ABSTRACT
The endocannabinoid neurotransmission acting via local CB1 receptor in the bed nucleus of the stria terminalis (BNST) has been implicated in behavioral and physiological responses to emotional stress. However, the neural network related to this control is poorly understood. In this sense, the lateral hypothalamus (LH) is involved in stress responses, and BNST GABAergic neurons densely innervate this hypothalamic nucleus. However, a role of BNST projections to the LH in physiological responses to stress is unknown. Therefore, using male rats, we investigated the role of LH GABAergic neurotransmission in the regulation of cardiovascular responses to stress by CB1 receptors within the BNST. We observed that microinjection of the selective CB1 receptor antagonist AM251 into the BNST decreased the number of Fos-immunoreactive cells within the LH of rats submitted to acute restraint stress. Treatment of the BNST with AM251 also enhanced restraint-evoked tachycardia. Nevertheless, arterial pressure increase and sympathetically-mediated cutaneous vasoconstriction to restraint was not affected by CB1 receptor antagonism within the BNST. The effect of AM251 in the BNST on restraint-evoked tachycardia was abolished in animals pretreated with the selective GABAA receptor antagonist SR95531 in the LH. These results indicate that regulation of cardiovascular responses to stress by CB1 receptors in the BNST is mediated by GABAergic neurotransmission in the LH. Present data also provide evidence of the BNST endocannabinoid neurotransmission as a mechanism involved in LH neuronal activation during stressful events.
Subject(s)
Endocannabinoids/physiology , Hypothalamic Area, Lateral/physiology , Psychological Distress , Septal Nuclei/physiology , Animals , Cannabinoid Receptor Antagonists/administration & dosage , GABA Antagonists/administration & dosage , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Heart Rate/drug effects , Heart Rate/physiology , Hypothalamic Area, Lateral/drug effects , Male , Models, Neurological , Piperidines/administration & dosage , Pyrazoles/administration & dosage , Pyridazines/administration & dosage , Rats , Rats, Wistar , Septal Nuclei/drug effects , Stress, Psychological/physiopathology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Tachycardia/physiopathologyABSTRACT
AIMS: To evaluate the systemic changes and autonomic cardiocirculatory control of awaken rats chronically exposed to the cigarette smoke (CS) of 1 or 2 cigarettes/day. MAIN METHODS: Rats were exposed to clean air (control) or cigarette smoke of 1 (CS1) or 2 (CS2) cigarettes/animal/day for 30 days. Then, arterial pressure (AP) and heart rate (HR) were recorded in conscious rats to assess spontaneous baroreflex sensitivity and HR and AP variabilities. Evoked baroreflex and cardiac autonomic tone were evaluated by vasoactive drugs and autonomic blockers, respectively. In another group, ventilatory and cardiovascular parameters were recorded under hypoxia and hypercapnia stimulus. At the end of protocols, heart, lung, kidneys and liver were collected for histological analysis. KEY FINDINGS: Rats exposed to CS showed morphological changes, being more evident in the CS2 group. Also, less weight gain and cardiac hypertrophy were prominent in CS2 rats. Basal AP and HR, spontaneous baroreflex sensitivity and cardiovascular variabilities were similar among groups. CS exposure progressively blunted the bradycardia response to phenylephrine (-2.2 ± 0.1 vs. -1.7 ± 0.2 vs. -1.5 ± 0.2) while the tachycardia response to sodium nitroprusside was slightly increased compared to control. Vagal tone was not affected by CS, but CS2 rats exhibited higher sympathetic tone (-25 ± 4 vs. -28 ± 4 vs. -56 ± 9) and lower intrinsic HR (411 ± 4 vs. 420 ± 8 vs. 390 ± 6). Exposure to CS of 2 cigarettes also exacerbated the reflex cardiovascular and ventilatory responses to hypoxia and hypercapnia. SIGNIFICANCE: CS exposure for 30 days promoted systemic changes and autonomic cardiocirculatory dysfunction in rats depending on the daily exposure dose.
Subject(s)
Autonomic Nervous System/drug effects , Cardiovascular System/drug effects , Cigarette Smoking/adverse effects , Animals , Autonomic Nervous System/physiopathology , Baroreflex/physiology , Blood Pressure/physiology , Bradycardia/physiopathology , Cardiovascular System/physiopathology , Dose-Response Relationship, Drug , Heart/physiopathology , Heart Rate/physiology , Male , Rats , Rats, Wistar , Reflex , Tachycardia/physiopathology , Vagus Nerve/physiopathologyABSTRACT
The lateral hypothalamus (LH) is implicated in the physiological and behavioral responses during stressful events. However, the local neurochemical mechanisms related to control of stress responses by this hypothalamic area are not completely understood. Therefore, in this study we evaluated the involvement of CRFergic neurotransmission acting through the CRF1 receptor within the LH in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, we investigated the effect of bilateral microinjection of different doses (0.01, 0.1 and 1 nmol/100 nL) of the selective CRF1 receptor antagonist CP376395 into the LH on arterial pressure and heart rate increases and decrease in tail skin temperature evoked by acute restraint stress. We found that all doses of the CRF1 receptor antagonist microinjected into the LH decreased the restraint-evoked tachycardia, but without affecting the arterial pressure and tail skin temperature responses. Additionally, treatment of the LH with CP376395 at the doses of 0.1 and 1 nmol/100 nL increased the basal values of both heart rate and arterial pressure, whereas the dose of 0.1 nmol/100 nL decreased the skin temperature. Taken together, these findings indicate that CRFergic neurotransmission in the LH, acting through activation of local CRF1 receptors, plays a facilitatory role in the tachycardia observed during aversive threats, but without affecting the pressor and tail skin temperature responses. Our results also provide evidence that LH CRFergic neurotransmission in involved in tonic maintenance of cardiovascular function.
Subject(s)
Corticotropin-Releasing Hormone/metabolism , Hypothalamic Area, Lateral/physiology , Psychological Distress , Synaptic Transmission/physiology , Tachycardia/physiopathology , Animals , Heart Rate/physiology , Male , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/metabolism , Restraint, Physical , Tachycardia/etiologySubject(s)
Long QT Syndrome/therapy , Pacemaker, Artificial , Sick Sinus Syndrome/therapy , Tachycardia/physiopathology , Adult , Algorithms , Cardiac Pacing, Artificial , Child , Exercise , Female , Heart Conduction System/physiopathology , Humans , Infant , Long QT Syndrome/physiopathology , Sick Sinus Syndrome/physiopathologyABSTRACT
El diagnóstico electrocardiográfico correcto de la causa de una taquicardia de complejo QRS ancho (TCA) es fundamental, ya que tanto el manejo, como el pronóstico del paciente, es diferente según su etiología, y define el estudio que debemos realizar. Numerosos criterios y algoritmos han sido descritos para diferenciar el origen de estas taquicardias. Sin embargo, muchos de estos son complejos y difíciles de aplicar para el médico menos experimentado. Esto es particularmente importante en los servicios de emergencia, donde se necesita una definición rápida que permita un manejo agudo apropiado. En la presente revisión analizamos los diferentes mecanismos de las TCA y los principales criterios diagnósticos en el ECG, reforzando, especialmente, aquellos de aplicación rápida y de alto rendimiento diagnóstico.
The correct electrocardiographic diagnosis of the cause of a wide QRS complex tachycardia (WCT) is essential since both management and prognosis of the patient. The correct electrocardiographic diagnosis of the cause of a wide QRS complex tachycardia (WCT) is essential since both management and prognosis is different according to its etiology and defines the study that we should perform. Numerous criteria and algorithms have been described to differentiate the origin of these tachycardias. However, many of these are complex and difficult to apply to the less experienced doctor. This is particularly important in emergency rooms, where a rapid definition is needed to allow proper therapy. In this review we analyze the different mechanisms of WCT and the main EKG diagnostic criteria, emphasizing those which can be applied rapidly and have high diagnostic value.
Subject(s)
Humans , Tachycardia, Ventricular/diagnosis , Tachycardia/diagnosis , Tachycardia/physiopathology , Algorithms , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/physiopathology , Pre-Excitation Syndromes , Bundle-Branch Block , Tachycardia, Ventricular/physiopathology , Diagnosis, Differential , ElectrocardiographyABSTRACT
Our group has previously shown in pithed rats that the cardiac sympathetic drive, which produces tachycardic responses, is inhibited by 5-HT via the activation of prejunctional 5-HT1B/1D/5 receptors. Interestingly, when 5-HT2 receptors are chronically blocked with sarpogrelate, the additional role of cardiac sympatho-inhibitory 5-HT1F receptors is unmasked. Although 5-HT2 receptors mediate tachycardia in rats, and the chronic blockade of 5-HT2 receptors unmasked 5-HT7 receptors mediating cardiac vagal inhibition, the role of 5-HT7 receptors in the modulation of the cardiac sympathetic tone remains virtually unexplored. On this basis, male Wistar rats were pretreated during 14 days with sarpogrelate (a 5-HT2 receptor antagonist) in drinking water (30 mg/kg/day; sarpogrelate-pretreated group) or equivalent volumes of drinking water (control group). Subsequently, the rats were pithed to produce increases in heart rate by either electrical preganglionic spinal (C7 -T1 ) stimulation of the cardiac sympathetic drive or iv administration of exogenous noradrenaline. The iv continuous infusion of AS-19 (a 5-HT7 receptor agonist; 10 µg/kg/min) (i) inhibited the tachycardic responses to sympathetic stimulation, but not those to exogenous noradrenaline only in sarpogrelate-pretreated rats. This inhibition was completely reversed by SB258719 (a selective 5-HT7 receptor antagonist; 1 mg/kg, iv) or glibenclamide (an ATP-sensitive K+ channel blocker; 20 mg/kg, iv). These results suggest that chronic 5-HT2 receptor blockade uncovers a cardiac sympatho-inhibitory mechanism mediated by 5-HT7 receptors, involving a hyperpolarization due to the opening of ATP-sensitive K+ channels. Thus, these findings support the role of 5-HT7 receptors in the modulation of the cardiac sympathetic neurotransmission.
Subject(s)
Adrenergic Fibers/physiology , Receptors, Serotonin, 5-HT2/physiology , Receptors, Serotonin/physiology , Serotonin 5-HT2 Receptor Antagonists/therapeutic use , Succinates/therapeutic use , Tachycardia/prevention & control , Adrenergic Fibers/drug effects , Animals , Dose-Response Relationship, Drug , Electric Stimulation/adverse effects , Heart Rate/drug effects , Heart Rate/physiology , Male , Norepinephrine/toxicity , Rats , Rats, Wistar , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Succinates/pharmacology , Sympathomimetics/toxicity , Tachycardia/etiology , Tachycardia/physiopathologyABSTRACT
According to the World Health Organization, 98% of fatal dengue cases can be prevented; however, endemic countries such as Colombia have recorded higher case fatality rates during recent epidemics. We aimed to identify the predictors of mortality that allow risk stratification and timely intervention in patients with dengue. We conducted a hospital-based, case-control (1:2) study in two endemic areas of Colombia (2009-2015). Fatal cases were defined as having either 1) positive serological test (IgM or NS1), 2) positive virological test (RT-PCR or viral isolation), or 3) autopsy findings compatible with death from dengue. Controls (matched by state and year) were hospitalized nonfatal patients and had a positive serological or virological dengue test. Exposure data were extracted from medical records by trained staff. We used conditional logistic regression (adjusting for age, gender, disease's duration, and health-care provider) in the context of multiple imputation to estimate exposure to case-control associations. We evaluated 110 cases and 217 controls (mean age: 35.0 versus 18.9; disease's duration pre-admission: 4.9 versus 5.0 days). In multivariable analysis, retro-ocular pain (odds ratios [OR] = 0.23), nausea (OR = 0.29), and diarrhea (OR = 0.19) were less prevalent among fatal than nonfatal cases, whereas increased age (OR = 2.46 per 10 years), respiratory distress (OR = 16.3), impaired consciousness (OR = 15.9), jaundice (OR = 32.2), and increased heart rate (OR = 2.01 per 10 beats per minute) increased the likelihood of death (AUC: 0.97, 95% confidence interval: 0.96, 0.99). These results provide evidence that features of severe dengue are associated with higher mortality, which strengthens the recommendations related to triaging patients in dengue-endemic areas.
Subject(s)
Diarrhea/diagnosis , Jaundice/diagnosis , Nausea/diagnosis , Respiratory Distress Syndrome/diagnosis , Severe Dengue/diagnosis , Tachycardia/diagnosis , Adolescent , Adult , Antibodies, Viral/blood , Case-Control Studies , Colombia , Dengue Virus/immunology , Dengue Virus/isolation & purification , Diarrhea/mortality , Diarrhea/physiopathology , Diarrhea/virology , Endemic Diseases , Female , Headache , Humans , Immunoglobulin M/blood , Jaundice/mortality , Jaundice/physiopathology , Jaundice/virology , Logistic Models , Male , Middle Aged , Nausea/mortality , Nausea/physiopathology , Nausea/virology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/virology , Risk Assessment , Severe Dengue/mortality , Severe Dengue/physiopathology , Severe Dengue/virology , Survival Analysis , Tachycardia/mortality , Tachycardia/physiopathology , Tachycardia/virologyABSTRACT
Prior evidence indicates that ghrelin is involved in the integration of cardiovascular functions and behavioral responses. Ghrelin actions are mediated by the growth hormone secretagogue receptor subtype 1a (GHS-R1a), which is expressed in peripheral tissues and central areas involved in the control of cardiovascular responses to stress. AIMS: In the present study, we assessed the role of ghrelin - GHS-R1a axis in the cardiovascular reactivity to acute emotional stress in rats. MAIN METHODS AND KEY FINDINGS: Ghrelin potentiated the tachycardia evoked by restraint and air jet stresses, which was reverted by GHS-R1a blockade. Evaluation of the autonomic balance revealed that the sympathetic branch modulates the ghrelin-evoked positive chronotropy. In isolated hearts, the perfusion with ghrelin potentiated the contractile responses caused by stimulation of the beta-adrenergic receptor, without altering the amplitude of the responses evoked by acetylcholine. Experiments in isolated cardiomyocytes revealed that ghrelin amplified the increases in calcium transient changes evoked by isoproterenol. SIGNIFICANCE: Taken together, our results indicate that the Ghrelin-GHS-R1a axis potentiates the magnitude of stress-evoked tachycardia by modulating the autonomic nervous system and peripheral mechanisms, strongly relying on the activation of cardiac calcium transient and beta-adrenergic receptors.
Subject(s)
Ghrelin/pharmacology , Heart/drug effects , Receptors, Adrenergic, beta/drug effects , Stress, Psychological/physiopathology , Sympathetic Nervous System/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Arterial Pressure/drug effects , Calcium Channels/drug effects , Heart/innervation , Heart Rate/drug effects , In Vitro Techniques , Male , Muscarinic Agonists/pharmacology , Rats , Rats, Wistar , Receptors, Ghrelin/drug effects , Restraint, Physical , Tachycardia/chemically induced , Tachycardia/physiopathologyABSTRACT
Commonly reported complications of hepatic cysts are spontaneous hemorrhage, rupture into the peritoneal cavity, infection and compression of the biliary tree however cardiac complications are not commonly reported. We are presenting a case of a large liver cyst presenting with right atrial and ventricular inflow tract impingement resulting in cardiac symptoms. A 68 year-old Hispanic female presented with one month of fatigue and shortness of breath after household work and walking less than one block, right upper quadrant pain and weight loss. She had history of multiple hepatic cysts for more than 12 years, well-controlled diabetes and hypertension. Examination of the heart revealed tachycardia with regular heart sounds. There were no murmurs. She had tenderness in her right upper quadrant on palpation and an enlarged smooth liver. Rest of physical examination was unremarkable. CT scan of the abdomen showed multiple non-enhancing liver cysts in both lobes, with the largest measuring 12 x 15 x 17 cm which was significantly increased from her baseline of 7 x 8 x 10 cm in 2003. Echocardiogram showed normal left ventricular ejection fraction, grade 1 diastolic dysfunction and a hepatic cyst impinging RA and RV inflow tract. She had successful laparoscopic enucleation of liver cyst and subsequent relief from tachycardia, fatigue and shortness of breath. In conclusion, this case illustrates that hepatic cysts may become symptomatic after remaining quiescent for an extended period. They may present with unusual symptoms and clinicians should be mindful of rare complications, such as in this case.
Subject(s)
Cysts/complications , Liver Diseases/complications , Tachycardia/etiology , Ventricular Dysfunction, Right/etiology , Ventricular Outflow Obstruction/etiology , Aged , Atrial Function, Right , Cysts/diagnostic imaging , Cysts/surgery , Drainage , Female , Humans , Laparoscopy , Liver Diseases/diagnostic imaging , Liver Diseases/surgery , Tachycardia/diagnostic imaging , Tachycardia/physiopathology , Tomography, X-Ray Computed , Treatment Outcome , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right , Ventricular Outflow Obstruction/diagnostic imaging , Ventricular Outflow Obstruction/physiopathologyABSTRACT
Serotonin (5-hydroxytryptamine; 5-HT) inhibits the rat cardioaccelerator sympathetic outflow by 5-HT1B/1D/5 receptors. Because chronic blockade of sympatho-excitatory 5-HT2 receptors is beneficial in several cardiovascular pathologies, this study investigated whether sarpogrelate (a 5-HT2 receptor antagonist) alters the pharmacological profile of the above sympatho-inhibition. Rats were pretreated for 2 weeks with sarpogrelate in drinking water (30 mg/kg per day; sarpogrelate-treated group) or equivalent volumes of drinking water (control group). Animals were pithed and prepared for spinal stimulation (C7-T1) of the cardioaccelerator sympathetic outflow or for intravenous (i.v.) bolus injections of noradrenaline. Both procedures produced tachycardic responses remaining unaltered after saline. Continuous i.v. infusions of 5-HT induced a cardiac sympatho-inhibition that was mimicked by the 5-HT receptor agonists 5-carboxamidotryptamine (5-CT; 5-HT1/5A), CP 93,129 (5-HT1B), or PNU 142633 (5-HT1D), but not by indorenate (5-HT1A) in both groups; whereas LY344864 (5-HT1F) mimicked 5-HT only in sarpogrelate-treated rats. In sarpogrelate-treated animals, i.v. GR 127935 (310 µg/kg; 5-HT1B/1D/1F receptor antagonist) attenuated 5-CT-induced sympatho-inhibition and abolished LY344864-induced sympatho-inhibition; while GR 127935 plus SB 699551 (1 mg/kg; 5-HT5A receptor antagonist) abolished 5-CT-induced inhibition. These results confirm the cardiac sympatho-inhibitory role of 5-HT1B, 5-HT1D, and 5-HT5A receptors in both groups; nevertheless, sarpogrelate treatment specifically unmasked a cardiac sympatho-inhibition mediated by 5-HT1F receptors.
Subject(s)
Myocardium/metabolism , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology , Sympathetic Nervous System/metabolism , Animals , Blood Pressure/drug effects , Carbazoles/pharmacology , Diastole/drug effects , Electric Stimulation , Fluorobenzenes/pharmacology , Heart Rate/drug effects , Hemodynamics/drug effects , Male , Norepinephrine/pharmacology , Oxadiazoles/pharmacology , Piperazines/pharmacology , Rats, Wistar , Serotonin/analogs & derivatives , Serotonin/pharmacology , Serotonin Receptor Agonists/pharmacology , Serotonin Receptor Agonists/therapeutic use , Sodium Chloride/pharmacology , Succinates/pharmacology , Succinates/therapeutic use , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Tachycardia/drug therapy , Tachycardia/physiopathology , Receptor, Serotonin, 5-HT1FABSTRACT
Patients with Parkinson's disease (PD) exhibit both motor and non-motor symptoms. Among the non-motor symptoms, cardiovascular autonomic dysfunction is frequently observed. Here, we evaluated baroreflex function, vascular reactivity and neuroanatomical changes in brainstem regions involved in the neural control of circulation in the 6-hydroxydopamine (6-OHDA) model of PD. Male Wistar rats received a bilateral injection of 6-OHDA or vehicle into the striatum. After 61days, baroreflex function and vascular reactivity were assessed. The 6-OHDA and vehicle groups showed similar increases in mean arterial pressure (MAP) in response to phenylephrine (PE). However, the bradycardia observed in the vehicle group was blunted in the 6-OHDA-treated rats. Injection of sodium nitroprusside (SNP) decreased hypotension, tachycardia and vascular relaxation in 6-OHDA-treated rats. Bilateral intrastriatal 6-OHDA led to massive degeneration of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and to reductions in the numbers of A1/C1 and A5 catecholaminergic neurons while sparing A2 neurons within the nucleus of the solitary tract (NTS). 6-OHDA-treated rats also showed decreases in Phox2b-expressing neurons in the NTS and in choline acetyltransferase (ChAT) immunoreactivity in the nucleus ambiguus. Altogether, our data suggest that this model of PD includes neuroanatomical and functional changes that lead to cardiovascular impairment.
Subject(s)
Baroreflex/physiology , Brain Stem/physiopathology , Cardiovascular Diseases/physiopathology , Nerve Degeneration/physiopathology , Parkinsonian Disorders/physiopathology , Acetylcholine/metabolism , Animals , Autonomic Nervous System/pathology , Autonomic Nervous System/physiopathology , Blood Pressure/physiology , Bradycardia/pathology , Bradycardia/physiopathology , Brain Stem/pathology , Cardiovascular Diseases/pathology , Male , Mesenteric Arteries/physiopathology , Nerve Degeneration/pathology , Neurons/pathology , Neurons/physiology , Nitroprusside , Oxidopamine , Parkinsonian Disorders/pathology , Rats, Wistar , Tachycardia/pathology , Tachycardia/physiopathology , Tissue Culture Techniques , Tyrosine 3-Monooxygenase/metabolismABSTRACT
Un hombre de 80 años con historia de diabetes mellitus e infarto antiguo del miocardio es ingresado con insuficiencia cardíaca y neumopatía aguda. Presentaba Fibrilación auricular y no recibía antiarrítmicos. Despues de administración de broncodilatadores desarrolló una taquicardia a complejo ancho. Se presentan los trazados electrocardiográficos y se discute el mecanismo de la arritmia.
An 80 year old man, with a history of diabetes mellitus and remote myocardial infarction is admitted with heart failure and pneumonia He was in atrial fibrillation and was not on anti arrhythmic drugs. After receiving broncodilators he developed a wide QRS tachycardia. ECG tracings are presented and the mechanism of this tachycardia is discussed.
Subject(s)
Humans , Male , Aged, 80 and over , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Tachycardia/diagnosis , Tachycardia/physiopathology , ElectrocardiographyABSTRACT
Stress is a response of the organism to homeostasis-threatening stimuli and is coordinated by two main neural systems: the hypothalamic-pituitary-adrenal and the autonomic nervous system. Acute restraint stress (RS) is a model of unavoidable stress, which is characterized by autonomic responses including an increase in mean arterial pressure (MAP) and heart rate (HR), as well as a drop in tail temperature. The prelimbic cortex (PL) has been implicated in the modulation of functional responses caused by RS. The present study aimed to evaluate the role of PL GABAergic neurotransmission in the modulation of autonomic changes induced by RS. Bilateral microinjection of the GABAA receptor antagonist bicuculline methiodide into the PL reduced pressor and tachycardic responses evoked by RS, in a dose-dependent manner, without affecting the tail temperature drop evoked by RS. In order to investigate which peripheral autonomic effector modulated the reduction in RS-cardiovascular responses caused by the blockade of PL GABAA receptors, rats were intravenously pretreated with either atenolol or homatropine methylbromide. The blockade of the cardiac sympathetic nervous system with atenolol blunted the reducing effect of PL treatment with bicuculline methiodide on RS-evoked pressor and tachycardic responses. The blockade of the parasympathetic nervous system with homatropine methylbromide, regardless of affecting the beginning of the tachycardic response, did not impact on the reduction of RS-evoked tachycardic and pressor responses caused by the PL treatment with bicuculline methiodide. The present results indicate that both cardiac sympathetic and parasympathetic activities are involved in the reduction of RS-evoked cardiovascular responses evidenced after the blockade of PL GABAA receptors by bicuculline methiodide.
Subject(s)
Limbic System/physiopathology , Receptors, GABA-A/metabolism , Stress, Psychological/physiopathology , Adrenergic beta-Antagonists/pharmacology , Animals , Atenolol/pharmacology , Bicuculline/administration & dosage , Bicuculline/analogs & derivatives , Bicuculline/pharmacology , Blood Pressure/drug effects , GABA Antagonists/administration & dosage , GABA Antagonists/pharmacology , Male , Microinjections , Parasympatholytics/pharmacology , Rats , Rats, Wistar , Restraint, Physical , Synaptic Transmission , Tachycardia/chemically induced , Tachycardia/physiopathology , Tropanes/pharmacologyABSTRACT
Cardiovascular (CV) representation has been identified within the insular cortex (IC) and a lateralization of function previously suggested. In order to further understand the role of IC on cardiovascular control, the present study compared the CV responses evoked by stimulation of N-metil-D-aspartate (NMDA) receptors in the right and left posterior IC at different rostrocaudal levels. Intracortical microinjections of NMDA were performed into the IC of male Wistar rats anaesthetized with urethane (1.4 g/kg) prepared for blood pressure, heart rate and renal sympathetic nerve activity. Gene expression of NMDA receptor subunits NR2A and NR2B in the IC was confirmed by RT-PCR. Immunofluorescence for the NMDA receptor NR1 subunit was demonstrated in the IC (coordinates anteroposterior (AP) +1.5, 0.0 and -1.5 mm). A cardiac sympathoinhibitory site was identified, more rostrally located than identified in previous studies. A site of sympathoexcitatory cardiac control was identified more caudal to this region in agreement with earlier work. Under the experimental conditions, no lateralization of cardiovascular function was identified with chemical stimulation eliciting the same responses from either left or right insular cortices. No tonic role of the insula on cardiovascular control was identified with the use of the NMDA antagonist, AP-5. Peri-insular microinjection of NMDA was without cardiovascular effect indicating the specificity of the insula as a cardiovascular regulatory site. The current study reveals a functional topography for autonomic cardiovascular control along the rostrocaudal axis of the posterior IC.
Subject(s)
Cardiovascular Physiological Phenomena , Cerebral Cortex/physiology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Arterial Pressure/drug effects , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiology , Autonomic Nervous System/physiopathology , Bradycardia/chemically induced , Bradycardia/physiopathology , Cardiovascular Physiological Phenomena/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Gene Expression Regulation/drug effects , Heart Rate/drug effects , Kidney/innervation , Male , Muscarinic Antagonists/pharmacology , N-Methylaspartate/pharmacology , Rats , Rats, Wistar , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Tachycardia/chemically induced , Tachycardia/physiopathologyABSTRACT
A proper characterization of frequency-dependent bundle branch blocks can provide useful prognostic information in some clinical situations. Often, this physiological event may be due to an extensive damage of infrahisian system, which poses a high risk of developing advanced atrioventricular block requiring pacemaker implantation. We describe the case of a 62 year-old man with chronic ischemic heart disease who exhibited alternating tachycardia-dependent bundle branch block during stress test. We discuss the main prognostic implications of this unusual event in the context of systolic dysfunction.
Una caracterización correcta de los bloqueos de rama dependientes de frecuencia, puede proporcionar información relevante en ciertas situaciones clínicas. A menudo, este evento fisiológico puede evidenciar la presencia de un daño extenso del sistema de conducción infrahisiano con riesgo elevado de bloqueo aurículo-ventricular avanzado y necesidad de implante de marcapasos. Describimos el caso de un hombre de 62 años con cardiopatía isquémica crónica, que exhibió un bloqueo de rama bilateral alternante taquicardia-dependiente durante el esfuerzo ergométrico, discutiendo las principales implicancias pronósticas de este evento inusual en el contexto de la disfunción sistólica.
Subject(s)
Bundle-Branch Block/physiopathology , Myocardial Ischemia/physiopathology , Tachycardia/physiopathology , Bundle-Branch Block/diagnosis , Exercise Test , Humans , Male , Middle Aged , Prognosis , Systole , Tachycardia/diagnosis , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/physiopathologyABSTRACT
The medial amygdaloid nucleus (MeA) is involved in cardiovascular control. In the present study we report the effect of MeA pharmacological ablations caused by bilateral microinjections of the nonselective synaptic blocker CoCl2 on cardiac baroreflex responses in rats. MeA synaptic inhibition evoked by local bilateral microinjection of 100 nL of CoCl2 (1 mM) did not affect blood pressure or heart rate baseline, suggesting no tonic MeA influence on resting cardiovascular parameters. However, 10 min after CoCl2 microinjection into the MeA of male Wistar rats, the reflex bradycardic response evoked by intravenous infusion of phenylephrine was significantly enhanced when compared with the reflex bradycardic response observed before CoCl2. The treatment did not affect the tachycardic responses to the intravenous infusion of sodium nitroprusside (SNP). Baroreflex activity returned to control values 60 min after CoCl2 microinjections, confirming a reversible blockade. The present results indicate an involvement of the MeA in baroreflex modulation, suggesting that synapses in the MeA have an inhibitory influence on the bradycardic component of the baroreflex in conscious rats.
Subject(s)
Baroreflex/physiology , Corticomedial Nuclear Complex/physiology , Animals , Baroreflex/drug effects , Bradycardia/physiopathology , Central Nervous System Agents/pharmacology , Cobalt/pharmacology , Consciousness/physiology , Corticomedial Nuclear Complex/drug effects , Male , Nitroprusside/pharmacology , Rats, Wistar , Tachycardia/physiopathology , Vasodilator Agents/pharmacologyABSTRACT
The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the ß-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h(-1)) and a constant f G (43.16 ± 1.74 breaths min(-1)). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h(-1) and f G decreased to 39.12 ± 1.58 breaths min(-1). During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h(-1) and f G decreased to 34.97 ± 1.78 breaths min(-1). These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.
Subject(s)
Catfishes/physiology , Respiration , Tachycardia/physiopathology , Adrenergic beta-Antagonists/pharmacology , Air , Animals , Atropine , Electrocardiography , Female , Gills/physiology , Heart Rate/drug effects , Hypoxia , Male , Muscarinic Antagonists/pharmacology , Propranolol , Respiration/drug effectsABSTRACT
BACKGROUND: The snakes from the Bitis genus are some of the most medically important venomous snakes in sub Saharan Africa, however little is known about the composition and effects of these snake venom peptides. Considering that the victims with Bitis genus snakes have exacerbate hypotension and cardiovascular disorders, we investigated here the presence of angiotensin-converting enzyme modulators on four different species of venoms. METHODS: The peptide fractions from Bitis gabonica gabonica, Bitis nasicornis, Bitis gabonica rhinoceros and Bitis arietans which showed inhibitory activity on angiotensin-converting enzyme were subjected to mass spectrometry analysis. Eight proline-rich peptides were synthetized and their potencies were evaluated in vitro and in vivo. RESULTS: The MS analysis resulted in over 150 sequences, out of which 32 are new proline-rich oligopeptides, and eight were selected for syntheses. For some peptides, inhibition assays showed inhibitory potentials of cleavage of angiotensin I ten times greater when compared to bradykinin. In vivo tests showed that all peptides decreased mean arterial pressure, followed by tachycardia in 6 out of 8 of the tests. CONCLUSION: We describe here some new and already known proline-rich peptides, also known as bradykinin-potentiating peptides. Four synthetic peptides indicated a preferential inhibition of angiotensin-converting enzyme C-domain. In vivo studies show that the proline-rich oligopeptides are hypotensive molecules. GENERAL SIGNIFICANCE: Although proline-rich oligopeptides are known molecules, we present here 32 new sequences that are inhibitors of the angiotensin-converting enzyme and consistent with the symptoms of the victims of Bitis spp, who display severe hypotension.
Subject(s)
Angiotensin-Converting Enzyme Inhibitors/toxicity , Arterial Pressure/drug effects , Hypotension/chemically induced , Oligopeptides/toxicity , Viper Venoms/toxicity , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Animals , Chromatography, High Pressure Liquid , Fluorescence Resonance Energy Transfer , Heart Rate/drug effects , Hypotension/physiopathology , Male , Oligopeptides/chemical synthesis , Oligopeptides/isolation & purification , Proline , Rats, Wistar , Renin-Angiotensin System/drug effects , Tachycardia/chemically induced , Tachycardia/physiopathology , Tandem Mass Spectrometry , Viper Venoms/chemistryABSTRACT
Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 µL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system.