Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
Oncoimmunology ; 13(1): 2346359, 2024.
Article in English | MEDLINE | ID: mdl-38737794

ABSTRACT

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
2.
Nat Immunol ; 25(5): 902-915, 2024 May.
Article in English | MEDLINE | ID: mdl-38589618

ABSTRACT

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha , Hypersensitivity , Lymphoid Enhancer-Binding Factor 1 , Multipotent Stem Cells , T Cell Transcription Factor 1 , Th2 Cells , Humans , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Th2 Cells/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hypersensitivity/immunology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Cytokines/metabolism , Thymic Stromal Lymphopoietin , Animals , Cells, Cultured , Mice
3.
Int Immunol ; 36(4): 167-182, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38169425

ABSTRACT

Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Animals , Mice , Down-Regulation , Forkhead Transcription Factors/metabolism , Chromatin/metabolism , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism
4.
Cancer Lett ; 582: 216596, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38101610

ABSTRACT

Patients with colorectal cancer (CRC) suffer from poor prognosis and lack effective drugs. Dihydroartemisinin (DHA) has anti-cancer potential but the mechanism remains unclear. We elucidated the effects and mechanism of DHA on CRC development with the aim of providing an effective, low-toxicity drug and a novel strategy for CRC. Herein, proliferation assay, transwell assay, tube formation assay, metastasis models, PDX model and AOM/DSS model were used to reveal the effects of DHA on CRC. The key pathway and target were identified by RNA-seq, ChIP, molecular docking, pull down and dual-luciferase reporter assays. As a result, DHA showed a strong inhibitory effect on the growth, metastasis and angiogenesis of CRC with no obvious toxicity, and the inhibitory effect was similar to that of the clinical drug Capecitabine (Cap). Indeed, DHA directly targeted GSK-3ß to inhibit CRC development through the GSK-3ß/TCF7/MMP9 pathway. Meaningfully, DHA in combination with Cap enhanced the anti-cancer effect, and alleviated Cap-induced diarrhoea, immunosuppression and inflammation. In conclusion, DHA has the potential to be an effective and low-toxicity drug for the treatment of CRC. Furthermore, DHA in combination with Cap could be a novel therapeutic strategy for CRC with improved efficacy and reduced side effects.


Subject(s)
Artemisinins , Colorectal Neoplasms , Humans , Capecitabine/pharmacology , Capecitabine/therapeutic use , Glycogen Synthase Kinase 3 beta , Colorectal Neoplasms/pathology , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Cell Line, Tumor , Cell Proliferation , T Cell Transcription Factor 1
5.
Microb Pathog ; 184: 106362, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741305

ABSTRACT

BACKGROUND: Previous studies have shown that sepsis is implicated in a reduction in the number and function of CD4+ T cells. TCF7 and LEF-1 facilitate early T cell development and lineage selection of CD4+ T cells. However, the function and mechanism of TCF7 and LEF-1 in sepsis are uncharacterized. This study intended to delineate effect of TCF7 and LEF-1 on sepsis and the impact on proliferation of CD4+ T cells in sepsis. METHODS: A mouse sepsis model was constructed by cecal ligation and puncture (CLP) method. Expression of TCF7 and LEF-1 in sepsis was investigated using bioinformatics analysis and molecular experiments. We then constructed TCF7 and LEF-1 overexpression cell lines to investigate their effects on proliferation, apoptosis, effector activation, and immunosuppressive molecules of CD4+ T cells in sepsis. RESULTS: TCF7 and LEF-1 were downregulated in sepsis. As the duration of sepsis induction increased, the levels of TCF7 and LEF-1 gradually decreased, as did the number of CD4+ T cells. Cell experiments showed that overexpression of TCF7 and LEF-1 enhanced proliferation and effector activation of CD4+ T cells, reduced apoptosis, decreased PD-1 and LAG3 expression, and promoted immune response in sepsis. CONCLUSION: In conclusion, this study confirmed that downregulation of TCF7 and LEF-1 expression in sepsis inhibited proliferation of CD4+ T cells, leading to immune suppression. This finding suggested that TCF7 and LEF-1 were potential biological targets for sepsis and indicated that immunotherapy aimed at improving CD4+ T cell proliferation may be a new strategy for immune therapy in sepsis patients.


Subject(s)
Sepsis , T-Lymphocytes , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , Cell Proliferation , Down-Regulation , Mice, Inbred C57BL , Sepsis/metabolism , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism
6.
Zhongguo Fei Ai Za Zhi ; 26(8): 605-614, 2023 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-37752540

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) therapy lacks viable biomarkers for response and prognosis prediction. This study aimed to investigate the correlation of peripheral blood laboratory test results combined with lymphocyte subset ratios to the response and prognosis of immunotherapy in advanced lung cancer. METHODS: Advanced lung cancer patients admitted to West China Hospital, Sichuan University from May 2021 to July 2023 were prospectively enrolled in this study. Clinical data and peripheral blood were collected before and after treatment and lymphocyte subset ratios were analyzed by flow cytometry. Logistic regression was used to identify factors correlated to ICIs treatment efficacy. Cox modeling was applied to explore the prognostic factors. RESULTS: Logistic regression showed that the baseline level of transcription factor T cell factor 1 (TCF1)+CD8+ T cell ratio and peripheral white blood cell (WBC) count, lymphocyte percentage, cytokeratin 19 fragment (CYFRA21-1) after 1 cycle of ICIs treatment were the potential predictors for ICIs response (P<0.05). Cox regression analysis showed that the baseline level of TCF1+CD8+ T cell ratio (P=0.020) and peripheral WBC count after 1 cycle of ICIs treatment (P<0.001) were prognostic factors. CONCLUSIONS: Patients with high baseline TCF1+CD8+ T cell ratio combined with low WBC counts and low CYFRA21-1 level after 1 cycle of ICIs treatment are more likely to benefit from ICIs therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , T Cell Transcription Factor 1/genetics , Prognosis , CD8-Positive T-Lymphocytes , Immunotherapy
7.
Sci Immunol ; 8(86): eadg0878, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37624910

ABSTRACT

During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.


Subject(s)
CD28 Antigens , T Cell Transcription Factor 1 , T Cell Transcription Factor 1/genetics , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Cell Differentiation , Transcription Factors
8.
Cancer Cell ; 41(9): 1662-1679.e7, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37625402

ABSTRACT

Stem-like CD8+ T cells are regulated by T cell factor 1 (TCF1) and are considered requisite for immune checkpoint blockade (ICB) response. However, recent findings indicate that reliance on TCF1+CD8+ T cells for ICB efficacy may differ across tumor contexts. We find that TCF1 is essential for optimal priming of tumor antigen-specific CD8+ T cells and ICB response in poorly immunogenic tumors that accumulate TOX+ dysfunctional T cells, but is dispensable for T cell priming and therapy response in highly immunogenic tumors that efficiently expand transitory effectors. Importantly, improving T cell priming by vaccination or by enhancing antigen presentation on tumors rescues the defective responses of TCF1-deficient CD8+ T cells upon ICB in poorly immunogenic tumors. Our study highlights TCF1's role during the early stages of anti-tumor CD8+ T cell responses with important implications for guiding optimal therapeutic interventions in cancers with low TCF1+CD8+ T cells and low-neo-antigen expression.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , T Cell Transcription Factor 1 , Humans , Antibodies , Antigens, Neoplasm , Immunotherapy , T Cell Transcription Factor 1/genetics , Neoplasms/immunology , Neoplasms/therapy
9.
Nat Immunol ; 24(10): 1698-1710, 2023 10.
Article in English | MEDLINE | ID: mdl-37592014

ABSTRACT

In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.


Subject(s)
T-Lymphocytes , Transcription Factors , Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , T-Lymphocytes/metabolism , T Cell Transcription Factor 1/genetics , Chromatin/metabolism
10.
Cell Rep ; 42(8): 112924, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37540600

ABSTRACT

Lymphoid tissue inducer (LTi) cells, a subset of innate lymphoid cells (ILCs), play an essential role in the formation of secondary lymphoid tissues. However, the regulation of the development and functions of this ILC subset is still elusive. In this study, we report that the transcription factor T cell factor 1 (TCF-1), just as GATA3, is indispensable for the development of non-LTi ILC subsets. While LTi cells are still present in TCF-1-deficient mice, the organogenesis of Peyer's patches (PPs), but not of lymph nodes, is impaired in these mice. LTi cells from different tissues have distinct gene expression patterns, and TCF-1 regulates the expression of lymphotoxin specifically in PP LTi cells. Mechanistically, TCF-1 may directly and/or indirectly regulate Lta, including through promoting the expression of GATA3. Thus, the TCF-1-GATA3 axis, which plays an important role during T cell development, also critically regulates the development of non-LTi cells and tissue-specific functions of LTi cells.


Subject(s)
Immunity, Innate , T Cell Transcription Factor 1 , Animals , Mice , Lymphocytes , Lymphoid Tissue/metabolism , T Cell Transcription Factor 1/metabolism
11.
Mol Genet Genomics ; 298(5): 1201-1209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37392217

ABSTRACT

Polymorphism of transcription factor 7-like 2 (TCF7L2) has a link with type 2 diabetes mellitus (T2DM) through ß cell dysfunction that causes defect in blood glucose homeostasis. This case-control study recruited 67 T2DM as cases and 65 age-matched healthy individuals as controls to determine whether the polymorphism rs12255372 (G > T) in the TCF7L2 gene have an association with T2DM in Bangladeshi population. Genomic DNA was purified from peripheral whole blood sample and direct Sanger sequencing was done for genotyping of SNP. Bivariate logistic regression was done to find out the association between genetic variant and T2DM. In our study, the minor T allele frequency was significantly more frequent in T2DM group than healthy controls (29.1% vs. 16.9%). After adjusting with confounding factors, heterozygous-genotype GT had higher odds of developing T2DM (OR 2.4; 95% CI: 1.0-5.5; p value = 0.04) and in dominant model, having SNP in TCF7L2 increased the risk of T2DM 2.3 times (95% CI: 1.0-5.2; p value = 0.04). In interaction model, genetic susceptible SNP cases interacted significantly with increasing age and BMI, female gender, and having family history of diabetes mellitus to develop T2DM (pinteraction < 0.001). Having minor T allele either in heterozygous or homozygous variant form of rs12255372 (G > T) TCF7L2 had significant association with T2DM. In conclusion, TCF7L2 gene variant increases risk of developing T2DM among the Bangladeshi population.


Subject(s)
Diabetes Mellitus, Type 2 , Female , Humans , Case-Control Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , T Cell Transcription Factor 1/genetics , Transcription Factor 7-Like 2 Protein/genetics
12.
J ASEAN Fed Endocr Soc ; 38(1): 41-47, 2023.
Article in English | MEDLINE | ID: mdl-37234929

ABSTRACT

Objectives: To investigate the association between the single nucleotide polymorphism (SNP) rs7903146 in the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes mellitus (T2DM) and to examine the impact of this variant on pancreatic beta-cell function in the Myanmar population. Methodology: A case-control study was undertaken in 100 subjects with T2DM and 113 controls. The SNP rs7903146 was genotyped using the allele-specific polymerase chain reaction method. Plasma glucose and serum insulin levels were determined using the enzymatic colorimetric method and ELISA respectively. Beta-cell function was calculated by the HOMA-ß formula. Results: The frequencies of carrier genotypes (CT and TT) were higher in subjects with T2DM than in controls. The minor T alleles of rs7903146 were found to statistically increase type 2 diabetes risk than the C allele with an allelic odds ratio of 2.07 (95% CI 1.39-3.09, p=0.0004). The mean HOMA-ß level of the group with non-carrier genotype (CC) was significantly higher than that of the groups with carrier genotypes (CT and TT) in subjects with T2DM and controls with a p-value of 0.0003 and less than 0.0001, respectively. Conclusion: The rs7903146 variant of the TCF7L2 gene was found to be associated with T2DM and low ß-cell function among Myanmar subjects.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Polymorphism, Single Nucleotide/genetics , T Cell Transcription Factor 1/genetics , Case-Control Studies , Myanmar/epidemiology , Transcription Factor 7-Like 2 Protein/genetics
13.
Immun Inflamm Dis ; 11(3): e785, 2023 03.
Article in English | MEDLINE | ID: mdl-36988257

ABSTRACT

Atherosclerosis (AS) is a complex multifactorial and chronic inflammatory vascular disease that contributes to the development of cardiovascular diseases. Abnormal cellular proliferation in human umbilical vein endothelial cells (HUVECs) is a crucial element in AS development. In this study, we investigated the potential role of the long noncoding RNA LINC02381/microRNA (miR)-491-5p/transcription factor 7 (TCF7) axis in regulating HUVEC injury in 30 participants suffering from AS and 30 healthy control participants. We established an in vitro model of AS in HUVECs using oxidized low-density lipoprotein (ox-LDL), and measured cellular mRNA and protein levels of LINC02381, miR-491-5p, and TCF7 in serum samples using reverse transcription-quantitative polymerase chain reaction and Western blotting assays. We evaluated cell viability, apoptosis, and inflammation using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Moreover, we analyzed apoptosis-related protein expression using western blotting analysis and determined the association between miR-491-5p and LINC02381 or TCF7 using dual-luciferase reporter assay, RNA pull-down, and rescue experiments. We observed that LINC02381 was elevated, while miR-491-5p was downregulated in serum samples from participants with AS and in ox-LDL-treated HUVECs. LINC02381 knockdown was protective against HUVEC injury via miR-491-5p inhibition, which is its downstream target. Rescue experiments further demonstrated that miR-491-5p alleviated HUVEC injury by modulating TCF7. Thus, LINC02381 knockdown ameliorated HUVEC injury by regulating the miR-491-5p/TCF7 axis, which provides new insights into AS treatment strategies.


Subject(s)
Atherosclerosis , MicroRNAs , RNA, Long Noncoding , T Cell Transcription Factor 1 , Humans , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL/pharmacology , MicroRNAs/genetics , T Cell Transcription Factor 1/genetics , RNA, Long Noncoding/genetics
14.
Immunity ; 56(4): 813-828.e10, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36809763

ABSTRACT

T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-33 , Lymphocytic Choriomeningitis , Animals , Mice , Alarmins/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus , Mice, Inbred C57BL , Persistent Infection , T Cell Transcription Factor 1/metabolism
15.
Proc Natl Acad Sci U S A ; 120(9): e2213793120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802434

ABSTRACT

Liver X receptor (LXR) is a critical regulator of cholesterol homeostasis that inhibits T cell receptor (TCR)-induced proliferation by altering intracellular sterol metabolism. However, the mechanisms by which LXR regulates helper T cell subset differentiation remain unclear. Here, we demonstrate that LXR is a crucial negative regulator of follicular helper T (Tfh) cells in vivo. Both mixed bone marrow chimera and antigen-specific T cell adoptive cotransfer studies show a specific increase in Tfh cells among LXRß-deficient CD4+ T cell population in response to immunization and lymphocytic choriomeningitis mammarenavirus (LCMV) infection. Mechanistically, LXRß-deficient Tfh cells express augmented levels of T cell factor 1 (TCF-1) but comparable levels of Bcl6, CXCR5, and PD-1 in comparison with those of LXRß-sufficient Tfh cells. Loss of LXRß confers inactivation of GSK3ß induced by either AKT/Extracellular signal-regulated kinase (ERK) activation or Wnt/ß-catenin pathway, leading to elevated TCF-1 expression in CD4+ T cells. Conversely, ligation of LXR represses TCF-1 expression and Tfh cell differentiation in both murine and human CD4+ T cells. LXR agonist significantly diminishes Tfh cells and the levels of antigen-specific IgG upon immunization. These findings unveil a cell-intrinsic regulatory function of LXR in Tfh cell differentiation via the GSK3ß-TCF1 pathway, which may serve as a promising target for pharmacological intervention in Tfh-mediated diseases.


Subject(s)
T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer , Mice , Humans , Animals , Liver X Receptors/genetics , Liver X Receptors/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Germinal Center , T Cell Transcription Factor 1/genetics , Cell Differentiation
16.
Cancer Biother Radiopharm ; 38(2): 132-139, 2023 Mar.
Article in English | MEDLINE | ID: mdl-32822226

ABSTRACT

Background: The procancer effect of TEA domain transcription factor 4 (TEAD4) has been gradually discovered. However, its expression in esophageal cancer (EC) cells and its effect on proliferation and apoptosis have not been reported. In this study, we investigated the possible role of TEAD4 in EC cells. Materials and Methods: TEAD4 messenger RNA and protein expression were assessed in EC cell lines by real-time quantitative-PCR and Western blot. Gene silencing approach was employed to investigate the potential role of TEAD4 in cellular growth, proliferation, migration, and invasion in EC cells. The interaction between TEAD4 and transcription factor 7 (TCF7) was verified by co-immunoprecipitation reaction. The cell apoptosis rates of KYSE-30 cells were detected by flow cytometry. Meanwhile, the expression of apoptosis-related proteins in KYSE-30 cells was detected by Western blot analysis. Results: TEAD4 was significantly increased in EC cell lines, interference of TEAD4 inhibited EC cell viability, invasion, and migration, and promotes apoptosis. TCF7 was found when using STRING website to interact with TEAD4 proteins and TCF7 was significantly increased in EC and knockdown expression of TEAD4 hindered biological function of KYSE-30 cells and this effect was reversed by overexpression of TCF7. Conclusions: The findings concluded that TEAD4 is highly expressed in EC cells and gene silencing of TEAD4 inhibits proliferation and promotes apoptosis of EC cells by regulating TCF7. These findings suggested that TEAD4 might be a novel therapeutic target for the prevention of EC.


Subject(s)
Esophageal Neoplasms , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Cell Line, Tumor , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Cell Proliferation/genetics , Gene Silencing , Apoptosis/genetics , TEA Domain Transcription Factors
17.
Hum Cell ; 36(1): 178-194, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36401086

ABSTRACT

Alteration of N6-methyladenosine (m6A) is closely linked to spanning biological processes including osteoporosis (OP) development. This research focuses on the function of methyltransferase like 14 (METTL14) in bone turnover and its interaction with T cell factor 1 (TCF1). A mouse model of OP was established by ovariectomy (OVX). The bone mass parameters were evaluated by micro-CT analysis. Mouse MC3T3-E1 cells and mouse bone marrow macrophages (BMMs) were induced for osteogenic or osteoclastic differentiation, respectively, for in vitro experiments. The osteogenesis or osteoclasis activity was analyzed by measuring the biomarkers such as OPG, ALP, NFATC1, CTSK, RANKL, and TRAP. RT-qPCR and IHC assays identified reduced METTL14 expression in bone tissues of osteoporotic patients and ovariectomized mice. Artificial METTL14 overexpression increased bone mass of mice and promoted osteogenesis whereas suppressed osteoclasis both in vivo and in vitro. METTL14 promoted TCF1 expression through m6A mRNA methylation, and TCF1 increased the osteogenic activity by elevating the protein level of RUNX2, a key molecule linked to bone formation. In rescue experiments, TCF1 restored the RUNX2 level and osteogenic activity of cells suppressed by METTL14 silencing. In summary, this research demonstrates that METTL14 plays a protective role against OP by promoting the TCF1/RUNX2 axis.


Subject(s)
Methyltransferases , Osteogenesis , Osteoporosis , T Cell Transcription Factor 1 , Female , Humans , Cell Differentiation/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , RNA, Messenger/metabolism , T Cell Transcription Factor 1/metabolism , Animals , Mice
18.
Cancer Immunol Immunother ; 72(6): 1581-1601, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36562825

ABSTRACT

Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28. Our data showed that TCF-1 suppresses surface NKG2D expression on naïve and activated CD8 T cells via key transcriptional factors Eomes and T-bet. Using both in vitro and in vivo models, we uncovered how TCF-1 regulates critical molecules responsible for peripheral CD8 T cell effector functions. Finally, our unique genetic and molecular approaches suggested that TCF-1 also differentially regulates essential kinases. These kinases, including LCK, LAT, ITK, PLC-γ1, P65, ERKI/II, and JAK/STATs, are required for peripheral CD8 T cell persistent function during alloimmunity. Overall, our molecular and bioinformatics data demonstrate the mechanism by which TCF-1 modulated several critical aspects of T cell function during CD8 T cell response to cancer. Summary Figure: TCF-1 is required for persistent function of CD8 T cells but dispensable for anti-tumor response. Here, we have utilized a novel mouse model that lacks TCF-1 specifically on CD8 T cells for an allogeneic transplant model. We uncovered a molecular mechanism of how TCF-1 regulates key signaling pathways at both transcriptomic and protein levels. These key molecules included LCK, LAT, ITK, PLC-γ1, p65, ERK I/II, and JAK/STAT signaling. Next, we showed that the lack of TCF-1 impacted phenotype, proinflammatory cytokine production, chemokine expression, and T cell activation. We provided clinical evidence for how these changes impact GVHD target organs (skin, small intestine, and liver). Finally, we provided evidence that TCF-1 regulates NKG2D expression on mouse naïve and activated CD8 T cells. We have shown that CD8 T cells from TCF-1 cKO mice mediate cytolytic functions via NKG2D.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K , Neoplasms , T Cell Transcription Factor 1 , Animals , Mice , CD8-Positive T-Lymphocytes , Gene Expression , Neoplasms/metabolism , Signal Transduction
19.
J Diabetes Investig ; 14(2): 193-204, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36583231

ABSTRACT

AIMS/INTRODUCTION: Long non-coding RNAs (lncRNAs) exert essential functions in the pathogenesis of diabetic nephropathy (DN). LncRNA T-cell factor 7 (TCF7) and semaphorin-3A (SEMA3A) have been found to be involved in the progression of diabetic nephropathy. However, whether the effect of TCF7 on the pathogenesis of diabetic nephropathy is mediated by SEMA3A remains unclear. MATERIALS AND METHODS: TCF7, miR-16-5p, and SEMA3A were quantified by a qRT-PCR or immunoblotting method. A CCK-8 assay gauged the cell viability. Measurement of cell apoptosis was done using flow cytometry. RNA immunoprecipitation (RIP), dual-luciferase reporter, and RNA pull-down assays were utilized to assay the targeted interactions among the variables. RESULTS: The TCF7 and SEMA3A levels were elevated in serum from patients with diabetic nephropathy. TCF7 silencing or SEMA3A depletion ameliorated high glucose (HG)-induced podocyte injury. Moreover, TCF7 silencing protected against HG-induced podocyte injury by down-regulating SEMA3A. TCF7 targeted miR-16-5p, and miR-16-5p targeted SEMA3A. Furthermore, TCF7 affected the expression of SEMA3A by competing specifically for shared miR-16-5p. CONCLUSIONS: These findings suggested that TCF7 silencing attenuated high glucose-induced podocyte damage partially through the miR-16-5p/SEMA3A regulation cascade.


Subject(s)
Diabetic Nephropathies , MicroRNAs , Podocytes , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Semaphorin-3A/genetics , Semaphorin-3A/metabolism , Semaphorin-3A/pharmacology , Diabetic Nephropathies/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Glucose/toxicity , Glucose/metabolism , Apoptosis , T Cell Transcription Factor 1/metabolism
20.
Cancer Lett ; 555: 216040, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36565920

ABSTRACT

Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of ß-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered ß-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/ß-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Glutamine/metabolism , Pancreatic Stellate Cells/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/metabolism , Cell Line, Tumor , Cell Proliferation , T Cell Transcription Factor 1/metabolism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...