Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 642
Filter
1.
Cell Death Dis ; 15(6): 391, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830870

ABSTRACT

Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.


Subject(s)
Myofibroblasts , Signal Transduction , Myofibroblasts/metabolism , Animals , Mice , Humans , Fibrosis/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Mice, Inbred C57BL , TEA Domain Transcription Factors/metabolism , Male , Protein Processing, Post-Translational , Acetylglucosamine/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
2.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791396

ABSTRACT

The Hippo pathway controls organ size and homeostasis and is linked to numerous diseases, including cancer. The transcriptional enhanced associate domain (TEAD) family of transcription factors acts as a receptor for downstream effectors, namely yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which binds to various transcription factors and is essential for stimulated gene transcription. YAP/TAZ-TEAD facilitates the upregulation of multiple genes involved in evolutionary cell proliferation and survival. TEAD1-4 overexpression has been observed in different cancers in various tissues, making TEAD an attractive target for drug development. The central drug-accessible pocket of TEAD is crucial because it undergoes a post-translational modification called auto-palmitoylation. Crystal structures of the C-terminal TEAD complex with small molecules are available in the Protein Data Bank, aiding structure-based drug design. In this study, we utilized the fragment molecular orbital (FMO) method, molecular dynamics (MD) simulations, shape-based screening, and molecular mechanics-generalized Born surface area (MM-GBSA) calculations for virtual screening, and we identified a novel non-covalent inhibitor-BC-001-with IC50 = 3.7 µM in a reporter assay. Subsequently, we optimized several analogs of BC-001 and found that the optimized compound BC-011 exhibited an IC50 of 72.43 nM. These findings can be used to design effective TEAD modulators with anticancer therapeutic implications.


Subject(s)
Molecular Dynamics Simulation , TEA Domain Transcription Factors , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Binding Sites , Drug Discovery/methods , Protein Binding , Molecular Docking Simulation , Drug Design
3.
Cell Rep ; 43(5): 114175, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691456

ABSTRACT

Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e., genetic dependencies [GDs]). Our linear-regression-based framework identifies 3,047 pan-cancer and 3,952 cancer-type-specific candidate TFa-GD associations from cell line data, which are then cross-examined for impact on survival in patient cohorts. One of the most prominent biomarkers is TEAD1 activity, whose associations with its predicted GDs are validated through experimental evidence as proof of concept. Overall, these TFa-GD associations represent an attractive resource for identifying innovative, biomarker-driven hypotheses for drug discovery programs in oncology.


Subject(s)
Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Cell Line, Tumor , TEA Domain Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Proliferation
4.
Cell Biol Toxicol ; 40(1): 30, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740637

ABSTRACT

In pancreatic ductal adenocarcinomas (PDAC), profound hypoxia plays key roles in regulating cancer cell behavior, including proliferation, migration, and resistance to therapies. The initial part of this research highlights the important role played by long noncoding RNA (lncRNA) MKLN1-AS, which is controlled by hypoxia-inducible factor-1 alpha (HIF-1α), in the progression of PDAC. Human samples of PDAC showed a notable increase in MKLN1-AS expression, which was linked to a worse outcome. Forced expression of MKLN1-AS greatly reduced the inhibitory impact on the growth and spread of PDAC cells caused by HIF-1α depletion. Experiments on mechanisms showed that HIF-1α influences the expression of MKLN1-AS by directly attaching to a hypoxia response element in the promoter region of MKLN1-AS.MKLN1-AS acts as a competitive endogenous RNA (ceRNA) by binding to miR-185-5p, resulting in the regulation of TEAD1 expression and promoting cell proliferation, migration, and tumor growth. TEAD1 subsequently enhances the development of PDAC. Our study results suggest that MKLN1-AS could serve as a promising target for treatment and a valuable indicator for predicting outcomes in PDAC. PDAC is associated with low oxygen levels, and the long non-coding RNA MKLN1-AS interacts with TEAD1 in this context.


Subject(s)
Carcinoma, Pancreatic Ductal , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Disease Progression , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , Pancreatic Neoplasms , RNA, Long Noncoding , TEA Domain Transcription Factors , Transcription Factors , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , TEA Domain Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Signal Transduction/genetics , Mice, Nude , Mice
5.
Ecotoxicol Environ Saf ; 279: 116480, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772146

ABSTRACT

Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 µM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 µM concentrations with the highest density at 0.1 µM concentration. Treatment with 0.1 µM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 µg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 µg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.


Subject(s)
Astrocytes , Cell Proliferation , Hippo Signaling Pathway , Marine Toxins , Microcystins , Signal Transduction , Microcystins/toxicity , Animals , Astrocytes/drug effects , Hippo Signaling Pathway/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , YAP-Signaling Proteins , Cell Survival/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , ErbB Receptors/metabolism , TEA Domain Transcription Factors , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
6.
Biochem Biophys Res Commun ; 718: 150037, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735135

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for more than 80 % of lung cancer (LC) cases, making it the primary cause of cancer-related mortality worldwide. T-box transcription factor 5 (TBX5) is an important regulator of embryonic and organ development and plays a key role in cancer development. Here, our objective was to investigate the involvement of TBX5 in ferroptosis within LC cells and the underlying mechanisms. METHODS: First, TBX5 expression was examined in human LC cells. Next, overexpression of TBX5 and Yes1-associated transcriptional regulator (YAP1) and knockdown of TEA domain 1 (TEAD1) were performed in A549 and NCI-H1703 cells. The proliferation ability of A549 and NCI-H1703 cells, GSH, MDA, ROS, and Fe2+ levels were measured. Co-immunoprecipitation (Co-IP) was performed to verify whether TBX5 protein could bind YAP1. Then TBX5, YAP1, TEAD1, GPX4, p53, FTH1, SLC7A11 and PTGS2 protein levels were assessed. Finally, we verified the effect of TBX5 on ferroptosis in LC cells in vivo. RESULTS: TBX5 expression was down-regulated in LC cells, especially in A549 and NCI-H1703 cells. Overexpression of TBX5 significantly decreased proliferation ability of A549 and NCI-H1703 cells, downregulated GPX4 and GSH levels, and upregulated MDA, ROS, and Fe2+ levels. Co-IP verified that TBX5 protein could bind YAP1. Moreover, oe-YAP1 promoted proliferation ability of A549 and NCI-H1703 cells transfected with Lv-TBX5, upregulated GPX4 and GSH levels and downregulated MDA, ROS, and Fe2+ levels. Additionally, oe-YAP1 promoted FTH1 and SLC7A11 levels and inhibited p53 and PTGS2 levels in A549 and NCI-H1703 cells transfected with Lv-TBX5. However, transfection with si-TEAD1 further reversed these effects. In vivo experiments further validated that TBX5 promoted ferroptosis in LC cells. CONCLUSIONS: TBX5 inhibited the activation of YAP1-TEAD1 pathway to promote ferroptosis in LC cells.


Subject(s)
Ferroptosis , Lung Neoplasms , T-Box Domain Proteins , TEA Domain Transcription Factors , Transcription Factors , YAP-Signaling Proteins , Ferroptosis/genetics , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , TEA Domain Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Cell Proliferation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Gene Expression Regulation, Neoplastic , A549 Cells , Signal Transduction , Reactive Oxygen Species/metabolism
7.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658677

ABSTRACT

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Subject(s)
Acrylamides , Drug Resistance, Neoplasm , ErbB Receptors , Indoles , Lung Neoplasms , Mutation , Pyrimidines , Transcription Factors , Humans , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Acrylamides/pharmacology , Acrylamides/therapeutic use , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Gefitinib/pharmacology , Hippo Signaling Pathway , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , TEA Domain Transcription Factors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems
8.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606592

ABSTRACT

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Subject(s)
Lipoylation , Molecular Dynamics Simulation , TEA Domain Transcription Factors , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Humans , Acyltransferases/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/chemistry , Allosteric Regulation/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , Protein Binding , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors/chemistry , TEA Domain Transcription Factors/metabolism , Trans-Activators/metabolism , Trans-Activators/chemistry , Trans-Activators/antagonists & inhibitors , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/chemistry , YAP-Signaling Proteins/metabolism
9.
EMBO J ; 43(10): 1965-1989, 2024 May.
Article in English | MEDLINE | ID: mdl-38605224

ABSTRACT

The transition of mouse embryonic stem cells (ESCs) between serum/LIF and 2i(MEK and GSK3 kinase inhibitor)/LIF culture conditions serves as a valuable model for exploring the mechanisms underlying ground and confused pluripotent states. Regulatory networks comprising core and ancillary pluripotency factors drive the gene expression programs defining stable naïve pluripotency. In our study, we systematically screened factors essential for ESC pluripotency, identifying TEAD2 as an ancillary factor maintaining ground-state pluripotency in 2i/LIF ESCs and facilitating the transition from serum/LIF to 2i/LIF ESCs. TEAD2 exhibits increased binding to chromatin in 2i/LIF ESCs, targeting active chromatin regions to regulate the expression of 2i-specific genes. In addition, TEAD2 facilitates the expression of 2i-specific genes by mediating enhancer-promoter interactions during the serum/LIF to 2i/LIF transition. Notably, deletion of Tead2 results in reduction of a specific set of enhancer-promoter interactions without significantly affecting binding of chromatin architecture proteins, CCCTC-binding factor (CTCF), and Yin Yang 1 (YY1). In summary, our findings highlight a novel prominent role of TEAD2 in orchestrating higher-order chromatin structures of 2i-specific genes to sustain ground-state pluripotency.


Subject(s)
Chromatin , DNA-Binding Proteins , Mouse Embryonic Stem Cells , TEA Domain Transcription Factors , Transcription Factors , Animals , Mice , TEA Domain Transcription Factors/metabolism , Chromatin/metabolism , Chromatin/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Promoter Regions, Genetic , Enhancer Elements, Genetic
10.
Cell Metab ; 36(5): 1030-1043.e7, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38670107

ABSTRACT

The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.


Subject(s)
DNA-Binding Proteins , Liver Cirrhosis , TEA Domain Transcription Factors , Transcription Factors , TEA Domain Transcription Factors/metabolism , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Alternative Splicing , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hepatic Stellate Cells/metabolism , Male , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Mice, Knockout
11.
FEBS Lett ; 598(9): 1045-1060, 2024 May.
Article in English | MEDLINE | ID: mdl-38594215

ABSTRACT

TEAD transcription factors play a central role in the Hippo signaling pathway. In this study, we focused on transcriptional enhancer factor TEF-3 (TEAD4), exploring its regulation by the deubiquitinase OTU domain-containing protein 6A (OTUD6A). We identified OTUD6A as a TEAD4-interacting deubiquitinase, positively influencing TEAD-driven transcription without altering TEAD4 stability. Structural analyses revealed specific interaction domains: the N-terminal domain of OTUD6A and the YAP-binding domain of TEAD4. Functional assays demonstrated the positive impact of OTUD6A on the transcription of YAP-TEAD target genes. Despite no impact on TEAD4 nuclear localization, OTUD6A selectively modulated nuclear interactions, enhancing YAP-TEAD4 complex formation while suppressing VGLL4 (transcription cofactor vestigial-like protein 4)-TEAD4 interaction. Critically, OTUD6A facilitated YAP-TEAD4 complex binding to target gene promoters. Our study unveils the regulatory landscape of OTUD6A on TEAD4, providing insights into diseases regulated by YAP-TEAD complexes.


Subject(s)
DNA-Binding Proteins , Muscle Proteins , TEA Domain Transcription Factors , Transcription Factors , TEA Domain Transcription Factors/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , HEK293 Cells , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/chemistry , Transcription, Genetic , Protein Binding , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Promoter Regions, Genetic
12.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38574734

ABSTRACT

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Subject(s)
Embryo Implantation , Gene Expression Regulation, Developmental , Transcription Factor AP-2 , Transcription Factors , Animals , Female , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Embryo Implantation/genetics , Embryonic Development/genetics , Gene Regulatory Networks , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Promoter Regions, Genetic/genetics , TEA Domain Transcription Factors/metabolism , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tretinoin/metabolism
13.
Mol Syst Biol ; 20(4): 374-402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38459198

ABSTRACT

Sex-based differences in obesity-related hepatic malignancies suggest the protective roles of estrogen. Using a preclinical model, we dissected estrogen receptor (ER) isoform-driven molecular responses in high-fat diet (HFD)-induced liver diseases of male and female mice treated with or without an estrogen agonist by integrating liver multi-omics data. We found that selective ER activation recovers HFD-induced molecular and physiological liver phenotypes. HFD and systemic ER activation altered core liver pathways, beyond lipid metabolism, that are consistent between mice and primates. By including patient cohort data, we uncovered that ER-regulated enhancers govern central regulatory and metabolic genes with clinical significance in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, including the transcription factor TEAD1. TEAD1 expression increased in MASLD patients, and its downregulation by short interfering RNA reduced intracellular lipid content. Subsequent TEAD small molecule inhibition improved steatosis in primary human hepatocyte spheroids by suppressing lipogenic pathways. Thus, TEAD1 emerged as a new therapeutic candidate whose inhibition ameliorates hepatic steatosis.


Subject(s)
Fatty Liver , Non-alcoholic Fatty Liver Disease , Animals , Female , Humans , Male , Mice , Diet, High-Fat/adverse effects , Estrogens , Fatty Liver/genetics , Fatty Liver/metabolism , Gene Expression , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/therapeutic use , TEA Domain Transcription Factors
14.
J Biol Chem ; 300(5): 107212, 2024 May.
Article in English | MEDLINE | ID: mdl-38522513

ABSTRACT

As an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown. We identified a direct link and physical interaction between NF2 and TEAD4. NF2 interacted with TEAD4 through its FERM domain and C-terminal tail and decreased the protein stability of TEAD4 independently of LATS1/2 and YAP. Furthermore, NF2 inhibited TEAD4 palmitoylation and induced the cytoplasmic translocation of TEAD4, resulting in ubiquitination and dysfunction of TEAD4. Moreover, the interaction with TEAD4 is required for NF2 function to suppress cell proliferation. These findings reveal an unanticipated role of NF2 as a binding partner and inhibitor of the transcription factor TEAD, shedding light on an alternative mechanism of how NF2 functions as a tumor suppressor through the Hippo signaling cascade.


Subject(s)
Hippo Signaling Pathway , Neurofibromin 2 , Protein Serine-Threonine Kinases , Signal Transduction , TEA Domain Transcription Factors , Humans , Cell Proliferation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , HEK293 Cells , Lipoylation , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Stability , TEA Domain Transcription Factors/metabolism , Tumor Suppressor Proteins , Ubiquitination
15.
J Cell Mol Med ; 28(7): e18266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501838

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), a very aggressive tumour, is currently the third leading cause of cancer-related deaths. Unfortunately, many patients face the issue of inoperability at the diagnostic phase leading to a quite dismal prognosis. The onset of metastatic processes has a crucial role in the elevated mortality rates linked to PDAC. Individuals with metastatic advances receive only palliative therapy and have a grim prognosis. It is essential to carefully analyse the intricacies of the metastatic process to enhance the prognosis for individuals with PDAC. Malignancy development is greatly impacted by the process of macrophage efferocytosis. Our current knowledge about the complete range of macrophage efferocytosis activities in PDAC and their intricate interactions with tumour cells is still restricted. This work aims to resolve communication gaps and pinpoint the essential transcription factor that is vital in the immunological response of macrophage populations. We analysed eight PDAC tissue samples sourced from the gene expression omnibus. We utilized several software packages such as Seurat, DoubletFinder, Harmony, Pi, GSVA, CellChat and Monocle from R software together with pySCENIC from Python, to analyse the single-cell RNA sequencing (scRNA-seq) data collected from the PDAC samples. This study involved the analysis of a comprehensive sample of 22,124 cells, which were classified into distinct cell types. These cell types encompassed endothelial and epithelial cells, PDAC cells, as well as various immune cells, including CD4+ T cells, CD8+ T cells, NK cells, B cells, plasma cells, mast cells, monocytes, DC cells and different subtypes of macrophages, namely C0 macrophage TGM2+, C1 macrophage PFN1+, C2 macrophage GAS6+ and C3 macrophage APOC3+. The differentiation between tumour cells and epithelial cells was achieved by the implementation of CopyKat analysis, resulting in the detection and categorization of 1941 PDAC cells. The amplification/deletion patterns observed in PDAC cells on many chromosomes differ significantly from those observed in epithelial cells. The study of Pseudotime Trajectories demonstrated that the C0 macrophage subtype expressing TGM2+ had the lowest level of differentiation. Additionally, the examination of gene set scores related to efferocytosis suggested that this subtype displayed higher activity during the efferocytosis process compared to other subtypes. The most active transcription factors for each macrophage subtype were identified as BACH1, NFE2, TEAD4 and ARID3A. In conclusion, the examination of human PDAC tissue samples using immunofluorescence analysis demonstrated the co-localization of CD68 and CD11b within regions exhibiting the presence of keratin (KRT) and alpha-smooth muscle actin (α-SMA). This observation implies a spatial association between macrophages, fibroblasts, and epithelial cells. There is variation in the expression of efferocytosis-associated genes between C0 macrophage TGM2+ and other macrophage cell types. This observation implies that the diversity of macrophage cells might potentially influence the metastatic advancement of PDAC. Moreover, the central transcription factor of different macrophage subtypes offers a promising opportunity for targeted immunotherapy in the treatment of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Efferocytosis , Single-Cell Gene Expression Analysis , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Macrophages/metabolism , Transcription Factors/metabolism , Tumor Microenvironment , DNA-Binding Proteins/genetics , TEA Domain Transcription Factors , Profilins/genetics
16.
J Biol Chem ; 300(4): 107208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521502

ABSTRACT

Transforming growth factor-ß (TGF-ß) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-ß target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-ß in liver cancer cells. In addition, TGF-ß-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-ß- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-ß- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-ß and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Cysteine-Rich Protein 61 , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Data Mining , Gene Expression Regulation, Neoplastic/genetics , Hippo Signaling Pathway , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mice, Nude , Promoter Regions, Genetic , Signal Transduction/genetics , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , TEA Domain Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Up-Regulation , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics
17.
Biochim Biophys Acta Gen Subj ; 1868(5): 130592, 2024 May.
Article in English | MEDLINE | ID: mdl-38395204

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) cell-intrinsic programmed death 1 (PD-1) promotes tumor progression. However, the mechanisms that regulate its expression are unclear. This study investigated the impact of alpha-fetoprotein (AFP) on HCC cell-intrinsic PD-1 expression. METHODS: The expression of PD-1 and AFP at the gene and protein levels was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB). Proteins interacting with AFP were examined by co-immunoprecipitation (CO-IP). Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were used to identify transcription-enhanced association domain 1 (TEAD1) binding to the promoter of PD-1. RESULTS: The expression of HCC cell-intrinsic PD-1 was positively correlated with AFP. Mechanistically, AFP inhibited the phosphorylation of large tumor suppressor 2 (LATS2) and yes-associated protein (YAP). As a result, YAP is transferred to the nucleus and forms a transcriptional complex with TEAD1, promoting PD-1 transcription by binding to its promoter. CONCLUSION: AFP is an upstream regulator of the HCC cell-intrinsic PD-1 and increases PD-1 expression via the LATS2/YAP/TEAD1 axis. GENERAL: Our findings provide insight into the mechanisms of HCC development and offer new ideas for further in-depth studies of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , alpha-Fetoproteins/metabolism , Liver Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , TEA Domain Transcription Factors
18.
Signal Transduct Target Ther ; 9(1): 45, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374140

ABSTRACT

Cardiac fibroblasts (CFs) are the primary cells tasked with depositing and remodeling collagen and significantly associated with heart failure (HF). TEAD1 has been shown to be essential for heart development and homeostasis. However, fibroblast endogenous TEAD1 in cardiac remodeling remains incompletely understood. Transcriptomic analyses revealed consistently upregulated cardiac TEAD1 expression in mice 4 weeks after transverse aortic constriction (TAC) and Ang-II infusion. Further investigation revealed that CFs were the primary cell type expressing elevated TEAD1 levels in response to pressure overload. Conditional TEAD1 knockout was achieved by crossing TEAD1-floxed mice with CFs- and myofibroblasts-specific Cre mice. Echocardiographic and histological analyses demonstrated that CFs- and myofibroblasts-specific TEAD1 deficiency and treatment with TEAD1 inhibitor, VT103, ameliorated TAC-induced cardiac remodeling. Mechanistically, RNA-seq and ChIP-seq analysis identified Wnt4 as a novel TEAD1 target. TEAD1 has been shown to promote the fibroblast-to-myofibroblast transition through the Wnt signalling pathway, and genetic Wnt4 knockdown inhibited the pro-transformation phenotype in CFs with TEAD1 overexpression. Furthermore, co-immunoprecipitation combined with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated interaction between TEAD1 and BET protein BRD4, leading to the binding and activation of the Wnt4 promoter. In conclusion, TEAD1 is an essential regulator of the pro-fibrotic CFs phenotype associated with pathological cardiac remodeling via the BRD4/Wnt4 signalling pathway.


Subject(s)
TEA Domain Transcription Factors , Transcription Factors , Ventricular Remodeling , Animals , Mice , Myofibroblasts/metabolism , Myofibroblasts/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , TEA Domain Transcription Factors/genetics , TEA Domain Transcription Factors/metabolism , Transcription Factors/genetics , Ventricular Remodeling/genetics , Wnt4 Protein/metabolism , Fibroblasts/metabolism , Bromodomain Containing Proteins/metabolism
19.
Kidney Int ; 105(6): 1200-1211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423183

ABSTRACT

Podocyte injury and loss are hallmarks of diabetic nephropathy (DN). However, the molecular mechanisms underlying these phenomena remain poorly understood. YAP (Yes-associated protein) is an important transcriptional coactivator that binds with various other transcription factors, including the TEAD family members (nuclear effectors of the Hippo pathway), that regulate cell proliferation, differentiation, and apoptosis. The present study found an increase in YAP phosphorylation at S127 of YAP and a reduction of nuclear YAP localization in podocytes of diabetic mouse and human kidneys, suggesting dysregulation of YAP may play a role in diabetic podocyte injury. Tamoxifen-inducible podocyte-specific Yap gene knockout mice (YappodKO) exhibited accelerated and worsened diabetic kidney injury. YAP inactivation decreased transcription factor WT1 expression with subsequent reduction of Tead1 and other well-known targets of WT1 in diabetic podocytes. Thus, our study not only sheds light on the pathophysiological roles of the Hippo pathway in diabetic podocyte injury but may also lead to the development of new therapeutic strategies to prevent and/or treat DN by targeting the Hippo signaling pathway.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice, Knockout , Phosphoproteins , Podocytes , Signal Transduction , Transcription Factors , WT1 Proteins , YAP-Signaling Proteins , Podocytes/metabolism , Podocytes/pathology , Animals , WT1 Proteins/metabolism , WT1 Proteins/genetics , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Humans , Phosphorylation , Transcription Factors/metabolism , Transcription Factors/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Phosphoproteins/metabolism , Phosphoproteins/genetics , TEA Domain Transcription Factors/metabolism , Hippo Signaling Pathway , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Male , Mice, Inbred C57BL , Tamoxifen/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
20.
BMC Med ; 22(1): 57, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317232

ABSTRACT

BACKGROUND: Abnormal placental development is a significant factor contributing to perinatal morbidity and mortality, affecting approximately 5-7% of pregnant women. Trophoblast syncytialization plays a pivotal role in the establishment and maturation of the placenta, and its dysregulation is closely associated with several pregnancy-related disorders, including preeclampsia and intrauterine growth restriction. However, the underlying mechanisms and genetic determinants of syncytialization are largely unknown. METHODS: We conducted a systematic drug screen using an epigenetic compound library to systematically investigate the epigenetic mechanism essential for syncytialization, and identified mixed lineage leukemia 1 (MLL1), a histone 3 lysine 4 methyltransferase, as a crucial regulator of trophoblast syncytialization. BeWo cells were utilized to investigate the role of MLL1 during trophoblast syncytialization. RNA sequencing and CUT&Tag were further performed to search for potential target genes and the molecular pathways involved. Human placenta tissue was used to investigate the role of MLL1 in TEA domain transcription factor 4 (TEAD4) expression and the upstream signaling during syncytialization. A mouse model was used to examine whether inhibition of MLL1-mediated H3K4me3 regulated placental TEAD4 expression and fetoplacental growth. RESULTS: Genetic knockdown of MLL1 or pharmacological inhibition of the MLL1 methyltransferase complex (by MI-3454) markedly enhanced syncytialization, while overexpression of MLL1 inhibited forskolin (FSK)-induced syncytiotrophoblast formation. In human placental villous tissue, MLL1 was predominantly localized in the nuclei of cytotrophoblasts. Moreover, a notable upregulation in MLL1 expression was observed in the villus tissue of patients with preeclampsia compared with that in the control group. Based on RNA sequencing and CUT&Tag analyses, depletion of MLL1 inhibited the Hippo signaling pathway by suppressing TEAD4 expression by modulating H3K4me3 levels on the TEAD4 promoter region. TEAD4 overexpression significantly reversed the FSK-induced or MLL1 silencing-mediated trophoblast syncytialization. Additionally, decreased hypoxia-inducible factor 1A (HIF1A) enrichment at the MLL1 promoter was observed during syncytialization. Under hypoxic conditions, HIF1A could bind to and upregulate MLL1, leading to the activation of the MLL1/TEAD4 axis. In vivo studies demonstrated that the administration of MI-3454 significantly enhanced fetal vessel development and increased the thickness of the syncytial layer, thereby supporting fetoplacental growth. CONCLUSIONS: These results revealed a novel epigenetic mechanism underlying the progression of syncytialization with MLL1, and suggest potential avenues for identifying new therapeutic targets for pregnancy-related disorders.


Subject(s)
Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Placenta , Pre-Eclampsia , Animals , Female , Humans , Mice , Pregnancy , Epigenesis, Genetic , Placenta/metabolism , TEA Domain Transcription Factors , Trophoblasts/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...