Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.225
Filter
1.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731411

ABSTRACT

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Subject(s)
Fullerenes , Molecular Dynamics Simulation , Muramidase , Protein Binding , Fullerenes/chemistry , Muramidase/chemistry , Muramidase/metabolism , Binding Sites , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , Proteins/chemistry , Proteins/metabolism , HIV Protease
2.
Nat Commun ; 15(1): 4546, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806494

ABSTRACT

Asthma has striking disparities across ancestral groups, but the molecular underpinning of these differences is poorly understood and minimally studied. A goal of the Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to understand multi-omic signatures of asthma focusing on populations of African ancestry. RNASeq and DNA methylation data are generated from nasal epithelium including cases (current asthma, N = 253) and controls (never-asthma, N = 283) from 7 different geographic sites to identify differentially expressed genes (DEGs) and gene networks. We identify 389 DEGs; the top DEG, FN1, was downregulated in cases (q = 3.26 × 10-9) and encodes fibronectin which plays a role in wound healing. The top three gene expression modules implicate networks related to immune response (CEACAM5; p = 9.62 × 10-16 and CPA3; p = 2.39 × 10-14) and wound healing (FN1; p = 7.63 × 10-9). Multi-omic analysis identifies FKBP5, a co-chaperone of glucocorticoid receptor signaling known to be involved in drug response in asthma, where the association between nasal epithelium gene expression is likely regulated by methylation and is associated with increased use of inhaled corticosteroids. This work reveals molecular dysregulation on three axes - increased Th2 inflammation, decreased capacity for wound healing, and impaired drug response - that may play a critical role in asthma within the African Diaspora.


Subject(s)
Asthma , Black People , DNA Methylation , Nasal Mucosa , Tacrolimus Binding Proteins , Humans , Asthma/genetics , Asthma/metabolism , Nasal Mucosa/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Female , Male , Black People/genetics , Adult , Gene Regulatory Networks , Fibronectins/metabolism , Fibronectins/genetics , Case-Control Studies , Gene Expression Regulation , Middle Aged , Multiomics
3.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786025

ABSTRACT

Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.


Subject(s)
Diabetes Mellitus, Type 2 , Mental Disorders , Neoplasms , Tacrolimus Binding Proteins , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , Animals
4.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38803221

ABSTRACT

FK506-binding protein 52 (FKBP52) is a member of the FKBP family of proline isomerases. FKBP52 is up-regulated in various cancers and functions as a positive regulator of steroid hormone receptors. Depletion of FKBP52 is known to inhibit cell proliferation; however, the detailed mechanism remains poorly understood. In this study, we found that FKBP52 depletion decreased MDM2 transcription, leading to stabilization of p53, and suppressed cell proliferation. We identified NFATc1 and NFATc3 as transcription factors that regulate MDM2 We also found that FKBP52 associated with NFATc3 and facilitated its nuclear translocation. In addition, calcineurin, a well-known Ca2+ phosphatase essential for activation of NFAT, plays a role in MDM2 transcription. Supporting this notion, MDM2 expression was found to be regulated by intracellular Ca2+ Taken together, these findings reveal a new role of FKBP52 in promoting cell proliferation via the NFAT-MDM2-p53 axis, and indicate that inhibition of FKBP52 could be a new therapeutic tool to activate p53 and inhibit cell proliferation.


Subject(s)
Cell Proliferation , NFATC Transcription Factors , Proto-Oncogene Proteins c-mdm2 , Tacrolimus Binding Proteins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Cell Proliferation/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Cell Line, Tumor , Calcium/metabolism , Calcineurin/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction
5.
Eur J Med Chem ; 270: 116356, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38579621

ABSTRACT

The heat shock protein 90 kDa (Hsp90) molecular chaperone machinery is responsible for the folding and activation of hundreds of important clients such as kinases, steroid hormone receptors, transcription factors, etc. This process is dynamically regulated in an ATP-dependent manner by Hsp90 co-chaperones including a group of tetratricopeptide (TPR) motif proteins that bind to the C-terminus of Hsp90. Among these TPR containing co-chaperones, FK506-binding protein 51 kDa (FKBP51) is reported to play an important role in stress-related pathologies, psychiatric disorders, Alzheimer's disease, and cancer, making FKBP51-Hsp90 interaction a potential therapeutic target. In this study, we report identification of potent and selective inhibitors of FKBP51-Hsp90 protein-protein interaction using a structure-based virtual screening approach. Upon in vitro evaluation, the identified hits show a considerable degree of selectivity towards FKBP51 over other TPR proteins, particularly for highly homologous FKBP52. Tyr355 of FKBP51 emerged as an important contributor to inhibitor's specificity. Additionally, we demonstrate the impact of these inhibitors on cellular energy metabolism, and neurite outgrowth, which are subjects of FKBP51 regulation. Overall, the results from this study highlight a novel pharmacological approach towards regulation of FKBP51 function and more generally, Hsp90 function via its interaction with TPR co-chaperones.


Subject(s)
HSP90 Heat-Shock Proteins , Tacrolimus Binding Proteins , Humans , Protein Binding , Tacrolimus Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones , Transcription Factors/metabolism
6.
Sci Rep ; 14(1): 7888, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570626

ABSTRACT

Given the limitation of current routine approaches for pancreatic cancer screening and detection, the mortality rate of pancreatic cancer cases is still critical. The development of blood-based molecular biomarkers for pancreatic cancer screening and early detection which provide less-invasive, high-sensitivity, and cost-effective, is urgently needed. The goal of this study is to identify and validate the potential molecular biomarkers in white blood cells (WBCs) of pancreatic cancer patients. Gene expression profiles of pancreatic cancer patients from NCBI GEO database were analyzed by CU-DREAM. Then, mRNA expression levels of three candidate genes were determined by quantitative RT-PCR in WBCs of pancreatic cancer patients (N = 27) and healthy controls (N = 51). ROC analysis was performed to assess the performance of each candidate gene. A total of 29 upregulated genes were identified and three selected genes were performed gene expression analysis. Our results revealed high mRNA expression levels in WBCs of pancreatic cancer patients in all selected genes, including FKBP1A (p < 0.0001), PLD1 (p < 0.0001), and PSMA4 (p = 0.0002). Among candidate genes, FKBP1A mRNA expression level was remarkably increased in the pancreatic cancer samples and also in the early stage (p < 0.0001). Moreover, FKBP1A showed the greatest performance to discriminate patients with pancreatic cancer from healthy individuals than other genes with the 88.9% sensitivity, 84.3% specificity, and 90.1% accuracy. Our findings demonstrated that the alteration of FKBP1A gene in WBCs serves as a novel valuable biomarker for patients with pancreatic cancer. Detection of FKBP1A mRNA expression level in circulating WBCs, providing high-sensitive, less-invasive, and cost-effective, is simple and feasible for routine clinical setting that can be applied for pancreatic cancer screening and early detection.


Subject(s)
Early Detection of Cancer , Pancreatic Neoplasms , Humans , Early Detection of Cancer/methods , Biomarkers/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , RNA, Messenger/metabolism , Leukocytes/metabolism , Biomarkers, Tumor/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
7.
Bioorg Med Chem Lett ; 104: 129728, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582133

ABSTRACT

Antascomicin B is a natural product that similarly to the macrolides FK506 and Rapamycin binds to the FK506-binding protein 12 (FKBP12). FK506 and Rapamycin act as molecular glues by inducing ternary complexes between FKBPs and additional target proteins. Whether Antascomicin B can induce ternary complexes is unknown. Here we show that Antascomicin B binds tightly to larger human FKBP homologs. The cocrystal structure of FKBP51 in complex with Antascomicin B revealed that large parts of Antascomicin B are solvent-exposed and available to engage additional proteins. Cellular studies demonstrated that Antascomicin B enhances the interaction between human FKBP51 and human Akt. Our studies show that molecules with molecular glue-like properties are more prominent in nature than previously thought. We predict the existence of additional 'orphan' molecular glues that evolved to induce ternary protein complexes but where the relevant ternary complex partners are unknown.


Subject(s)
Proto-Oncogene Proteins c-akt , Tacrolimus Binding Proteins , Tacrolimus , Humans , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , Tacrolimus/pharmacology , Tacrolimus/analogs & derivatives , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism
8.
Stress ; 27(1): 2312467, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38557197

ABSTRACT

Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.


Subject(s)
Receptors, Glucocorticoid , Stress, Psychological , Tacrolimus Binding Proteins , Animals , Female , Male , Rats , Corticosterone/metabolism , Hippocampus/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Stress, Psychological/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
9.
Cancer Res Commun ; 4(5): 1296-1306, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38651817

ABSTRACT

The primary treatment for glioblastoma (GBM) is removing the tumor mass as defined by MRI. However, MRI has limited diagnostic and predictive value. Tumor-associated macrophages (TAM) are abundant in GBM tumor microenvironment (TME) and are found in peripheral blood (PB). FKBP51 expression, with its canonical and spliced isoforms, is constitutive in immune cells and aberrant in GBM. Spliced FKBP51s supports M2 polarization. To find an immunologic signature that combined with MRI could advance in diagnosis, we immunophenotyped the macrophages of TME and PB from 37 patients with GBM using FKBP51s and classical M1-M2 markers. We also determined the tumor levels of FKBP51s, PD-L1, and HLA-DR. Tumors expressing FKBP51s showed an increase in various M2 phenotypes and regulatory T cells in PB, indicating immunosuppression. Tumors expressing FKBP51s also activated STAT3 and were associated with reduced survival. Correlative studies with MRI and tumor/macrophages cocultures allowed to interpret TAMs. Tumor volume correlated with M1 infiltration of TME. Cocultures with spheroids produced M1 polarization, suggesting that M1 macrophages may infiltrate alongside cancer stem cells. Cocultures of adherent cells developed the M2 phenotype CD163/FKBP51s expressing pSTAT6, a transcription factor enabling migration and invasion. In patients with recurrences, increased counts of CD163/FKBP51s monocyte/macrophages in PB correlated with callosal infiltration and were accompanied by a concomitant decrease in TME-infiltrating M1 macrophages. PB PD-L1/FKBP51s connoted necrotic tumors. In conclusion, FKBP51s identifies a GBM subtype that significantly impairs the immune system. Moreover, FKBP51s marks PB macrophages associated with MRI features of glioma malignancy that can aid in patient monitoring. SIGNIFICANCE: Our research suggests that by combining imaging with analysis of monocyte/macrophage subsets in patients with GBM, we can enhance our understanding of the disease and assist in its treatment. We discovered a similarity in the macrophage composition between the TME and PB, and through association with imaging, we could interpret macrophages. In addition, we identified a predictive biomarker that drew more attention to immune suppression of patients with GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Protein Isoforms , Tacrolimus Binding Proteins , Tumor Microenvironment , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/diagnostic imaging , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Prognosis , Female , Tumor Microenvironment/immunology , Male , Protein Isoforms/genetics , Protein Isoforms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Middle Aged , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Magnetic Resonance Imaging , Adult
10.
Mol Biol Rep ; 51(1): 363, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403730

ABSTRACT

PURPOSE: Cell senescence stands as a principal risk factor for various neurodegenerative diseases, with astrocytic senescence emerging as a potentially pivotal player in the pathogenesis of aging and neurodegenerative disorders. Clearing senescent astrocytes holds promise as a potential therapeutic approach for senescence-related diseases. METHODS: In this study, we designed and constructed two plasmids aimed at inducing apoptosis in senescent astrocytes. This was achieved through the ligation of FKBP (FK506-binding protein) and FRB (FKBP and FKBP rapamycin binding domain) and the formation of caspase8 dimers, thereby achieving the purpose of eliminating senescent astrocytes. RESULTS: The developed vector system demonstrates a specifically capability to induce apoptosis in aging astrocytes, offering a targeted approach to eliminate these cells. CONCLUSION: The utilization of the double -inducible suicide gene system provides a versatile tool forstimulating cell apoptosis and inhibiting cellular senescence. This system proves valuable in exploring the intrinsic roles and molecular mechanisms of senescent cells in the occurrence and development of aging-related diseases. Ultimately, it offers a potential avenue for developing an efficient treatment system for such conditions.


Subject(s)
Astrocytes , Cellular Senescence , Humans , Astrocytes/metabolism , Cellular Senescence/genetics , Aging , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Apoptosis/genetics
11.
Arch Biochem Biophys ; 752: 109891, 2024 02.
Article in English | MEDLINE | ID: mdl-38218360

ABSTRACT

Endometrial cancer (EC) is a common gynecological malignancy, and advanced-stage or recurrent EC is associated with a high mortality rate owing to the ineffectiveness of currently available treatments. FK506-binding protein 38 (FKBP38) is a member of the immunophilin family and inhibits melanoma and breast cancer cell metastasis. However, the functions of FKBP38 and its potential mechanism in EC remain unclear. Herein, we analyzed the expression levels of FKBP38 in EC cells and found that the FKBP38 expression was high in Ishikawa cells, and low in AN3CA cells, traditionally considered a low grade and a high grade cell line, respectively, in pathology classification. Moreover, FKBP38 inhibited cell proliferation, migration and invasion in EC cells, FKBP38 knockdown significantly promoted tumor growth of Ishikawa cells in a subcutaneous xenograft model and increased the number of lung metastases of Hec-1-A cells in a metastatic mouse model. Furthermore, FKBP38 suppressed several target proteins of epithelial-to-mesenchymal transition (EMT) and reduced the phosphorylation of ribosomal S6 protein (S6), eukaryotic initiation factor 4E-binding protein 1 (4EBP-1), indicating the potent inhibition of the mammalian target of rapamycin (mTOR) pathway. Meanwhile, the inhibition of mTOR neutralized the elevation of EC cell proliferation, migration and invasion after FKBP38 knockdown. In summary, FKBP38 would exert a tumor-suppressing role by modulating the mTOR pathway. Our results indicate that FKBP38 may be considered as a factor of EC metastasis and a new target for EC therapeutic intervention.


Subject(s)
Endometrial Neoplasms , Tacrolimus Binding Proteins , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Endometrial Neoplasms/metabolism , Mammals/metabolism , Signal Transduction/physiology , Tacrolimus Binding Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
12.
Cell Death Dis ; 15(1): 64, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233415

ABSTRACT

Renal cell carcinoma (RCC) is one of the three major malignant tumors of the urinary system and originates from proximal tubular epithelial cells. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of RCC cases and is recognized as a metabolic disease driven by genetic mutations and epigenetic alterations. Through bioinformatic analysis, we found that FK506 binding protein 10 (FKBP10) may play an essential role in hypoxia and glycolysis pathways in ccRCC progression. Functionally, FKBP10 promotes the proliferation and metastasis of ccRCC in vivo and in vitro depending on its peptidyl-prolyl cis-trans isomerase (PPIase) domains. Mechanistically, FKBP10 binds directly to lactate dehydrogenase A (LDHA) through its C-terminal region, the key regulator of glycolysis, and enhances the LDHA-Y10 phosphorylation, which results in a hyperactive Warburg effect and the accumulation of histone lactylation. Moreover, HIFα negatively regulates the expression of FKBP10, and inhibition of FKBP10 enhances the antitumor effect of the HIF2α inhibitor PT2385. Therefore, our study demonstrates that FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to HIF2α blockade by facilitating LDHA phosphorylation, which may be exploited for anticancer therapy.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Lactate Dehydrogenase 5/metabolism , Phosphorylation , Cell Line, Tumor , Carcinoma/genetics , Kidney Neoplasms/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
13.
Cancer Biomark ; 39(4): 349-360, 2024.
Article in English | MEDLINE | ID: mdl-38250761

ABSTRACT

GPX4 has attracted much attention as a key molecule of cell ferroptosis, but its role in cell apoptosis is rarely reported, and its role in apoptosis of thyroid cancer (TC) cell has not been reported. The analysis of TCGA database showed that both GPX4 and FKBP8 were highly expressed in TC tumor tissues; The expression of GPX4 and FKBP8 were positively correlated. The immunohistochemical analysis further confirmed that GPX4 and FKBP8 were highly expressed in TC tumor tissues. In addition, the high expression of GPX4 and FKBP8 were both significantly correlated with the poor prognosis of TC. Silencing GPX4 significantly inhibited the proliferation, induced apoptosis of TC cells, and reduced tumor growth in mice. The co-immunoprecipitation assay revealed a physical interaction between GPX4 and FKBP8 observed in the TC cells. Knockdown of FKBP8 significantly inhibited the proliferation and induced apoptosis of TC cells. Rescue experiments suggested that knockdown of FKBP8 could reverse the strengthens of cell proliferation and apoptosis and the higher expression of FKBP8 and Bcl-2 caused by overexpression of GPX4. Our results suggest that the GPX4/FKBP8/Bcl-2 axis promotes TC development by inhibiting TC cell apoptosis, which provides potential molecular targets for TC therapeutic strategies.


Subject(s)
Apoptosis , Cell Proliferation , Phospholipid Hydroperoxide Glutathione Peroxidase , Proto-Oncogene Proteins c-bcl-2 , Tacrolimus Binding Proteins , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Mice , Animals , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor , Female , Male , Gene Expression Regulation, Neoplastic , Prognosis , Signal Transduction
14.
Mol Neurobiol ; 61(3): 1479-1494, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37726498

ABSTRACT

FK506-binding protein 51 kDa (FKBP51), encoded by Fkbp5 gene, gained considerable attention as an important regulator of several aspects of human biology including stress response, metabolic dysfunction, inflammation, and age-dependent neurodegeneration. Its catalytic peptidyl-prolyl isomerase (PPIase) activity is mediated by the N-terminal FK506-binding (FK1) domain, whereas the C-terminal tetratricopeptide motif (TPR) domain is responsible for FKBP51 interaction with molecular chaperone heat shock protein 90 (Hsp90). To understand FKBP51-related biology, several mouse models have been created. These include Fkbp5 complete and conditional knockouts, overexpression, and humanized models. To dissect the role of FKBP51-Hsp90 interaction in FKBP51 biology, we have created an interaction-deficient mouse (Fkbp5TPRmut) by introducing two-point mutations in the TPR domain of FKBP51. FKBP51-Hsp90 interaction-deficient mice are viable, fertile and show Mendelian inheritance. Intracellular association of FKBP51 with Hsp90 is significantly reduced in homozygous mutants compared to wild-type animals. No behavioral differences between genotypes were seen at 2 months of age, however, sex-dependent differences were detected in Y-maze and fear conditioning tests at the age of 12 months. Moreover, we have found a significant reduction in plasma levels of corticosterone and adrenocorticotropic hormone in Fkbp5TPRmut mice after acute stress. In contrast to Fkbp5 knockout mice, females of Fkbp5TPRmut showed increased body weight gain under high-fat diet treatment. Our data confirm the importance of FKBP51-Hsp90 interactions for stress-related endocrine signaling. Also, Fkbp5TPRmut mice can serve as a useful in vivo tool to discriminate between Hsp90-dependent and independent functions of FKBP51.


Subject(s)
Diet, High-Fat , Sex Characteristics , Animals , Female , Humans , Infant , Male , Mice , HSP90 Heat-Shock Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
15.
Plant J ; 117(3): 818-839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947266

ABSTRACT

Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ribosomes/metabolism , Gene Expression Regulation, Plant/genetics , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
16.
J Cell Mol Med ; 28(1): e18041, 2024 01.
Article in English | MEDLINE | ID: mdl-37987202

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is difficult to treat due to the high recurrence rate and therapy intolerance, so finding potential therapeutic targets for DLBCL is critical. FK506-binding protein 3 (FKBP3) contributes to the progression of various cancers and is highly expressed in DLBCL, but the role of FKBP3 in DLBCL and its mechanism are not clear. Our study demonstrated that FKBP3 aggravated the proliferation and stemness of DLBCL cells, and tumour growth in a xenograft mouse model. The interaction between FKBP3 and parkinsonism associated deglycase (PARK7) in DB cells was found using co-immunoprecipitation assay. Knockdown of FKBP3 enhanced the degradation of PARK7 through increasing its ubiquitination modification. Forkhead Box O3 (FOXO3) belongs to the forkhead family of transcription factors and inhibits DLBCL, but the underlying mechanism has not been reported. We found that FOXO3 bound the promoter of FKBP3 and then suppressed its transcription, eventually weakening DLBCL. Mechanically, FKBP3 activated Wnt/ß-catenin signalling pathway mediated by PARK7. Together, FKBP3 increased PARK7 and then facilitated the malignant phenotype of DLBCL through activating Wnt/ß-catenin pathway. These results indicated that FKBP3 might be a potential therapeutic target for the treatment of DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , beta Catenin , Humans , Mice , Animals , beta Catenin/metabolism , Protein Deglycase DJ-1/genetics , Gene Expression Regulation, Neoplastic , Wnt Signaling Pathway/genetics , Phenotype , Lymphoma, Large B-Cell, Diffuse/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Tacrolimus Binding Proteins/metabolism
17.
Nat Struct Mol Biol ; 30(12): 1857-1866, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945739

ABSTRACT

The Hsp90 co-chaperones FKBP51 and FKBP52 play key roles in steroid-hormone-receptor regulation, stress-related disorders, and sexual embryonic development. As a prominent target, glucocorticoid receptor (GR) signaling is repressed by FKBP51 and potentiated by FKBP52, but the underlying molecular mechanisms remain poorly understood. Here we present the architecture and functional annotation of FKBP51-, FKBP52-, and p23-containing Hsp90-apo-GR pre-activation complexes, trapped by systematic incorporation of photoreactive amino acids inside human cells. The identified crosslinking sites clustered in characteristic patterns, depended on Hsp90, and were disrupted by GR activation. GR binding to the FKBPFK1, but not the FKBPFK2, domain was modulated by FKBP ligands, explaining the lack of GR derepression by certain classes of FKBP ligands. Our findings show how FKBPs differentially interact with apo-GR, help to explain the differentiated pharmacology of FKBP51 ligands, and provide a structural basis for the development of improved FKBP ligands.


Subject(s)
Receptors, Glucocorticoid , Tacrolimus Binding Proteins , Humans , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/metabolism , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Protein Binding , HSP90 Heat-Shock Proteins/metabolism
18.
Nat Struct Mol Biol ; 30(12): 1867-1877, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37945740

ABSTRACT

Hsp90 is an essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins, including the glucocorticoid receptor (GR). Previously, we revealed that Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding, aided by co-chaperones. In vivo, the co-chaperones FKBP51 and FKBP52 antagonistically regulate GR activity, but a molecular understanding is lacking. Here we present a 3.01 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP52 complex, revealing how FKBP52 integrates into the GR chaperone cycle and directly binds to the active client, potentiating GR activity in vitro and in vivo. We also present a 3.23 Å cryogenic electron microscopy structure of the human GR:Hsp90:FKBP51 complex, revealing how FKBP51 competes with FKBP52 for GR:Hsp90 binding and demonstrating how FKBP51 can act as a potent antagonist to FKBP52. Altogether, we demonstrate how FKBP51 and FKBP52 integrate into the GR chaperone cycle to advance GR to the next stage of maturation.


Subject(s)
Receptors, Glucocorticoid , Tacrolimus Binding Proteins , Humans , Receptors, Glucocorticoid/metabolism , Cryoelectron Microscopy , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/metabolism , Protein Binding
19.
Free Radic Biol Med ; 209(Pt 1): 55-69, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37827456

ABSTRACT

FK506-binding protein 5 (FKBP5) contributes to many diseases; However, it remains unclear whether FKBP5 is relevant to recurrent spontaneous abortion (RSA) and the mechanisms by which it is involved in maternal-fetal immunological tolerance. Placental tissue was collected in women with normal pregnancy and RSA and examined for FKBP5 expression. Human trophoblast cell lines and THP-1-derived M0 macrophages were used to explore the role of FKBP5 in RSA and its mechanism. The role of FKBP5 on pregnancy outcomes was assessed using a mouse model of miscarriage. This study found that upregulation of FKBP5 at the placental interface is involved in the pathogenesis of RSA by depressing trophoblast function and promoting M1-type macrophage polarization. First, FKBP5 expression was upregulated in the villi of RSA, and FKBP5 regulated trophoblast function by inhibiting HAPLN1 expression through suppression of PI3K/AKT signaling. In addition, FKBP5 inhibited trophoblast IL-6 secretion by suppressing PI3K/AKT signaling, thereby promoting macrophage polarization toward the M1 phenotype. Meanwhile, FKBP5 was significantly elevated in decidual macrophages from patients with RSA and promoted M1 macrophage polarization via ROS/NF-κB signaling and further inhibited trophoblast function. Finally, FKBP5 inhibitors improved embryo resorption rate in miscarried mice. In conclusion, FKBP5 is essential in maintaining pregnancy and trophoblast-macrophage crosstalk in the maternal-fetal interface, which may be a potential target for diagnosing and treating RSA.


Subject(s)
Abortion, Habitual , Abortion, Spontaneous , Humans , Female , Pregnancy , Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Trophoblasts/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Placenta/metabolism , Abortion, Habitual/genetics , Abortion, Habitual/metabolism , Signal Transduction , Macrophages/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
20.
Int J Mol Sci ; 24(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894834

ABSTRACT

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.


Subject(s)
Ehlers-Danlos Syndrome , Tacrolimus Binding Proteins , Humans , Tacrolimus Binding Proteins/metabolism , Collagen/genetics , Peptidylprolyl Isomerase/genetics , Mutation , Ehlers-Danlos Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...