Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 81(5): 123, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538917

ABSTRACT

Two novel yellow-pigmented, rod-shaped and non-motile coryneform actinobacteria, strains VKM Ac-2596T and VKM Ac-2761, were isolated from a plant Tanacetum vulgare (Asteraceae) infested by foliar nematode Aphelenchoides sp. The strains exhibited the highest 16S rRNA gene sequence similarities to Rathayibacter agropyri CA4T (99.71%), Rathayibacter rathayi DSM 7485T (99.65%) and Rathayibacter iranicus VKM Ac-1602T (99.65%). The pairwise average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between VKM Ac-2596T and VKM Ac-2671 towards the type strains of Rathayibacter species did not exceed 85.24% and 29.40%, respectively, that are well below the thresholds for species delineation. The target strains had key chemotaxonomic properties typical of the genus Rathayibacter, namely, the DAB-based peptidoglycan, rhamnose and mannose as the predominant sugars and a rhamnomannan in the cell, the major menaquinone MK-10 and fatty acids of iso-anteiso type, with a large proportion of anteiso-15:0. The strains showed clear differences from the recognized Rathayibacter species in several phenotypic characteristics, including the difference in the composition of cell wall glycopolymers. Based on the results obtained in this study and the data published previously, we provide a description of a new species, Rathayibacter tanaceti sp. nov., with DL-642T (= VKM Ac-2596T = LMG 33114T) as the type strain.


Subject(s)
Actinobacteria , Actinomycetales , Tanacetum , Tylenchida , Animals , RNA, Ribosomal, 16S/genetics , Tanacetum/genetics , Fatty Acids/analysis , DNA , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Vitamin K 2 , Phospholipids
2.
Gene ; 871: 147427, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37044183

ABSTRACT

BACKGROUND: Artemisia argyi L., also known as mugwort, is a perennial herb whose leaves are commonly used as a source of traditional medicines. However, the evolution and structure of the mitochondrial genome (mitogenome) in A. argyi remain unclear. In this study, the mitogenome of A. argyi was assembled and characterized for the first time. RESULTS: The mitogenome of A. argyi was a circular molecule of 229,354 bp. It encodes 56 genes, including 33 protein-coding genes (PCGs), 20 tRNA genes, and three rRNA genes, and three pseudogenes. Five trans-spliced introns were observed in three PCGs namely, nad1, nad2 and nad5. Repeat analysis identified 65 SSRs, 14 tandem repeats, and 167 dispersed repeats. The A. argyi mitogenome contains 12 plastid transfer sequences from 79 bp to 2552 bp. Five conserved MTPTs were identified in all 18 Asteraceae species. Comparison of mitogenome between A. argyi and one Artemisia specie and two Chrysanthemum species showed 14 conserved gene clusters. Phylogenetic analysis with organelle genomes of A. argyi and 18 other Anthemideae plants showed inconsistent phylogenetic trees, which implied that the evolutionary rates of PCGs and rrna genes derived from mitochondrion and plastid were incongruent. The Ka/Ks ratio of the 27 shared protein-coding genes in the 18 Anthemideae species are all less than 1 indicating that these genes were under the effect of purifying selection. Lastly, a total of 568 RNA editing sites in PCGs were further identified. The average editing frequency of non-synonymous changes was significantly higher than that of synonymous changes (one-sample Student's t-test, p-values ≤ 0.05) in three tissues (root, leaf and stem). CONCLUSIONS: In this study, the gene content, genome size, genome comparison, mitochondrial plastid sequences, dN/dS analysis of mitochondrial protein-coding genes, and RNA-editing events in A. argyi mitogenome were determined, providing insights into the phylogenetic relationships of Asteraceae plant.


Subject(s)
Artemisia , Chrysanthemum , Genome, Mitochondrial , Tanacetum , Humans , Artemisia/genetics , Tanacetum/genetics , Chrysanthemum/genetics , Phylogeny , Mitochondria/genetics , Mitochondrial Proteins/genetics
3.
BMC Plant Biol ; 20(1): 551, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33297957

ABSTRACT

BACKGROUND: Tansy plants (Tanacetum vulgare L.) are known for their high intraspecific chemical variation, especially of volatile organic compounds (VOC) from the terpenoid compound group. These VOCs are closely involved in plant-insect interactions and, when profiled, can be used to classify plants into groups known as chemotypes. Tansy chemotypes have been shown to influence plant-aphid interactions, however, to date no information is available on the response of different tansy chemotypes to simultaneous herbivory by more than one insect species. RESULTS: Using a multi-cuvette system, we investigated the responses of five tansy chemotypes to feeding by sucking and/or chewing herbivores (aphids and caterpillars; Metopeurum fuscoviride Stroyan and Spodoptera littoralis Boisduval). Herbivory by caterpillars following aphid infestation led to a plant chemotype-specific change in the patterns of terpenoids stored in trichome hairs and in VOC emissions. The transcriptomic analysis of a plant chemotype represents the first de novo assembly of a transcriptome in tansy and demonstrates priming effects of aphids on a subsequent herbivory. Overall, we show that the five chemotypes do not react in the same way to the two herbivores. As expected, we found that caterpillar feeding increased VOC emissions, however, a priori aphid infestation only led to a further increase in VOC emissions for some chemotypes. CONCLUSIONS: We were able to show that different chemotypes respond to the double herbivore attack in different ways, and that pre-treatment with aphids had a priming effect on plants when they were subsequently exposed to a chewing herbivore. If neighbouring chemotypes in a field population react differently to herbivory/dual herbivory, this could possibly have effects from the individual level to the group level. Individuals of some chemotypes may respond more efficiently to herbivory stress than others, and in a group environment these "louder" chemotypes may affect the local insect community, including the natural enemies of herbivores, and other neighbouring plants.


Subject(s)
Gene Expression Profiling/methods , Plant Diseases/genetics , Tanacetum/genetics , Volatile Organic Compounds/metabolism , Animals , Aphids/physiology , Gas Chromatography-Mass Spectrometry/methods , Herbivory/classification , Herbivory/physiology , Host-Parasite Interactions , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , RNA-Seq/methods , Tanacetum/metabolism , Tanacetum/parasitology , Terpenes/analysis , Terpenes/metabolism , Volatile Organic Compounds/analysis
4.
BMC Plant Biol ; 15: 174, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26152193

ABSTRACT

BACKGROUND: Although karyologically well studied, the genus Tanacetum (Asteraceae) is poorly known from the perspective of molecular cytogenetics. The prevalence of polyploidy, including odd ploidy warranted an extensive cytogenetic study. We studied several species native to Iran, one of the most important centres of diversity of the genus. We aimed to characterise Tanacetum genomes through fluorochrome banding, fluorescent in situ hybridisation (FISH) of rRNA genes and the assessment of genome size by flow cytometry. We appraise the effect of polyploidy and evaluate the existence of intraspecific variation based on the number and distribution of GC-rich bands and rDNA loci. Finally, we infer ancestral genome size and other cytogenetic traits considering phylogenetic relationships within the genus. RESULTS: We report first genome size (2C) estimates ranging from 3.84 to 24.87 pg representing about 11 % of those recognised for the genus. We found striking cytogenetic diversity both in the number of GC-rich bands and rDNA loci. There is variation even at the population level and some species have undergone massive heterochromatic or rDNA amplification. Certain morphometric data, such as pollen size or inflorescence architecture, bear some relationship with genome size. Reconstruction of ancestral genome size, number of CMA+ bands and number of rDNA loci show that ups and downs have occurred during the evolution of these traits, although genome size has mostly increased and the number of CMA+ bands and rDNA loci have decreased in present-day taxa compared with ancestral values. CONCLUSIONS: Tanacetum genomes are highly unstable in the number of GC-rich bands and rDNA loci, although some patterns can be established at the diploid and tetraploid levels. In particular, aneuploid taxa and some odd ploidy species show greater cytogenetic instability than the rest of the genus. We have also confirmed a linked rDNA arrangement for all the studied Tanacetum species. The labile scenario found in Tanacetum proves that some cytogenetic features previously regarded as relatively constant, or even diagnostic, can display high variability, which is better interpreted within a phylogenetic context.


Subject(s)
Biological Evolution , DNA, Plant/genetics , DNA, Ribosomal/genetics , Genome, Plant , Polyploidy , Tanacetum/genetics , Fluorescent Dyes/chemistry , Genome Size , In Situ Hybridization, Fluorescence , Iran
5.
BMC Genomics ; 14: 902, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24350608

ABSTRACT

BACKGROUND: Hybridization is a major driver of evolution in plants. In a number of plant species, the process of hybridization has been revealed to be accompanied by wide-ranging genetic and epigenetic alterations, some of which have consequences on gene transcripts. The Asteraceae family includes a number of polyploid species, and wide crossing is seen as a viable means of genetically improving ornamental species such as Chrysanthemum spp. However, the consequences of hybridization in this taxon have yet to be characterized. RESULTS: Amplified fragment length polymorphism (AFLP), methylation sensitive amplification polymorphism (MSAP) and cDNA-AFLP profiling of the two intergeneric hybrids C. nankingense × Tanacetum vulgare and C. crassum × Crossostephium chinense were employed to characterize, respectively, the genomic, epigenomic and transcriptomic changes induced by the hybridization event. The hybrids' AFLP profiles included both the loss of specific parental fragments and the gain of fragments not present in either parent's profile. About 10% of the paternal fragments were not inherited by the hybrid, while the corresponding rate for the maternal parent fragments was around 4-5%. The novel fragments detected may have arisen either due to heterozygosity in one or other parent, or as a result of a deletion event following the hybridization. Around one half of the cDNA-AFLP fragments were common to both parents, about 30% were specific to the female parent, and somewhat under 20% specific to the male parent; the remainder (2.9-4.7%) of the hybrids' fragments were not present in either parent's profile. The MSAP fingerprinting demonstrated that the hybridization event also reduced the amount of global cytosine methylation, since > 50% of the parental fragments were methylated, while the corresponding frequencies for the two hybrids were 48.5% and 50.4%. CONCLUSIONS: Combining two different Asteraceae genomes via hybridization clearly induced a range of genomic and epigenomic alterations, some of which had an effect on the transcriptome. The rapid genomic and transcriptomic alterations induced by hybridization may accelerate the evolutionary process among progenies.


Subject(s)
Chrysanthemum/genetics , Genome, Plant , Hybridization, Genetic , Tanacetum/genetics , Transcriptome , Amplified Fragment Length Polymorphism Analysis , Biological Evolution , DNA Fingerprinting , DNA Methylation , DNA, Plant/genetics
6.
J Agric Food Chem ; 53(12): 4946-53, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15941340

ABSTRACT

Tansy (Tanacetum vulgare L.) was cultivated at the Norwegian Crop Research Institute at the Apelsvoll Research Centre, Division Kise, in the period from 2000 to 2001. The study focused on different harvesting regimens for high biomass production and essential oil (EO) yield and quality. Two tansy genotypes from Canada (Richters and Goldsticks) and three Norwegian genotypes (Steinvikholmen, Alvdal, and Brumunddal) were studied. The Canadian genotypes reached a height of 130-145 cm and showed a higher dry weight of aerial plant parts compared to the Norwegian plants in 2000. Similar oil yields could be observed for the Canadian types and genotype Steinvikholmen in the range of 30.8-34.6 L/ha when the plants were harvested twice during budding and before flowering after regrowth (year 2001). In contrast, single harvesting at the full bloom stage resulted in higher oil yields, between 42.1 and 44.5 L/ha (Canadian genotypes), whereas 21.0-38.4 L/ha was obtained from the Norwegian types. Tansy genotypes could be grouped into the following chemotypes: the mixed chemotypes Steinvikholmen (thujone-camphor), Alvdal (thujone-camphor-borneol), Goldsticks (thujone-camphor-chrysanthenyl type), and Brumunddal (thujone-camphor-1,8-cineole-bornyl acetate/borneol-alpha-terpineol) and the distinct chemotype Richters, with average concentrations of (E)-chrysanthenyl acetate >40% in both leaf and flower EO.


Subject(s)
Oils, Volatile/metabolism , Tanacetum/growth & development , Tanacetum/metabolism , Canada , Flowers/chemistry , Flowers/growth & development , Gas Chromatography-Mass Spectrometry , Genotype , Norway , Oils, Volatile/analysis , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Stems/chemistry , Plant Stems/growth & development , Seasons , Tanacetum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...