Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nutrients ; 13(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208504

ABSTRACT

The soybean allergen Gly m 4 is known to cause severe allergic reactions including anaphylaxis, unlike other Bet v 1 homologues, which induce mainly local allergic reactions. In the present study, we aimed to investigate whether the food Bet v 1 homologue Gly m 4 can be a sensitizer of the immune system. Susceptibility to gastrointestinal digestion was assessed in vitro. Transport through intestinal epithelium was estimated using the Caco-2 monolayer. Cytokine response of different immunocompetent cells was evaluated by using Caco-2/Immune cells co-culture model. Absolute levels of 48 cytokines were measured by multiplex xMAP technology. It was shown that Gly m 4 can cross the epithelial barrier with a moderate rate and then induce production of IL-4 by mature dendritic cells in vitro. Although Gly m 4 was shown to be susceptible to gastrointestinal enzymes, some of its proteolytic fragments can selectively cross the epithelial barrier and induce production of Th2-polarizing IL-5, IL-10, and IL-13, which may point at the presence of the T-cell epitope among the crossed fragments. Our current data indicate that Gly m 4 can potentially be a sensitizer of the immune system, and intercommunication between immunocompetent and epithelial cells may play a key role in the sensitization process.


Subject(s)
Antigens, Plant/pharmacology , Food Hypersensitivity/therapy , Immunization/methods , Antigens, Plant/immunology , Caco-2 Cells/drug effects , Caco-2 Cells/immunology , Chemokines/metabolism , Coculture Techniques , Cytokines/metabolism , Escherichia coli/metabolism , Food Hypersensitivity/immunology , Gas Chromatography-Mass Spectrometry , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Models, Biological , Organisms, Genetically Modified , THP-1 Cells/drug effects , THP-1 Cells/immunology
2.
PLoS One ; 16(7): e0254194, 2021.
Article in English | MEDLINE | ID: mdl-34214113

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne's disease, which is a chronic and debilitating disease in ruminants. MAP is also considered to be a possible cause of Crohn's disease in humans. However, few studies have focused on the interactions between MAP and human macrophages to elucidate the pathogenesis of Crohn's disease. We sought to determine the initial responses of human THP-1 cells against MAP infection using single-cell RNA-seq analysis. Clustering analysis showed that THP-1 cells were divided into seven different clusters in response to phorbol-12-myristate-13-acetate (PMA) treatment. The characteristics of each cluster were investigated by identifying cluster-specific marker genes. From the results, we found that classically differentiated cells express CD14, CD36, and TLR2, and that this cell type showed the most active responses against MAP infection. The responses included the expression of proinflammatory cytokines and chemokines such as CCL4, CCL3, IL1B, IL8, and CCL20. In addition, the Mreg cell type, a novel cell type differentiated from THP-1 cells, was discovered. Thus, it is suggested that different cell types arise even when the same cell line is treated under the same conditions. Overall, analyzing gene expression patterns via scRNA-seq classification allows a more detailed observation of the response to infection by each cell type.


Subject(s)
Immunity/immunology , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/immunology , RNA/immunology , THP-1 Cells/immunology , Animals , Cells, Cultured , Crohn Disease/immunology , Crohn Disease/microbiology , Cytokines/immunology , Gene Expression/immunology , Humans , Macrophages/immunology , Macrophages/microbiology , Paratuberculosis/microbiology , Ruminants/immunology , Ruminants/microbiology , Sequence Analysis, RNA/methods , THP-1 Cells/microbiology
3.
Int Immunol ; 33(8): 447-458, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34089617

ABSTRACT

The extracellular matrix (ECM) is the basis for virtually all cellular processes and is also related to tumor metastasis. Fibronectin (FN), a major ECM macromolecule expressed by different cell types and also present in plasma, consists of multiple functional modules that bind to ECM-associated, plasma, and cell-surface proteins such as integrins and FN itself, thus ensuring its cell-adhesive and modulatory role. Here we show that FN constitutes an immune checkpoint. Thus, FN was identified as a physiological ligand for a tumor/leukemia/lymphoma- as well as autoimmune-associated checkpoint, ILT3/LILRB4 (B4, CD85k). Human B4 and the murine ortholog, gp49B, bound FN with sub-micromolar affinities as assessed by bio-layer interferometry. The major B4-binding site in FN was located at the N-terminal 30-kDa module (FN30), which is apart from the major integrin-binding site present at the middle of the molecule. Blockade of B4-FN binding such as with B4 antibodies or a recombinant FN30-Fc fusion protein paradoxically ameliorated autoimmune disease in lupus-prone BXSB/Yaa mice. The unexpected nature of the B4-FN checkpoint in autoimmunity is discussed, referring to its potential role in tumor immunity.


Subject(s)
Autoimmune Diseases/metabolism , Fibronectins/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmunity/immunology , Cell Communication/immunology , Cell Line, Tumor , Cells, Cultured , Fibronectins/immunology , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins/immunology , Mice , Phagocytosis/immunology , RAW 264.7 Cells , Receptors, Immunologic/immunology , THP-1 Cells/immunology , THP-1 Cells/metabolism
4.
J Immunother ; 44(4): 141-150, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33596023

ABSTRACT

Our previous research has shown that monocytic leukemia-associated antigen-34 (MLAA-34) was a novel antiapoptotic molecule with unique expression in acute monocytic leukemia (M5), making it an ideal target for T-cell-based immunotherapy. Here, we sought to identify HLA-A*0201-restricted cytotoxic T-lymphocyte (CTL) epitope of MLAA-34 by reverse immunology. In all, 10 HLA-A*0201 restricted epitopes of MLAA-34 were predicted by bioinformatics. MLAA-34324-332, MLAA-34293-301, and MLAA-34236-244 showed the strongest HLA-A*0201-binding affinity. The percentages of HLA-A*0201-MLAA-34236-244 tetramer+ CD8+ T cells in MLAA-34236-244-induced CTLs were raised apparently. Enzyme-linked immunospot showed that MLAA-34236-244 and MLAA-34324-332-specific CTLs produced a higher amount of interferon-γ. MLAA-34236-244-induced CTLs presented a stronger cytotoxic effect on THP-1 cells (HLA-A*0201+MLAA-34+) at various effector to target ratios. MLAA-34236-244 peptide vaccine could inhibit the tumor growth and improve mean survival time of leukemia-bearing human peripheral blood lymphocyte reconstituting severe combined immunodeficient mice. Mice immunized with MLAA-34236-244 vaccine had increased percentages of MLAA-34236-244 tetramer+ CD8+ T cells in the spleen after each round of immunization. High-purity CD8+ and CD4+ T cells were sorted by Dynabeads as effector cells. The killing activity of CD8+ T cells was higher than that of CD4+ T cells. CTLs derived from the MLAA-34 peptide vaccine group were significantly higher than other therapeutic groups and showed specific cytotoxicity to THP-1 cells. Increased interferon-γ and interleukin (IL)-2 and decreased IL-10 and IL-4 were seen in the MLAA-34236-244 peptide vaccine group. MLAA-34236-244 peptide (ILDRHNFAI) is an effective HLA-A*0201-restricted CTL epitope and that it may serve as a promising strategy in designing antigen-specific immunotherapy against MLAA-34-positive acute monocytic leukemia.


Subject(s)
Antigens, Neoplasm/immunology , Apoptosis Regulatory Proteins/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Leukemia, Monocytic, Acute/immunology , T-Lymphocytes, Cytotoxic/immunology , A549 Cells , Animals , Antineoplastic Agents , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Humans , Immunotherapy/methods , MCF-7 Cells , Mice , Mice, SCID , Peptides/immunology , THP-1 Cells/immunology , U937 Cells
5.
J Immunol ; 206(5): 999-1012, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33472907

ABSTRACT

Vaccine efforts to combat HIV are challenged by the global diversity of viral strains and shielding of neutralization epitopes on the viral envelope glycoprotein trimer. Even so, the isolation of broadly neutralizing Abs from infected individuals suggests the potential for eliciting protective Abs through vaccination. This study reports a panel of 58 mAbs cloned from a rhesus macaque (Macaca mulatta) immunized with envelope glycoprotein immunogens curated from an HIV-1 clade C-infected volunteer. Twenty mAbs showed neutralizing activity, and the strongest neutralizer displayed 92% breadth with a median IC50 of 1.35 µg/ml against a 13-virus panel. Neutralizing mAbs predominantly targeted linear epitopes in the V3 region in the cradle orientation (V3C) with others targeting the V3 ladle orientation (V3L), the CD4 binding site (CD4bs), C1, C4, or gp41. Nonneutralizing mAbs bound C1, C5, or undetermined conformational epitopes. Neutralization potency strongly correlated with the magnitude of binding to infected primary macaque splenocytes and to the level of Ab-dependent cellular cytotoxicity, but did not predict the degree of Ab-dependent cellular phagocytosis. Using an individualized germline gene database, mAbs were traced to 23 of 72 functional IgHV alleles. Neutralizing V3C Abs displayed minimal nucleotide somatic hypermutation in the H chain V region (3.77%), indicating that relatively little affinity maturation was needed to achieve in-clade neutralization breadth. Overall, this study underscores the polyfunctional nature of vaccine-elicited tier 2-neutralizing V3 Abs and demonstrates partial reproduction of the human donor's humoral immune response through nonhuman primate vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Monoclonal/immunology , Binding Sites/immunology , Cell Line , Epitopes/immunology , HIV Infections/immunology , Humans , Immunization/methods , Immunoglobulin Variable Region/immunology , Macaca mulatta/immunology , THP-1 Cells/immunology , Vaccination/methods , Viral Envelope Proteins/immunology
6.
Cancer Immunol Immunother ; 70(6): 1619-1634, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33237349

ABSTRACT

The microRNA let-7d has been reported to be a tumor suppressor in renal cell carcinoma (RCC). Tumor-associated macrophages (TAM) are M2-polarized macrophages that can enhance tumor growth and angiogenesis in many human cancers. However, the role of let-7d in TAM-associated RCC progression remains elusive. First, we observed a strongly inverse correlation between let-7d expression and microvessel density in RCC tissues. Furthermore, the proliferation, migration, and tube formation of HUVECs were significantly inhibited by conditioned medium from a coculture system of the phorbol myristate acetate pretreated human THP-1 macrophages and let-7d-overexpressing RCC cells. Moreover, the proportion of M2 macrophages was significantly lower in the group that was cocultured with let-7d-overexpressing RCC cells. Subcutaneous xenografts formed by the injection of let-7d-overexpressing RCC cells together with THP-1 cells resulted in a significant decrease in the M2 macrophage ratio and microvessel density compared with those formed by the injection of control RCC cells with THP-1 cells. In silico and experimental analysis revealed interleukin-10 (IL-10) and IL-13 as let-7d target genes. Importantly, the addition of IL-10 and IL-13 counteracted the inhibitory effects of the conditioned medium from the coculture system with let-7d-overexpressing RCC cells in vitro. Additionally, overexpression of IL-10 and IL-13 reversed the effects of let-7d on macrophage M2 polarization and tumor angiogenesis in vivo. Finally, the expression of IL-10 and IL-13 were inversely correlated with the expression of let-7d in RCC clinical specimens. These results suggest that let-7d may inhibit intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-10 and IL-13.


Subject(s)
Carcinoma, Renal Cell/prevention & control , Interleukin-10/antagonists & inhibitors , Interleukin-13/antagonists & inhibitors , Kidney Neoplasms/prevention & control , Macrophage Activation/immunology , MicroRNAs/genetics , Neovascularization, Pathologic/therapy , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Cell Movement , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/blood supply , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Pathologic/pathology , Prognosis , THP-1 Cells/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
J Toxicol Sci ; 45(11): 673-680, 2020.
Article in English | MEDLINE | ID: mdl-33132241

ABSTRACT

The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have been approved for non-small cell lung cancer. Although EGFR TKIs are less toxic than traditional cytotoxic therapies, they cause many severe idiosyncratic drug reactions. Reactive metabolites can cause cellular damage with the release of danger-associated molecular patterns (DAMPs), which is thought to be involved in immune activation. Inflammasomes can be activated by DAMPs, and this may be a common mechanism by which DAMPs initiate an immune response. We tested the ability of afatinib, dacomitinib, erlotinib, gefitinib, and osimertinib to induce the release of DAMPs that activate inflammasomes. Human hepatocarcinoma functional liver cell-4 (FLC-4) cells were used for bioactivation of drugs, and the detection of inflammasome activation was performed with the human macrophage cell line, THP-1 cells. Gefitinib is known to be oxidized to a reactive iminoquinone metabolite. We found that the supernatant from the incubation of gefitinib with FLC-4 cells for 7 days led to increased caspase-1 activity and production of IL-1ß by THP-1 cells. In the supernatant of FLC-4 cells with gefitinib, the heat shock protein (HSP) 40, 70 and 90 were significantly increased. In addition, activated THP-1 cells secreted high mobility group box 1 (HMGB1) protein. These results support the hypothesis that the reactive iminoquinone metabolite can cause the release of DAMPs from hepatocytes, which in turn, can activate inflammasomes. Inflammasome activation may be an important step in the activation of the immune system by gefitinib, which in some patients, can cause immune-related adverse events.


Subject(s)
Culture Media/adverse effects , Gefitinib/adverse effects , Hepatocytes , Inflammasomes/immunology , Macrophage Activation/drug effects , Protein Kinase Inhibitors/adverse effects , THP-1 Cells/immunology , Alarmins/metabolism , Caspase 1/metabolism , Cell Line , Gefitinib/metabolism , HMGB1 Protein/metabolism , Humans , Interleukin-1beta/metabolism , Protein Kinase Inhibitors/metabolism , Quinones/adverse effects , Quinones/metabolism , THP-1 Cells/metabolism
8.
Sci Rep ; 10(1): 17178, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057074

ABSTRACT

Tuberculosis-causing Mycobacterium tuberculosis (Mtb) is transmitted via airborne droplets followed by a primary infection of macrophages and dendritic cells. During the activation of host defence mechanisms also neutrophils and T helper 1 (TH1) and TH17 cells are recruited to the site of infection. The TH17 cell-derived interleukin (IL)-17 in turn induces the cathelicidin LL37 which shows direct antimycobacterial effects. Here, we investigated the role of IL-26, a TH1- and TH17-associated cytokine that exhibits antimicrobial activity. We found that both IL-26 mRNA and protein are strongly increased in tuberculous lymph nodes. Furthermore, IL-26 is able to directly kill Mtb and decrease the infection rate in macrophages. Binding of IL-26 to lipoarabinomannan might be one important mechanism in extracellular killing of Mtb. Macrophages and dendritic cells respond to IL-26 with secretion of tumor necrosis factor (TNF)-α and chemokines such as CCL20, CXCL2 and CXCL8. In dendritic cells but not in macrophages cytokine induction by IL-26 is partly mediated via Toll like receptor (TLR) 2. Taken together, IL-26 strengthens the defense against Mtb in two ways: firstly, directly due to its antimycobacterial properties and secondly indirectly by activating innate immune mechanisms.


Subject(s)
Interleukins/immunology , Interleukins/metabolism , Macrophages/immunology , Macrophages/metabolism , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , Adult , Aged , Cell Line , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , HEK293 Cells , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , RNA, Messenger/immunology , RNA, Messenger/metabolism , THP-1 Cells/immunology , THP-1 Cells/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
9.
Proc Natl Acad Sci U S A ; 117(37): 22984-22991, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32868431

ABSTRACT

Immune evasion through membrane remodeling is a hallmark of Yersinia pestis pathogenesis. Yersinia remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens Yersinia pseudotuberculosis (Ypt) and Yersinia enterocolitica (Ye), as well as the causative agent of plague, Yersinia pestis (Yp). Addition of a C16 fatty acid (palmitate) to lipid A by the outer membrane acyltransferase enzyme PagP occurs in immunostimulatory Ypt and Ye strains, but not in immune-evasive Yp Analysis of Yp pagP gene sequences identified a single-nucleotide polymorphism that results in a premature stop in translation, yielding a truncated, nonfunctional enzyme. Upon repair of this polymorphism to the sequence present in Ypt and Ye, lipid A isolated from a Yp pagP+ strain synthesized two structures with the C16 fatty acids located in acyloxyacyl linkage at the 2' and 3' positions of the diglucosamine backbone. Structural modifications were confirmed by mass spectrometry and gas chromatography. With the genotypic restoration of PagP enzymatic activity in Yp, a significant increase in lipid A endotoxicity mediated through the MyD88 and TRIF/TRAM arms of the TLR4-signaling pathway was observed. Discovery and repair of an evolutionarily lost lipid A modifying enzyme provides evidence of lipid A as a crucial determinant in Yp infectivity, pathogenesis, and host innate immune evasion.


Subject(s)
Acyltransferases/immunology , Immune Evasion/immunology , Immunity, Innate/immunology , Lipid A/immunology , Yersinia pestis/immunology , Animals , Biological Evolution , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Polymorphism, Single Nucleotide/immunology , THP-1 Cells/immunology , U937 Cells , Yersinia pseudotuberculosis/immunology
10.
BMC Immunol ; 21(1): 35, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32539713

ABSTRACT

BACKGROUND: Innate immune cells play a crucial role in the pathophysiology of rheumatoid arthritis (RA) via release of cytokines. Small-molecule inhibitors of Janus kinases (JAKi) are clinically efficacious in patients with RA. However, the isoform-specific action of each JAKi is difficult to assess, since JAKs form heterodimeric complexes with cytokine receptors. We assessed the effects of several JAKi on GM-CSF-primed human innate immune cells. RESULTS: Treatment with JAKi (tofacitinib, baricitinib, upadacitinib) prevented GM-CSF-induced JAK2/STAT5 phosphorylation at higher concentrations (400 nM) in THP-1 cells. Whereas compared with baricitinib or upadacitinib, the inhibitory effects of tofacitinib on the GM-CSF-induced JAK2/STAT5 phosphorylation were weak at lower concentrations (≤ 100 nM). All JAKi inhibited GM-CSF-induced IL-1ß production by human neutrophils. However, the inhibitory effects of baricitinib on IL-1ß production were larger compared to those of tofacitinib or upadacitinib at lower concentrations (≤ 100 nM). Similarly, all JAKi inhibited GM-CSF-induced caspase-1(p20) production by human neutrophils. CONCLUSION: We conclude that incubation with JAKi prevents GM-CSF-mediated JAK2/STAT5 activation in human innate immune cells. Although baricitinib and upadacitinib almost completely blocked GM-CSF-mediated JAK2/STAT5 signaling, the inhibitory effects of tofacitinib were weaker at lower concentrations suggesting that variation exists among these JAKi in the inhibition of JAK2 signaling pathways.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Immunity, Innate/drug effects , Janus Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Azetidines/pharmacology , Cell Line , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Janus Kinase 2/metabolism , Neutrophils/drug effects , Piperidines/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , STAT5 Transcription Factor/metabolism , Sulfonamides/pharmacology , THP-1 Cells/immunology
11.
Nutrients ; 12(4)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325790

ABSTRACT

The biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), modulates innate and adaptive immunity via genes regulated by the transcription factor vitamin D receptor (VDR). In order to identify the key vitamin D target genes involved in these processes, transcriptome-wide datasets were compared, which were obtained from a human monocytic cell line (THP-1) and peripheral blood mononuclear cells (PBMCs) treated in vitro by 1,25(OH)2D3, filtered using different approaches, as well as from PBMCs of individuals supplemented with a vitamin D3 bolus. The led to the genes ACVRL1, CAMP, CD14, CD93, CEBPB, FN1, MAPK13, NINJ1, LILRB4, LRRC25, SEMA6B, SRGN, THBD, THEMIS2 and TREM1. Public epigenome- and transcriptome-wide data from THP-1 cells were used to characterize these genes based on the level of their VDR-driven enhancers as well as the level of the dynamics of their mRNA production. Both types of datasets allowed the categorization of the vitamin D target genes into three groups according to their role in (i) acute response to infection, (ii) infection in general and (iii) autoimmunity. In conclusion, 15 genes were identified as major mediators of the action of vitamin D in innate and adaptive immunity and their individual functions are explained based on different gene regulatory scenarios.


Subject(s)
Adaptive Immunity/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Receptors, Calcitriol/physiology , Vitamin D/genetics , Vitamin D/immunology , Activin Receptors, Type II , Antimicrobial Cationic Peptides , Autoimmunity/genetics , Autoimmunity/immunology , CCAAT-Enhancer-Binding Protein-beta , Datasets as Topic , Fibronectins , Humans , Leukocytes, Mononuclear/immunology , Lipopolysaccharide Receptors , Membrane Glycoproteins , Receptors, Complement , THP-1 Cells/immunology , Transcriptome , Cathelicidins
12.
Mol Immunol ; 118: 73-78, 2020 02.
Article in English | MEDLINE | ID: mdl-31855809

ABSTRACT

Host cytoplasmic surveillance pathways are known to elicit type I interferon (IFN) responses which are crucial to antimicrobial defense mechanisms. Oligoadenylate synthetase-like (OASL) protein has been extensively characterized as a part of the anti-viral mechanism, however a number of transcriptomic studies reveal its upregulation in response to infection with a wide variety of intracellular bacterial pathogens. To date, there is no evidence documenting the role (if any) of OASL during mycobacterium tuberculosis infection. Using two pathogenic strains differing in virulence only, as well as the non-pathogenic M. bovis BCG strain, we observed that pathogenicity and virulence strongly induced OASL expression after 24 h of infection. Further, we observed that OASL knock down led to a significant increase in M. tb CFU counts 96 h post-infection in comparison to the respective controls. Luminex revealed that OASL silencing significantly decreased IL-1ß, TNF-α and MCP-1 secretion in THP-1 cells and had no effect on IL-10 secretion. We therefore postulate that OASL regulates pro-inflammatory mediators such as cytokines and chemokines which suppress intracellular mycobacterial growth and survival.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Adenine Nucleotides/metabolism , Cytokines/metabolism , Inflammation/metabolism , Oligoribonucleotides/metabolism , Tuberculosis/metabolism , 2',5'-Oligoadenylate Synthetase/immunology , Adenine Nucleotides/immunology , Cell Line , Cytokines/immunology , Cytoplasm/immunology , Cytoplasm/metabolism , Cytoplasm/microbiology , Humans , Inflammation/immunology , Interferon Type I/immunology , Interferon Type I/metabolism , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Oligoribonucleotides/immunology , THP-1 Cells/immunology , THP-1 Cells/metabolism , THP-1 Cells/microbiology , Tuberculosis/immunology , Tuberculosis/microbiology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Redox Biol ; 28: 101363, 2020 01.
Article in English | MEDLINE | ID: mdl-31707353

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway that modulates cellular redox homeostasis via the regeneration of NADPH. G6PD-deficient cells have a reduced ability to induce the innate immune response, thus increasing host susceptibility to pathogen infections. An important part of the immune response is the activation of the inflammasome. G6PD-deficient peripheral blood mononuclear cells (PBMCs) from patients and human monocytic (THP-1) cells were used as models to investigate whether G6PD modulates inflammasome activation. A decreased expression of IL-1ß was observed in both G6PD-deficient PBMCs and PMA-primed G6PD-knockdown (G6PD-kd) THP-1 cells upon lipopolysaccharide (LPS)/adenosine triphosphate (ATP) or LPS/nigericin stimulation. The pro-IL-1ß expression of THP-1 cells was decreased by G6PD knockdown at the transcriptional and translational levels in an investigation of the expression of the inflammasome subunits. The phosphorylation of p38 MAPK and downstream c-Fos expression were decreased upon G6PD knockdown, accompanied by decreased AP-1 translocation into the nucleus. Impaired inflammasome activation in G6PD-kd THP-1 cells was mediated by a decrease in the production of reactive oxygen species (ROS) by NOX signaling, while treatment with hydrogen peroxide (H2O2) enhanced inflammasome activation in G6PD-kd THP-1 cells. G6PD knockdown decreased Staphylococcus aureus and Escherichia coli clearance in G6PD-kd THP-1 cells and G6PD-deficient PBMCs following inflammasome activation. These findings support the notion that enhanced pathogen susceptibility in G6PD deficiency is, in part, due to an altered redox signaling, which adversely affects inflammasome activation and the bactericidal response.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/immunology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , NADPH Oxidases/metabolism , Transcription Factor AP-1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , Case-Control Studies , Down-Regulation , Female , Gene Knockdown Techniques , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/microbiology , HEK293 Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lipopolysaccharides/adverse effects , Male , THP-1 Cells/drug effects , THP-1 Cells/immunology , THP-1 Cells/microbiology , Young Adult
14.
Parasit Vectors ; 12(1): 467, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31597577

ABSTRACT

BACKGROUND: Pathogenic protozoans use extracellular vesicles (EVs) for intercellular communication and host manipulation. Acanthamoeba castellanii is a free-living protozoan that may cause severe keratitis and fatal granulomatous encephalitis. Although several secreted molecules have been shown to play crucial roles in the pathogenesis of Acanthamoeba, the functions and components of parasite-derived EVs are far from understood. METHODS: Purified EVs from A. castellanii were confirmed by electron microscopy and nanoparticle tracking analysis. The functional roles of parasite-derived EVs in the cytotoxicity to and immune response of host cells were examined. The protein composition in EVs from A. castellanii was identified and quantified by LC-MS/MS analysis. RESULTS: EVs from A. castellanii fused with rat glioma C6 cells. The parasite-derived EVs induced an immune response from human THP-1 cells and a cytotoxic effect in C6 cells. Quantitative proteomic analysis identified a total of 130 proteins in EVs. Among the identified proteins, hydrolases (50.2%) and oxidoreductases (31.7%) were the largest protein families in EVs. Furthermore, aminopeptidase activities were confirmed in EVs from A. castellanii. CONCLUSIONS: The proteomic profiling and functional characterization of EVs from A. castellanii provide an in-depth understanding of the molecules packaged into EVs and their potential mechanisms mediating the pathogenesis of this parasite.


Subject(s)
Acanthamoeba castellanii/physiology , Exosomes/chemistry , Exosomes/physiology , Proteomics , Acanthamoeba Keratitis/parasitology , Acanthamoeba castellanii/pathogenicity , Acanthamoeba castellanii/ultrastructure , Aminopeptidases/analysis , Animals , Central Nervous System Protozoal Infections/parasitology , Culture Media , DNA, Complementary/biosynthesis , Exosomes/immunology , Exosomes/ultrastructure , Humans , Microscopy, Electron, Transmission , Neuroglia/parasitology , RNA, Protozoan/genetics , RNA, Protozoan/isolation & purification , Rats , Reverse Transcriptase Polymerase Chain Reaction , THP-1 Cells/immunology , THP-1 Cells/parasitology
15.
Exp Parasitol ; 204: 107721, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31288023

ABSTRACT

BACKGROUND: Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan able to infect humans and it is common in pregnant women. During pregnancy and lactation, there are changes in the concentration of 17ß-estradiol (E2), progesterone (Prg), and prolactin (PRL). It is known that a proinflamatory response reduces the susceptibility to be infected, and this response may change according to hormonal impairment. Monocytes and macrophages are the main barrier against many intracellular microorganisms, due to their ability to produce cytokines. The aim of this work was to determine the effect of E2, progesterone, and PRL on the infective capacity of T. gondii, proinflamatory immune response modulation and the expression of hormonal receptors on THP-1 cell stimulated with T. gondii. METHODS: The THP-1 cells were infected with 1500 T. gondii tachyzoites, of RH strain. Stimuli were conducted with recombinant PRL (200 ng/mL), E2 (40 nM) y Prg (40 nM). MTT assays were performed to evaluate cellular viability. Western blot assays were carried out to evaluate the expression of the hormonal receptors (PRLR, ERα, and ERß). Cytokines produced were measured with a magnetic bead kit directed to 17 cytokines. RESULTS: Stimuli with E2 and Prg increased T. gondii infection in monocytes after 48 h; however, no differences in infection were observed in PRL stimulus. The E2 decreased the secretion of IL-12 and IL-1ß and PRL did not modify the production of these cytokines in THP-1 cells stimulated with T. gondii; however, both hormones increased the production of IL-10. Besides, PRL augmented the production of IL-4 and IL-13. In contrast, Prg reduced these cytokines. Our results show that T. gondii induces the expression of ERα and ERß and lowers PRLR. The hormones modify the expression of the receptors of other hormones: Prg decreases PRLR, ERß and increases ERα; E2 diminishes PRLR; and PRL decreases ERα and ERß expression. CONCLUSION: The hormones can increase T. gondii infection and could be mediating an anti-inflammatory response in THP-1 cells. T. gondii induces changes in the expression of hormonal receptors.


Subject(s)
Cytokines/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Prolactin/metabolism , THP-1 Cells/metabolism , Toxoplasma/physiology , Animals , Coloring Agents , Estradiol/metabolism , Female , Humans , Mice , Progesterone/metabolism , Prolactin/metabolism , Protein Isoforms/metabolism , THP-1 Cells/immunology , THP-1 Cells/parasitology , Tetrazolium Salts , Thiazoles , Toxoplasma/growth & development
16.
J Toxicol Environ Health A ; 82(8): 483-501, 2019.
Article in English | MEDLINE | ID: mdl-31116698

ABSTRACT

Exposure to mold-contaminated indoor air has been associated with various respiratory diseases, and there is a need for experimental data to confirm these associations. The pro-inflammatory properties of well-characterized aerosolized spores and hyphal fragments from Aspergillus fumigatus and Aspergillus versicolor were examined and compared using various human macrophage cell models including phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (THP-1 Ma), primary peripheral blood monocyte-derived macrophages (MDM), and primary airway macrophages (AM) from induced sputum. X-ray treated samples of the two mold species induced different responses with A. fumigatus displaying the most potent induction of pro-inflammatory responses. While hyphal fragments from A. fumigatus were more potent than spores, similar responses were produced by the two growth stages of A. versicolor. THP-1 Ma was the most sensitive model releasing a broad range of cytokines/chemokines. MDM exhibited a similar cytokine/chemokine profile as THP-1 Ma, except for a low-quantity release of interleukin-1ß (IL-1ß). In contrast, AM appeared to be nonresponsive and yielded a different pattern of pro-inflammatory markers. Toll-like receptor (TLR)4, but also to a certain degree TLR2, was involved in several responses induced by spores and aerosolized hyphal fragments of A. fumigatus in MDM. Taken together, MDM seems to be the most promising experimental macrophage model. Abbreviations: AF: A. fumigatus, Aspergillus fumigatus; AV: A. versicolor, Aspergillus versicolor; AM: Airway Macrophage; CBA: Cytometric Bead Array; CD: Cluster of Differentiation; DTT: dithiothreitol; ELISA: Enzyme Linked Immunosorbent Assay; FBS: fetal bovine serum; GM-CSF: Granulocyte macrophage colony-stimulating factor; IL-1ß: Interleukin-1beta; MDM: Monocyte-Derived Macrophages; NF-κB: Nuclear Factor kappa light chain enhancer of activated B cells; NLR: NOD-like Receptor; PAMP: Pathogen Associated Molecular Pattern; PMA: Phorbol 12-myristate 13-acetate; PRR: Pattern Recognition Receptor; THP-1: Human leukemia monocyte cell line; TLR: Toll-like Receptor; TNF-α: Tumor Necrosis Factor- alpha.


Subject(s)
Aspergillus fumigatus/physiology , Aspergillus/physiology , Macrophages/immunology , Humans , Hyphae/physiology , Macrophages, Alveolar/immunology , Spores, Fungal/physiology , THP-1 Cells/immunology
17.
Front Immunol ; 10: 493, 2019.
Article in English | MEDLINE | ID: mdl-30941132

ABSTRACT

Beside its classical role as a serum effector system of innate immunity, evidence is accumulating that complement has an intracellular repertoire of components that provides not only immune defense, but also functions to maintain cellular homeostasis. While complement proteins, mainly the central component C3, have been detected in B cells, their exact function and source remain largely unexplored. In this study, we investigated the expression and origin of intracellular C3 in human B cells together with its role in B cell homeostasis. Our data provide evidence that endogenous expression of C3 is very low in human B cells and, in accordance with the recent publication, the main origin of intracellular C3 is the serum. Interestingly, we found that both serum-derived and purified C3 are able to enter the nucleus of viable B cells, suggesting its potential involvement in regulation of gene transcription. ELISA, gel shift assay, confocal microscopy, and chromatin immunoprecipitation proved that C3 and C3a strongly bind to nuclear DNA, and among the interacting genes there are key factors of lymphocyte development and differentiation. The strong interaction of C3 with histone proteins and its potential ability to induce chromatin rearrangement suggest that C3/C3a might regulate DNA transcription via chromatin remodeling. Our data reveal a novel, hitherto undescribed role of C3 in immune cell homeostasis, which further extends the repertoire how complement links innate and adaptive immunity and regulates basic processes of the cells.


Subject(s)
B-Lymphocytes/immunology , Complement C3/immunology , DNA/genetics , Transcription, Genetic/immunology , Cell Differentiation/immunology , Cell Line , Cell Line, Tumor , Chromatin/immunology , HEK293 Cells , Humans , Immunity, Innate/immunology , Jurkat Cells , Lymphocytes/immunology , THP-1 Cells/immunology
18.
Sci Rep ; 9(1): 801, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692549

ABSTRACT

Many links between gut microbiota and disease development have been established in recent years, with particular bacterial strains emerging as potential therapeutics rather than causative agents. In this study we describe the immunostimulatory properties of Enterococcus gallinarum MRx0518, a candidate live biotherapeutic with proven anti-tumorigenic efficacy. Here we demonstrate that strain MRx0518 elicits a strong pro-inflammatory response in key components of the innate immune system but also in intestinal epithelial cells. Using a flagellin knock-out derivative and purified recombinant protein, MRx0518 flagellin was shown to be a TLR5 and NF-κB activator in reporter cells and an inducer of IL-8 production by HT29-MTX cells. E. gallinarum flagellin proteins display a high level of sequence diversity and the flagellin produced by MRx0518 was shown to be more potent than flagellin from E. gallinarum DSM100110. Collectively, these data infer that flagellin may play a role in the therapeutic properties of E. gallinarum MRx0518.


Subject(s)
Antineoplastic Agents, Immunological/immunology , Enterococcus/immunology , Flagellin/genetics , Flagellin/immunology , Antineoplastic Agents, Immunological/pharmacology , Cell Line , Dendritic Cells/immunology , Enterococcus/genetics , Flagellin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , HT29 Cells , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Intestinal Mucosa/immunology , NF-kappa B/genetics , NF-kappa B/metabolism , THP-1 Cells/immunology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/metabolism
19.
Eur J Oral Sci ; 126(6): 476-484, 2018 12.
Article in English | MEDLINE | ID: mdl-30357941

ABSTRACT

Eikenella corrodens is a gram-negative bacterium, and although primarily associated with periodontal infections or infective endocarditis, it has been identified in coronary atheromatous plaques. The effect of its lipopolysaccharide (LPS) on human coronary artery endothelial cells (HCAECs) is unknown. Our aim was to examine the mechanism underlying the inflammatory response in HCAECs stimulated with E. corrodens-LPS and to evaluate monocyte adhesion. Endothelial responses were determined by measuring the levels of chemokines and cytokines using flow cytometry. The surface expression of intercellular adhesion molecule 1 (ICAM-1) was determined using a cell-based ELISA, and the adhesion of THP-1 monocytes to HCAECs was also monitored. The involvement of toll-like receptors (TLRs) 2 and 4 was examined using TLR-neutralizing antibodies, and activation of extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) p65 were measured by western blotting and ELISA, respectively. Eikenella corrodens-LPS increased secretion of interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF), and expression of ICAM-1 on the surface of HCAECs, consistent with the increased adhesion of THP-1 cells. Moreover, E. corrodens-LPS interacted with TLR4, a key receptor able to maintain the levels of IL-8, MCP-1, and GM-CSF in HCAECs. Phosphorylation of ERK1/2 and activation of NF-κB p65 were also increased. The results indicate that E. corrodens-LPS activates HCAECs through TLR4, ERK, and NF-κB p65, triggering a pro-atherosclerotic endothelial response and enhancing monocyte adhesion.


Subject(s)
Coronary Artery Disease/chemically induced , Coronary Artery Disease/immunology , Coronary Vessels/drug effects , Eikenella corrodens/metabolism , Endothelial Cells/drug effects , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Monocytes/drug effects , Antibodies, Neutralizing , Cell Adhesion/drug effects , Cell Survival , Cells, Cultured , Chemokine CCL2/metabolism , Chemokines/metabolism , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Phosphorylation , THP-1 Cells/immunology , Toll-Like Receptor 2 , Toll-Like Receptor 4/drug effects
20.
Cell Immunol ; 332: 58-76, 2018 10.
Article in English | MEDLINE | ID: mdl-30077333

ABSTRACT

Macrophages are key in orchestrating immune responses to micro-environmental stimuli, sensed by a complex set of surface receptors. The human cell line THP-1 has a monocytic phenotype, including the ability to differentiate into macrophages, providing a tractable, standardised surrogate for human monocyte-derived macrophages. Here we assessed the expression of 49 surface markers including Fc, complement, C-type lectin and scavenger receptors; TIMs; Siglecs; and co-stimulatory molecules by flow cytometry on both THP-1 monocytes and macrophages and following macrophage activation with seven standard conditioning/polarizing stimuli. Of the 34 surface markers detected on macrophages, 18 altered expression levels on activation. From these, expression of 9 surface markers were consistently altered by all conditioning regimens, while 9 were specific to individual polarizing stimuli. This study provides a resource for the study of macrophages and highlights that macrophage polarization states share much in common and the differences do not easily fit a simple classification system.


Subject(s)
Cell Differentiation/immunology , Macrophages/immunology , Monocytes/immunology , THP-1 Cells/immunology , Biomarkers/blood , Cell Line , Complement System Proteins/immunology , Humans , Lectins, C-Type/immunology , Macrophage Activation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...