Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
Immunohorizons ; 8(4): 355-362, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687282

ABSTRACT

To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.


Subject(s)
Interleukin-12 , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells , T-Box Domain Proteins , Toxoplasma , Toxoplasmosis , Animals , Toxoplasma/immunology , Mice , Interleukin-12/metabolism , Interleukin-12/immunology , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Immunity, Innate , Toxoplasmosis, Animal/immunology , Disease Resistance/immunology , Female
2.
Microbiol Spectr ; 12(5): e0364623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38497717

ABSTRACT

Anti-interferon-γ autoantibody (AIGA) syndrome may be the basis of disseminated Talaromyces marneffei infection in human immunodeficiency virus (HIV)-negative adults. However, the pathogenesis of Th1 cell immunity in T. marneffei infection with AIGA syndrome is unknown. A multicenter study of HIV-negative individuals with T. marneffei infection was conducted between September 2018 and September 2020 in Guangdong and Guangxi, China. Patients were divided into AIGA-positive (AP) and AIGA-negative (AN) groups according to the AIGA titer and neutralizing activity. The relationship between AIGA syndrome and Th1 immune deficiency was investigated by using AP patient serum and purification of AIGA. Fifty-five HIV-negative adults with disseminated T. marneffei infection who were otherwise healthy were included. The prevalence of AIGA positivity was 83.6%. Based on their AIGA status, 46 and 9 patients were assigned to the AP and AN groups, respectively. The levels of Th1 cells, IFN-γ, and T-bet were higher in T. marneffei-infected patients than in healthy controls. However, the levels of CD4+ T-cell STAT-1 phosphorylation (pSTAT1) and Th1 cells were lower in the AP group than in the AN group. Both the serum of patients with AIGA syndrome and the AIGA purified from the serum of patients with AIGA syndrome could reduce CD4+ T-cell pSTAT1, Th1 cell differentiation and T-bet mRNA, and protein expression. The Th1 cell immune response plays a pivotal role in defense against T. marneffei infection in HIV-negative patients. Inhibition of the Th1 cell immune response may be an important pathological effect of AIGA syndrome.IMPORTANCEThe pathogenesis of Th1 cell immunity in Talaromyces marneffei infection with anti-interferon-γ autoantibody (AIGA) syndrome is unknown. This is an interesting study addressing an important knowledge gap regarding the pathogenesis of T. marneffei in non-HIV positive patients; in particular patients with AIGA. The finding of the Th1 cell immune response plays a pivotal role in defense against T. marneffei infection in HIV-negative patients, and inhibition of the Th1 cell immune response may be an important pathological effect of AIGA syndrome, which presented in this research could help bridge the current knowledge gap.


Subject(s)
Autoantibodies , Interferon-gamma , Mycoses , Talaromyces , Th1 Cells , Humans , Talaromyces/immunology , Th1 Cells/immunology , Interferon-gamma/immunology , Autoantibodies/immunology , Autoantibodies/blood , Male , Adult , Female , China , Mycoses/immunology , Mycoses/microbiology , Middle Aged , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/genetics
3.
Sci Immunol ; 7(68): eabi4919, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35179948

ABSTRACT

The response of naive CD8+ T cells to their cognate antigen involves rapid and broad changes to gene expression that are coupled with extensive chromatin remodeling, but the mechanisms governing these changes are not fully understood. Here, we investigated how these changes depend on the basic leucine zipper ATF-like transcription factor Batf, which is essential for the early phases of the process. Through genome scale profiling, we characterized the role of Batf in chromatin organization at several levels, including the accessibility of key regulatory regions, the expression of their nearby genes, and the interactions that these regions form with each other and with key transcription factors. We identified a core network of transcription factors that cooperated with Batf, including Irf4, Runx3, and T-bet, as indicated by their colocalization with Batf and their binding in regions whose accessibility, interactions, and expression of nearby genes depend on Batf. We demonstrated the synergistic activity of this network by overexpressing the different combinations of these genes in fibroblasts. Batf and Irf4, but not Batf alone, were sufficient to increase accessibility and transcription of key loci, normally associated with T cell function. Addition of Runx3 and T-bet further contributed to fine-tuning of these changes and was essential for establishing chromatin loops characteristic of T cells. These data provide a resource for studying the epigenomic and transcriptomic landscape of effector differentiation of cytotoxic T cells and for investigating the interdependency between transcription factors and its effects on the epigenome and transcriptome of primary cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Core Binding Factor Alpha 3 Subunit/immunology , Interferon Regulatory Factors/immunology , T-Box Domain Proteins/immunology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Epigenesis, Genetic/genetics , Female , Interferon Regulatory Factors/genetics , Mice , Mice, Knockout , Mice, Transgenic , T-Box Domain Proteins/genetics
4.
Front Immunol ; 12: 773146, 2021.
Article in English | MEDLINE | ID: mdl-34956200

ABSTRACT

Transcription factors (TFs) modulate genes involved in cell-type-specific proliferative and migratory properties, metabolic features, and effector functions. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogen agents in the porcine industry; however, TFs have been poorly studied during the course of this disease. Therefore, we aimed to evaluate the expressions of the TFs T-bet, GATA3, FOXP3, and Eomesodermin (EOMES) in target organs (the lung, tracheobronchial lymph node, and thymus) and those of different effector cytokines (IFNG, TNFA, and IL10) and the Fas ligand (FASL) during the early phase of infection with PRRSV-1 strains of different virulence. Target organs from mock-, virulent Lena-, and low virulent 3249-infected animals humanely euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi) were collected to analyze the PRRSV viral load, histopathological lesions, and relative quantification through reverse transcription quantitative PCR (RT-qPCR) of the TFs and cytokines. Animals belonging to both infected groups, but mainly those infected with the virulent Lena strain, showed upregulation of the TFs T-bet, EOMES, and FOXP3, together with an increase of the cytokine IFN-γ in target organs at the end of the study (approximately 2 weeks post-infection). These results are suggestive of a stronger polarization to Th1 cells and regulatory T cells (Tregs), but also CD4+ cytotoxic T lymphocytes (CTLs), effector CD8+ T cells, and γδT cells in virulent PRRSV-1-infected animals; however, their biological functionality should be the object of further studies.


Subject(s)
Forkhead Transcription Factors/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , T-Box Domain Proteins/immunology , Animals , Cytokines/genetics , Cytokines/immunology , GATA3 Transcription Factor/immunology , Lung/immunology , Lung/pathology , Lung/virology , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymph Nodes/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus , Swine , T-Box Domain Proteins/genetics , T-Lymphocytes/immunology , Thymus Gland/immunology , Thymus Gland/pathology , Thymus Gland/virology , Viral Load , Virulence
5.
Front Immunol ; 12: 771279, 2021.
Article in English | MEDLINE | ID: mdl-34804062

ABSTRACT

It remains poorly defined whether any human miRNAs play protective roles during HIV infection. Here, focusing on a unique cohort of HIV-infected former blood donors, we identified miR-31 (hsa-miR-31) by comparative miRNA profiling as the only miRNA inversely correlating with disease progression. We further validated this association in two prospective cohort studies. Despite conservation during evolution, hsa-miR-31, unlike its mouse counterpart (mmu-miR-31), was downregulated in human T cell upon activation. Our ex vivo studies showed that inhibiting miR-31 in naïve CD4+ T cells promoted a transcriptional profile with activation signature. Consistent with this skewing effect, miR-31 inhibition led to remarkably increased susceptibility to HIV infection. The suppressive nature of miR-31 in CD4+ T cell activation was pinpointed to its ability to decrease T-bet, the key molecule governing IFN-γ production and activation of CD4+ T cells, by directly targeting the upstream STAT1 transcriptional factor for downregulation, thus blunting Th1 response. Our results implicated miR-31 as a useful biomarker for tracking HIV disease progression and, by demonstrating its importance in tuning the activation of CD4+ T cells, suggested that miR-31 may play critical roles in other physiological contexts where the CD4+ T cell homeostasis needs to be deliberately controlled.


Subject(s)
HIV Infections/genetics , HIV Infections/immunology , MicroRNAs/immunology , T-Lymphocytes/immunology , Adult , Biomarkers , Disease Progression , Female , Genetic Predisposition to Disease , HEK293 Cells , Homeostasis , Humans , Interferon-gamma/immunology , Male , Middle Aged , STAT1 Transcription Factor/immunology , T-Box Domain Proteins/immunology
6.
Front Immunol ; 12: 760198, 2021.
Article in English | MEDLINE | ID: mdl-34795671

ABSTRACT

Innate lymphoid cells (ILC) play a significant role in the intestinal immune response and T-bet+ CD127+ group 1 cells (ILC1) have been linked to the pathogenesis of human inflammatory bowel disease (IBD). However, the functional importance of ILC1 in the context of an intact adaptive immune response has been controversial. In this report we demonstrate that induced depletion of T-bet using a Rosa26-Cre-ERT2 model resulted in the loss of intestinal ILC1, pointing to a post-developmental requirement of T-bet expression for these cells. In contrast, neither colonic lamina propria (cLP) ILC2 nor cLP ILC3 abundance were altered upon induced deletion of T-bet. Mechanistically, we report that STAT1 or STAT4 are not required for intestinal ILC1 development and maintenance. Mice with induced deletion of T-bet and subsequent loss of ILC1 were protected from the induction of severe colitis in vivo. Hence, this study provides support for the clinical development of an IBD treatment based on ILC1 depletion via targeting T-bet or its downstream transcriptional targets.


Subject(s)
Intestinal Mucosa/immunology , Lymphocytes/immunology , T-Box Domain Proteins/immunology , Animals , Citrobacter rodentium , Colitis/chemically induced , Colitis/immunology , Dextran Sulfate , Enterobacteriaceae Infections/immunology , Female , Immunity, Innate , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/immunology , Tamoxifen/pharmacology , Trichinella spiralis , Trichinellosis/immunology
7.
Front Immunol ; 12: 761920, 2021.
Article in English | MEDLINE | ID: mdl-34675939

ABSTRACT

Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in immune surveillance. The development, maturation and effector functions of NK cells are orchestrated by the T-box transcription factor T-bet, whose expression is induced by cytokines such as IFN-γ, IL-12, IL-15 and IL-21 through the respective cytokine receptors and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review, we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in mouse NK cell development, maturation, and function, as well as the role of T-bet in acute, chronic infection, inflammation, autoimmune diseases and tumors.


Subject(s)
Killer Cells, Natural/immunology , T-Box Domain Proteins/immunology , Animals , Autoimmune Diseases/immunology , Humans , Infections/immunology , Inflammation/immunology , Neoplasms/immunology
8.
Sci Immunol ; 6(64): eabh0891, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34623902

ABSTRACT

Accumulation of human CD21low B cells in peripheral blood is a hallmark of chronic activation of the adaptive immune system in certain infections and autoimmune disorders. The molecular pathways underpinning the development, function, and fate of these CD21low B cells remain incompletely characterized. Here, combined transcriptomic and chromatin accessibility analyses supported a prominent role for the transcription factor T-bet in the transcriptional regulation of these T-bethighCD21low B cells. Investigating essential signals for generating these cells in vitro established that B cell receptor (BCR)/interferon-γ receptor (IFNγR) costimulation induced the highest levels of T-bet expression and enabled their differentiation during cell cultures with Toll-like receptor (TLR) ligand or CD40L/interleukin-21 (IL-21) stimulation. Low proportions of CD21low B cells in peripheral blood from patients with defined inborn errors of immunity (IEI), because of mutations affecting canonical NF-κB, CD40, and IL-21 receptor or IL-12/IFNγ/IFNγ receptor/signal transducer and activator of transcription 1 (STAT1) signaling, substantiated the essential roles of BCR- and certain T cell­derived signals in the in vivo expansion of T-bethighCD21low B cells. Disturbed TLR signaling due to MyD88 or IRAK4 deficiency was not associated with reduced CD21low B cell proportions. The expansion of human T-bethighCD21low B cells correlated with an expansion of circulating T follicular helper 1 (cTfh1) and T peripheral helper (Tph) cells, identifying potential sources of CD40L, IL-21, and IFNγ signals. Thus, we identified important pathways to target autoreactive T-bethighCD21low B cells in human autoimmune conditions, where these cells are linked to pathogenesis and disease progression.


Subject(s)
B-Lymphocytes/immunology , Receptors, Complement 3d/immunology , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology , Adult , Cohort Studies , Female , Humans , Male , Middle Aged
9.
Nat Immunol ; 22(10): 1245-1255, 2021 10.
Article in English | MEDLINE | ID: mdl-34556884

ABSTRACT

Innate lymphoid cells (ILCs) are guardians of mucosal immunity, yet the transcriptional networks that support their function remain poorly understood. We used inducible combinatorial deletion of key transcription factors (TFs) required for ILC development (RORγt, RORα and T-bet) to determine their necessity in maintaining ILC3 identity and function. Both RORγt and RORα were required to preserve optimum effector functions; however, RORα was sufficient to support robust interleukin-22 production among the lymphoid tissue inducer (LTi)-like ILC3 subset, but not natural cytotoxicity receptor (NCR)+ ILC3s. Lymphoid tissue inducer-like ILC3s persisted with only selective loss of phenotype and effector functions even after the loss of both TFs. In contrast, continued RORγt expression was essential to restrain transcriptional networks associated with type 1 immunity within NCR+ ILC3s, which coexpress T-bet. Full differentiation to an ILC1-like population required the additional loss of RORα. Together, these data demonstrate how TF networks integrate within mature ILCs after development to sustain effector functions, imprint phenotype and restrict alternative differentiation programs.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Cell Lineage/immunology , Cells, Cultured , Female , Gene Expression Regulation/immunology , Immunity, Mucosal/immunology , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred C57BL , Natural Cytotoxicity Triggering Receptor 1/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Box Domain Proteins/immunology , Transcription Factors/immunology
10.
Nat Immunol ; 22(10): 1231-1244, 2021 10.
Article in English | MEDLINE | ID: mdl-34556887

ABSTRACT

The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.


Subject(s)
Cell Differentiation/immunology , Immunity, Innate/immunology , Lymph Nodes/immunology , Lymphocytes/immunology , Nuclear Receptor Subfamily 1, Group F, Member 1/immunology , T-Box Domain Proteins/immunology , Animals , Cell Lineage/immunology , Female , Lymphoid Tissue/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , T-Lymphocytes, Helper-Inducer/immunology
11.
Eur J Immunol ; 51(12): 3243-3246, 2021 12.
Article in English | MEDLINE | ID: mdl-34528258

ABSTRACT

Ex vivo gene expression and miRNA profiling of Eomes+ Tr1-like cells suggested that they represent a differentiation stage that is intermediate between Th1-cells and cytotoxic CD4+ T-cells. Several microRNAs were downregulated in Eomes+ Tr1-like cells that might inhibit Tr1-cell differentiation. In particular, miR-92a targeted Eomes, while miR-125a inhibited IFN-g and IL-10R expression.


Subject(s)
Gene Expression Profiling , MicroRNAs/immunology , Receptors, Interleukin-10/immunology , T-Box Domain Proteins/immunology , Th1 Cells/immunology , Humans
12.
Nat Commun ; 12(1): 5446, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521844

ABSTRACT

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Subject(s)
Cell Cycle/genetics , Cell Lineage/genetics , Killer Cells, Natural/immunology , T-Box Domain Proteins/genetics , Animals , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD11b Antigen/genetics , CD11b Antigen/immunology , Cell Cycle/drug effects , Cell Cycle/immunology , Cell Differentiation , Cell Lineage/drug effects , Cell Lineage/immunology , Epigenesis, Genetic/immunology , Interleukin-12/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , Spleen/cytology , Spleen/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , Transcription, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
13.
Allergol Int ; 70(4): 415-420, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34456137

ABSTRACT

Monogenic diseases of the immune system, also known as inborn errors of immunity (IEIs), are caused by single-gene mutations and result in immune deficiency and dysregulation. More than 400 monogenic diseases have been described to date, and this number is rapidly expanding. The increasing availability of next-generation sequencing is now facilitating the diagnosis of IEIs. It is known that IEIs can predispose a person to not only infectious diseases but also cancer and immune disorders, such as inflammatory, autoimmune, and atopic diseases. IEIs with eosinophilia and atopic diseases can occur in several disorders. IEIs with eosinophilia have provided insights into human immunity and the pathogenesis of allergic diseases. Eosinophilia is not a rare finding in clinical practice, and it often poses problems in terms of etiologic research and differential diagnoses. Secondary eosinophilia is the most common form. The main underlying conditions are infectious diseases such as parasitic infections, allergic disorders, drug reactions, and of course IEIs. In clinical settings, the recognition of IEIs in the context of an allergic phenotype with eosinophilia is critical for prompt diagnosis and appropriate treatment aimed at modulating pathophysiological mechanisms and improving clinical symptoms.


Subject(s)
Eosinophilia/immunology , Genetic Diseases, Inborn/immunology , Immune System Diseases/immunology , Actins/immunology , Animals , Cytokines/immunology , Humans , Immune Tolerance , Receptors, Antigen, T-Cell/immunology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology
14.
Sci Immunol ; 6(62)2021 08 20.
Article in English | MEDLINE | ID: mdl-34417257

ABSTRACT

Tissue-resident memory CD8+ T cells (TRM) constitute a noncirculating memory T cell subset that provides early protection against reinfection. However, how TRM arise from antigen-triggered T cells has remained unclear. Exploiting the TRM-restricted expression of Hobit, we used TRM reporter/deleter mice to study TRM differentiation. We found that Hobit was up-regulated in a subset of LCMV-specific CD8+ T cells located within peripheral tissues during the effector phase of the immune response. These Hobit+ effector T cells were identified as TRM precursors, given that their depletion substantially decreased TRM development but not the formation of circulating memory T cells. Adoptive transfer experiments of Hobit+ effector T cells corroborated their biased contribution to the TRM lineage. Transcriptional profiling of Hobit+ effector T cells underlined the early establishment of TRM properties including down-regulation of tissue exit receptors and up-regulation of TRM-associated molecules. We identified Eomes as a key factor instructing the early bifurcation of circulating and resident lineages. These findings establish that commitment of TRM occurs early in antigen-driven T cell differentiation and reveal the molecular mechanisms underlying this differentiation pathway.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Memory T Cells/immunology , T-Box Domain Proteins/immunology , Animals , Cell Differentiation , Mice , Mice, Inbred C57BL , Mice, Transgenic
15.
Nat Commun ; 12(1): 4813, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376664

ABSTRACT

Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.


Subject(s)
Aging/immunology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Lupus Erythematosus, Systemic/immunology , Age Factors , Aging/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CD11c Antigen/immunology , CD11c Antigen/metabolism , Cell Differentiation/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Guanine Nucleotide Exchange Factors/metabolism , Kaplan-Meier Estimate , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Sex Factors , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism
16.
Front Immunol ; 12: 704324, 2021.
Article in English | MEDLINE | ID: mdl-34262572

ABSTRACT

T-bet, a T-box family member, is a transcription factor essential for the differentiation of naive CD4+ T cells into Th1 cells that are involved in both innate and adaptive immune responses. In this study, the transcription factor T-bet of flounder (Paralichthys olivaceus) was cloned and characterized, and its expression profile after infection was analyzed. T-bet+ cells were identified in flounder, and the expression and localization of T-bet in T lymphocyte subsets and B lymphocytes were investigated. Finally, the proliferation of T-bet+ cells, T lymphocyte subsets, and B lymphocytes were studied after stimulation with IFN-γ, IL-2, and IL-6, respectively, and the variations of some transcription factors and cytokines in CD4+ T lymphocyte subsets were detected. The results showed that T-bet in flounder consists of 619 aa with a conserved T-box DNA binding domain. T-bet was abundantly expressed in the spleen, head kidney, and heart, and it was significantly upregulated after infection with Vibrio anguillarum, Edwardsiella tarda, and Hirame rhabdovirus, especially in the group of Edwardsiella tarda. A polyclonal antibody against recombinant protein of T-bet was prepared, which specifically recognized the natural T-bet molecule in flounder. T-bet+ cells were found to be distributed in the lymphocytes of peripheral blood, spleen, and head kidney, with the highest proportion in spleen, and the positive signals of T-bet occurred in the cell nucleus. T-bet was also detected in the sorted CD4-1+, CD4-2+, CD8+ T lymphocytes, and IgM+ B lymphocytes. In addition, T-bet+ cells, coordinated with CD4-1+ and CD4-2+ T lymphocytes, were proliferated after stimulation with IFN-γ, IL-2, and IL-6. Especially in sorted CD4-1+ and CD4-2+ T lymphocytes, IFN-γ and IL-2 were able to upregulate the expression of T-bet, forming a positive feedback loop in Th1-type cytokine secretion. These results suggest that T-bet may act as a master transcription factor regulating flounder CD4+ T lymphocytes involved in a Th1-type immune response.


Subject(s)
Fish Proteins/immunology , Flounder/immunology , T-Box Domain Proteins/immunology , Th1 Cells/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cytokines/genetics , Cytokines/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Flounder/genetics , T-Box Domain Proteins/genetics
17.
J Microbiol Immunol Infect ; 54(3): 370-378, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33972181

ABSTRACT

BACKGROUND: We investigated the effect of the mammalian target of rapamycin (mTOR) pathway on CD8+ T cell immunity through Eomesodermin (Eomes) in intensive care unit (ICU) patients with invasive candidiasis (IC) and in a mouse model. METHODS: We evaluated quantitative changes in parameters of the mTOR/phosphorylated ribosomal S6 kinase (pS6K) pathway and immune system at the onset of infection in ICU patients. The study was registered on 28 February 2017 at chictr.org.cn (ChiCTR-ROC-17010750). We also used a mouse model of Candida infection and constructed T-cell-specific mTOR and T-cell-specific tuberous sclerosis complex (TSC) 1 conditional knockout mice to elucidate the molecular mechanisms. RESULTS: We enrolled 88 patients, including 8 with IC. The IC group had lower CD8+ T cell counts, higher serum levels of mTOR, pS6K, Eomes and interleukin (IL)-6. The mouse model with IC showed results consistent in the clinical study. The CD8+ T cell immune response to IC seemed to be weakened in TSC1 knockout mice compared with wild-type IC mice, demonstrating that mTOR activation resulted in the impaired CD8+ T cell immunity in IC. CONCLUSIONS: In IC, the mTOR activation may play a vital role in impaired CD8+ T cell immunity through enhancing expression of Eomes. The study was registered on 28 February 2017 at chictr.org.cn (identifier ChiCTR-ROC-17010750).


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Candidiasis, Invasive/immunology , Signal Transduction/immunology , T-Box Domain Proteins/immunology , TOR Serine-Threonine Kinases/immunology , Adult , Aged , Aged, 80 and over , Animals , Cell Differentiation , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Prospective Studies , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
18.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33762322

ABSTRACT

BACKGROUND: Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1-, E2b-] targeting three TAAs-prostate-specific antigen (PSA), brachyury, and MUC-1-has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial-mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform. METHODS: Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×1011 viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated. RESULTS: Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65-1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients. CONCLUSIONS: Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×1011 VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy. TRIAL REGISTRATION NUMBER: NCT03481816.


Subject(s)
Adenoviridae/immunology , Cancer Vaccines/therapeutic use , Fetal Proteins/immunology , Kallikreins/immunology , Mucin-1/immunology , Prostate-Specific Antigen/immunology , Prostatic Neoplasms, Castration-Resistant/therapy , T-Box Domain Proteins/immunology , Vaccines, Combined/therapeutic use , Adenoviridae/genetics , Aged , Aged, 80 and over , Cancer Vaccines/adverse effects , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Fetal Proteins/genetics , Genetic Vectors , Humans , Kallikreins/genetics , Male , Middle Aged , Mucin-1/genetics , Progression-Free Survival , Prostate-Specific Antigen/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/immunology , T-Box Domain Proteins/genetics , Time Factors , Vaccination , Vaccine Efficacy , Vaccines, Combined/adverse effects , Vaccines, Combined/genetics , Vaccines, Combined/immunology , Viral Vaccines
19.
Eur J Immunol ; 51(4): 915-929, 2021 04.
Article in English | MEDLINE | ID: mdl-33296081

ABSTRACT

T lymphocytes accumulate in inflamed tissues of patients with chronic inflammatory diseases (CIDs) and express pro-inflammatory cytokines upon re-stimulation in vitro. Further, a significant genetic linkage to MHC genes suggests that T lymphocytes play an important role in the pathogenesis of CIDs including juvenile idiopathic arthritis (JIA). However, the functions of T lymphocytes in established disease remain elusive. Here we dissect the transcriptional and the clonal heterogeneity of synovial T lymphocytes in JIA patients by single-cell RNA sequencing combined with T cell receptor profiling on the same cells. We identify clonally expanded subpopulations of T lymphocytes expressing genes reflecting recent activation by antigen in situ. A PD-1+ TOX+ EOMES+ population of CD4+ T lymphocytes expressed immune regulatory genes and chemoattractant genes for myeloid cells. A PD-1+ TOX+ BHLHE40+ population of CD4+ , and a mirror population of CD8+ T lymphocytes expressed genes driving inflammation, and genes supporting B lymphocyte activation in situ. This analysis points out that multiple types of T lymphocytes have to be targeted for therapeutic regeneration of tolerance in arthritis.


Subject(s)
Antigens/immunology , Arthritis, Juvenile/immunology , Basic Helix-Loop-Helix Transcription Factors/immunology , High Mobility Group Proteins/immunology , Homeodomain Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology , Arthritis, Juvenile/genetics , Arthritis, Juvenile/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Gene Expression Profiling/methods , High Mobility Group Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Programmed Cell Death 1 Receptor/metabolism , RNA-Seq/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis/methods , T-Box Domain Proteins/metabolism , T-Lymphocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
20.
J Exp Med ; 218(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-32991667

ABSTRACT

In addition to Foxp3+ CD4+ regulatory T cells (CD4+ T reg cells), Foxp3- CD8+ regulatory T cells (CD8+ T reg cells) are critical to maintain immune tolerance. However, the molecular programs that specifically control CD8+ but not CD4+ T reg cells are largely unknown. Here, we demonstrate that simultaneous disruption of both TGF-ß receptor and transcription factor Eomesodermin (Eomes) in T cells results in lethal autoimmunity due to a specific defect in CD8+ but not CD4+ T reg cells. Further, TGF-ß signal maintains the regulatory identity, while Eomes controls the follicular location of CD8+ T reg cells. Both TGF-ß signal and Eomes coordinate to promote the homeostasis of CD8+ T reg cells. Together, we have identified a unique molecular program designed for CD8+ T reg cells.


Subject(s)
Autoimmune Diseases/immunology , CD8-Positive T-Lymphocytes/immunology , Signal Transduction/immunology , T-Box Domain Proteins/immunology , Transforming Growth Factor beta/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , CD8-Positive T-Lymphocytes/pathology , Mice , Mice, Transgenic , Signal Transduction/genetics , T-Box Domain Proteins/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...