (70% decline), oxidative stress (55% decline) and inflammatory stress (75% decline) as evident from reduction in key stress parameters such as ROS, TNF-α, blood pressure, cortisol levels and PSS scores at both individual and population levels. Further, at the population level, the intervention relieved stress in 85% of individuals who moved towards a healthy state. The in silico studies strongly predicts the use of Gotukola based Nutrilite® Daily Plus as promising anti-stress formulation.


Subject(s)
Oxidative Stress , Systems Biology , Humans , Systems Biology/methods , Oxidative Stress/drug effects , Stress, Psychological/drug therapy , Dietary Supplements , Male , Female , Antioxidants/pharmacology , Stress, Physiological/drug effects , Adult , Models, Theoretical , Hydrocortisone , Middle Aged
17.
PLoS One ; 19(4): e0300441, 2024.
Article in English | MEDLINE | ID: mdl-38648205

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS: With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS: This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION: This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.


Subject(s)
Bile Duct Neoplasms , COVID-19 , Cholangiocarcinoma , Computational Biology , SARS-CoV-2 , Systems Biology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/virology , Humans , COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Computational Biology/methods , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/virology , Systems Biology/methods , Protein Interaction Maps/genetics , Pandemics , Coronavirus Infections/virology , Coronavirus Infections/genetics , Betacoronavirus/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks
18.
J Virol ; 98(5): e0151623, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38567951

ABSTRACT

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Macaca fascicularis , Yellow Fever Vaccine , Yellow Fever , Yellow fever virus , Animals , Yellow Fever Vaccine/immunology , Humans , Yellow Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/virology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Yellow fever virus/immunology , Vaccination , Male , Female , Disease Models, Animal , Adult , Immunity, Innate , Systems Biology/methods
20.
Daru ; 32(1): 215-235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652363

ABSTRACT

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drug Repositioning , Protein Interaction Maps , SARS-CoV-2 , Systems Biology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/drug effects , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Nucleophosmin , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , Gene Regulatory Networks/drug effects , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL
...