Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.199
Filter
1.
Sci Rep ; 14(1): 11908, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789472

ABSTRACT

Common beans are a common staple food with valuable nutritional qualities, but their high contents in antinutritional factors (ANFs) can decrease the bioavailability of (i) fat-soluble micronutrients including carotenoids and (ii) minerals. Our objective was to select ANF-poor bean lines that would not interfere with carotenoid and mineral bioavailability. To achieve this objective, seeds of commercial and experimental Phaseolus vulgaris L. bean lines were produced for 2 years and the bean's content in ANFs (saponins, phytates, tannins, total polyphenols) was assessed. We then measured carotenoid bioaccessibility and mineral solubility (i.e. the fraction of carotenoid and mineral that transfer into the aqueous phase of the digesta and is therefore absorbable) from prepared beans using in vitro digestion. All beans contained at least 200 mg/100 g of saponins and 2.44 mg/100 g tannins. The low phytic acid (lpa) lines, lpa1 and lpa12 exhibited lower phytate levels (≈ - 80%, p = 0.007 and p = 0.02) than their control BAT-93. However, this decrease had no significant impact on mineral solubility. HP5/1 (lpa + phaseolin and lectin PHA-E free) bean line, induced an improvement in carotenoid bioaccessibility (i.e., + 38%, p = 0.02, and + 32%, p = 0.005, for phytofluene bioaccessibility in 2021 and 2022, respectively). We conclude that decrease in the phytate bean content should thus likely be associated to decreases in other ANFs such as tannins or polyphenols to lead to significant improvement of micronutrient bioaccessibility.


Subject(s)
Biological Availability , Carotenoids , Minerals , Phaseolus , Phytic Acid , Solubility , Tannins , Phaseolus/chemistry , Phaseolus/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Phytic Acid/analysis , Minerals/analysis , Tannins/analysis , Seeds/chemistry , Seeds/metabolism , Polyphenols/analysis , Nutritive Value , Saponins/analysis
2.
PeerJ ; 12: e17438, 2024.
Article in English | MEDLINE | ID: mdl-38818455

ABSTRACT

Background: The identification and analysis of allelic variation are important bases for crop diversity research, trait domestication and molecular marker development. Grain tannin content is a very important quality trait in sorghum. Higher tannin levels in sorghum grains are usually required when breeding varieties resistant to bird damage or those used for brewing liquor. Non-tannin-producing or low-tannin-producing sorghum accessions are commonly used for food and forage. Tan1 and Tan2, two important cloned genes, regulate tannin biosynthesis in sorghum, and mutations in one or two genes will result in low or no tannin content in sorghum grains. Even if sorghum accessions contain dominant Tan1 and Tan2, the tannin contents are distributed from low to high, and there must be other new alleles of the known regulatory genes or new unknown genes contributing to tannin production. Methods: The two parents 8R306 and 8R191 did not have any known recessive alleles for Tan1 and Tan2, and it was speculated that they probably both had dominant Tan1 and Tan2 genotypes. However, the phenotypes of two parents were different; 8R306 had tannins and 8R191 had non-tannins in the grains, so these two parents were constructed as a RIL population. Bulked segregant analysis (BSA) was used to determine other new alleles of Tan1 and Tan2 or new Tannin locus. Tan1 and Tan2 full-length sequences and tannin contents were detected in wild sorghum resources, landraces and cultivars. Results: We identified two novel recessive tan1-d and tan1-e alleles and four recessive Tan2 alleles, named as tan2-d, tan2-e, tan2-f, and tan2-g. These recessive alleles led to loss of function of Tan1 and Tan2, and low or no tannin content in sorghum grains. The loss-of-function alleles of tan1-e and tan2-e were only found in Chinese landraces, and other alleles were found in landraces and cultivars grown all around the world. tan1-a and tan1-b were detected in foreign landraces, Chinese cultivars and foreign cultivars, but not in Chinese landraces. Conclusion: These results implied that Tan1 and Tan2 recessive alleles had different geographically distribution in the worldwide, but not all recessive alleles had been used in breeding. The discovery of these new alleles provided new germplasm resources for breeding sorghum cultivars for food and feed, and for developing molecular markers for low-tannin or non-tannin cultivar-assisted breeding in sorghum.


Subject(s)
Alleles , Sorghum , Tannins , Sorghum/genetics , Sorghum/metabolism , Tannins/metabolism , Tannins/analysis , Genes, Recessive/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phenotype
3.
Food Chem ; 451: 139495, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692244

ABSTRACT

Our previous study revealed stem inclusion fermentation reduced anthocyanin, and increased tannin and aroma compounds responsible for green notes. This study further investigated the effect of clone selection and whole bunch fermentation on Pinot noir wine composition, with focus on tannin composition. Three treatments were conducted using two clones (AM10/5 and UCD5) in 2021 and 2022: 100% destemmed (DS), 30% whole bunch (WB30), and 60% whole bunch (WB60). WB60 increased stem and skin derived tannins but reduced seed derived tannin proportion in wines. Clone selection had an impact on tannin composition and an even greater impact on tannin concentration, colour, and aroma compounds. AM10/5 produced wines with higher tannin, polymeric pigments and darker colour. AM10/5 wines also had higher concentration of phenylethyl alcohol, but lower concentrations of 3-isobutyl-2-methoxypyrazine and ethyl esters, indicating more floral but less fruity and green notes.


Subject(s)
Color , Fermentation , Odorants , Tannins , Wine , Wine/analysis , Tannins/analysis , Odorants/analysis , Pinus/chemistry , Volatile Organic Compounds/chemistry , Fruit/chemistry , Anthocyanins/analysis , Anthocyanins/chemistry
4.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792262

ABSTRACT

Chebulae Fructus (CF) is known as one of the richest sources of hydrolyzable tannins (HTs). In this study, ultra-performance liquid chromatography coupled with a photodiode array detector method was established for simultaneous determination of the 12 common phenolcarboxylic and tannic constituents (PTCs). Using this method, quantitative analysis was accomplished in CF and other four adulterants, including Terminaliae Belliricae Fructus, Phyllanthi Fructus, Chebulae Fructus Immaturus, and Canarii Fructus. Based on a quantitative analysis of the focused compounds, discrimination of CF and other four adulterants was successfully accomplished by hierarchical cluster analysis and principal component analysis. Additionally, the total contents of the 12 compounds that we focused on in this study were unveiled as 148.86 mg/g, 96.14 mg/g, and 18.64 mg/g in exocarp, mesocarp, and endocarp and seed of CF, respectively, and PTCs were witnessed to be the most abundant in the exocarp of CF. Noticeably, the HTs (chebulagic acid, chebulanin acid, chebulinic acid, and punicalagin) were observed to be ultimately degraded to chebulic acid, gallic acid, and ellagic acid during sunlight-drying of the fresh fruits. As a result, our study indicated that CF and its adulterants could be distinguished by the observed 12 PTCs, which were mainly distributed in the exocarp of the fruits. The HTs were prone to degrade into the three simple phenolcarboxylic acids during drying or processing, allowing us to obtain a more comprehensive understanding of the PTCs, with great significance in the improved quality of CF and related products.


Subject(s)
Fruit , Hydrolyzable Tannins , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/analysis , Fruit/chemistry , Chromatography, High Pressure Liquid , Terminalia/chemistry , Tannins/analysis , Tannins/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis
5.
Am J Primatol ; 86(7): e23638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715239

ABSTRACT

Phenolics, like tannins, are plant-specialized metabolites that play a protective role against herbivory. Tannins can reduce palatability and bind with proteins to reduce digestibility, acting as deterrents to feeding and impacting nutrient extraction by herbivores. Some assays measure tannin and total phenolics content in plants but lack determination of their biological effects, hindering the interpretation of tannin function in herbivory and its impacts on animal behavior and ecology. In this study, we successfully applied the radial diffusion assay to assess tannin protein precipitation (PP) capacity and evaluate the anti-nutritional effects of tannins in food plants (n = 24) consumed by free-ranging black howler monkeys (Alouatta pigra) in Tabasco, Mexico. We found PP rings in five plant species consumed by the monkeys. The mature fruit of Inga edulis was the most consumed food plant, despite having a high tannin PP capacity (56.66 mg tannic acid equivalent/g dry matter). These findings highlight the presence of tannins in the black howler diet and provide insight into the primates' resilience and potential strategies for coping with anti-nutritional aspects of the diet.


Subject(s)
Alouatta , Diet , Food Preferences , Tannins , Animals , Tannins/analysis , Alouatta/physiology , Diet/veterinary , Mexico , Male , Female
6.
Anal Methods ; 16(23): 3663-3674, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38804266

ABSTRACT

The present study describes an efficient method for the determination of polyphenol content in beverages based on a composite material of graphene oxide decorated with Prussian blue nanocubes (rGO/PBNCs). In this method, rGO/PBNCs act as a nanoenzyme with peroxidase-like catalytic activity and produce a colorimetric product in the presence of hydrogen peroxide and tetramethylbenzidine (TMB). To verify the effectiveness of the method, we used two model standards for antioxidants: gallic acid (GA) and tannic acid (TA). The method validation included a comparison of the performance of a natural enzyme and an artificial one (rGO/PBNCs) and two polyphenols in the analysis of commercial beverage samples. After optimization, a pH of 4, ambient temperature (22 °C), a reaction time of 2 minutes and an rGO/PBNCs concentration of 0.01 µg mL-1 were found to be the most favorable conditions. The detection limits obtained were 5.6 µmol L-1 for GA and 1.5 µmol L-1 for TA. Overall, rGO/PBNCs offer advantages over natural enzymes in terms of stability, versatility, scalability and durability, making them attractive candidates for a wide range of catalytic and sensory applications.


Subject(s)
Beverages , Ferrocyanides , Graphite , Polyphenols , Polyphenols/analysis , Polyphenols/chemistry , Ferrocyanides/chemistry , Graphite/chemistry , Beverages/analysis , Colorimetry/methods , Limit of Detection , Peroxidase/chemistry , Gallic Acid/chemistry , Gallic Acid/analysis , Tannins/chemistry , Tannins/analysis , Hydrogen Peroxide/chemistry , Benzidines/chemistry , Antioxidants/chemistry , Antioxidants/analysis
7.
Food Chem ; 450: 139293, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631207

ABSTRACT

Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.


Subject(s)
Cooking , Germination , Lens Plant , Nutritive Value , Seeds , Lens Plant/chemistry , Seeds/chemistry , Seeds/growth & development , Phytic Acid/analysis , Phytic Acid/chemistry , Tannins/analysis , Tannins/chemistry , Trypsin Inhibitors/analysis , Trypsin Inhibitors/chemistry , Food Handling
8.
Plant Foods Hum Nutr ; 79(2): 503-510, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607507

ABSTRACT

This study delves into the transformative effects of atmospheric cold plasma (CP) treatment on little millet flour (LMF), specifically exploring alterations in bioactive compounds, antinutritional factors, and functional properties. Foaming and emulsification properties experienced noteworthy enhancements with plasma treatment, manifesting in significant increases in foaming capacity (up to 51.47 ± 0.49%), foaming stability, emulsification ability, and emulsion stability (up to 47.02 ± 0.35%). The treatment also positively influenced water absorption index and swelling power. Antinutritional factors, including tannins and saponins, exhibited substantial reductions following plasma treatment. Saponin content, for instance, decreased by an impressive 58% after exposure to 20 kV for 20 min. Conversely, bioactive compounds such as phenolic content and antioxidant activity saw significant increases. Total phenolic content (TPC) rose from 527.54 ± 8.94 to 575.82 ± 3.58 mg GAE/100 g, accompanied by a remarkable 59% boost in antioxidant activity. Interestingly, plasma treatment did not exhibit a discernible effect on pasting properties. These findings collectively underscore the potential of atmospheric CP treatment as a novel and effective method for enhancing the functional and nutritional attributes of LMF, thereby opening new avenues for its application in food science and technology.


Subject(s)
Antioxidants , Flour , Food Handling , Phenols , Plasma Gases , Saponins , Tannins , Flour/analysis , Antioxidants/analysis , Phenols/analysis , Saponins/analysis , Food Handling/methods , Tannins/analysis , Nutritive Value , Millets/chemistry
9.
Sci Total Environ ; 926: 171943, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527546

ABSTRACT

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Subject(s)
Cunninghamia , Microbiota , Dissolved Organic Matter , Nitrates/analysis , Lignin/metabolism , Tannins/analysis , Tannins/metabolism , Soil/chemistry , Organic Chemicals/analysis , Sulfur Compounds/metabolism , Nitrogen/analysis , Carbon/analysis , Hydrogen/analysis , Oxygen/analysis
10.
J Food Sci ; 89(5): 2716-2729, 2024 May.
Article in English | MEDLINE | ID: mdl-38517026

ABSTRACT

Marselan is a red wine grape variety with great brewing prospects. The aim of this study was to investigate the effect of postharvest indoor dehydration on the quality of Marselan grapes. For two consecutive years, the harvested grapes were dehydrated naturally indoors (24-28°C). Fresh grapes were used as a control, and dehydrated samples were taken every 7 days during the period of dehydration until ending at day 28. Dehydration treatment increased degrees Brix, reducing sugars, glycerol, and malic acid. On day 7, there was an increase in protocatechuic acid, p-coumaric acid, and total tannin of 26.00%-27.73%, 11.43%-52.52%, and 39.74%-70.45%, respectively. With increasing dehydration time, total phenols, total flavonoids and total flavanols in the skins were decreased by 17.05%-38.13%, 24.32%-57.38%, and 17.05%-59.48%, respectively, with an increase in pH, citric acid, and ascorbic acid contents of grape juice by 7.66%-21.43%, 100%-137.50%, and 61.29%-258.82%, respectively. On day 21, the esters were increased by 1.10-1.75 factors. Partial least square-discriminant analysis result of volatile compounds showed that ethyl acetate, 1-propanol, 1-propanol, 2-methyl-, 1-hexanol, and 1-butanol, 3-methyl- were the predominant characteristic flavor compounds during dehydration of Marselan grapes. The effect of indoor dehydration on Marselan grape quality offered application value for China's later dehydration wine production.


Subject(s)
Fruit , Phenols , Vitis , Wine , Vitis/chemistry , China , Fruit/chemistry , Wine/analysis , Phenols/analysis , Flavonoids/analysis , Desiccation/methods , Tannins/analysis , Volatile Organic Compounds/analysis
11.
Food Res Int ; 178: 114003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309889

ABSTRACT

This study aimed to investigate the impact of leaf removal on concentrations of anthocyanin, tannin, and methoxypyrazines (MPs) in Pinot noir grapes and wines. Leaf removal after 7 days (LR7), 30 days (LR30), and 60 days (LR60) of flowering were compared with no leaf removal control (LRC). Grapes and resultant wines were analysed for tannin and aroma composition using liquid chromatography and two-dimensional gas chromatography-mass spectrometry. All leaf removal treatments increased anthocyanin concentration in grapes and reduced MP levels in grape stems compared to LRC, indicating the effectiveness of both early and late leaf removal. Leaf removal after 7 days and 30 days were more effective in enhancing colour density, polymeric pigments, and tannin concentration in wines. Higher grape skin tannin and anthocyanin concentrations, along with lower seed tannin concentration in berries, correlated with higher tannin concentrations in wines. LR7 showed significantly higher skin-originated tannin proportion than LRC, suggesting a useful tool to manage tannin extraction. Aroma composition of resultant wines was influenced by leaf removal, although these differences were not evident in the sensory evaluation.


Subject(s)
Vitis , Wine , Vitis/chemistry , Wine/analysis , Anthocyanins/analysis , Tannins/analysis , Plant Leaves/chemistry
12.
J Sep Sci ; 47(4): e2300803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403460

ABSTRACT

Sanguisorba officinalis L. possesses detoxifying, analgesic, and hemostatic properties. After charred processing, S. officinalis exhibits significantly enhanced medicinal effects. Currently, most pharmacokinetic studies focus on the chemical constituents of unprocessed S. officinalis. There is limited research on the comparison of chemical constituents before and after processing. This study established a pharmacokinetic method using ultra-high-performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) to simultaneously determine the levels of four tannin compounds in rat plasma. In negative ion mode, MS/MS detection was performed using an electrospray ionization source. Chromatographic separation was performed using WATERS ACQUITY HSS T3 column (2.1 × 100 mm, 1.8 µm) with a gradient elution of water and acetonitrile as the mobile phase. The pharmacokinetic results indicate that all four compounds reached peak concentrations within 2 h, demonstrating rapid absorption into the bloodstream within the gastrointestinal tract. Notably, the absorption was generally faster in the charred compound of S. officinalis after processing. These four compounds exhibited slower elimination in rat plasma, while in S. officinalis charcoal, the compounds were eliminated more rapidly. The pharmacokinetic results have revealed the pharmacokinetic characteristics of the four analytes in rat plasma which provides valuable reference information for further investigating the in vivo absorption process of S. officinalis after processing.


Subject(s)
Drugs, Chinese Herbal , Sanguisorba , Rats , Animals , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Tannins/analysis , Rats, Sprague-Dawley , Drugs, Chinese Herbal/analysis
13.
Sci Rep ; 14(1): 460, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172143

ABSTRACT

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Subject(s)
Eleusine , Selenium , Humans , Eleusine/genetics , Ethiopia , Nutritive Value , Oxalates , Phytic Acid/analysis , Selenium/analysis , Tannins/analysis
14.
Vet Med Sci ; 10(1): e31347, 2024 01.
Article in English | MEDLINE | ID: mdl-38227709

ABSTRACT

BACKGROUND: The use of plants and by-products, which are containing a high amount of secondary and anti-nutritional compounds such as tannins, in animal feed is limited. The methods that can reduce these compounds make facilitate their use in animal feed. OBJECTIVES: The aim of this study was to reduce the adverse effects of pomegranate peel (PP) tannin for fattening lambs using the tannase-producing bacteria. METHODS: Twenty-one Arabi male lambs (averagely 35 ± 3.8 kg weight and 8 ± 1.0 months age) were used in a completely randomized design with three treatments and seven replications in the present experiment. The experimental treatments included 1 - control diet (CNT, no PP), 2 - diet containing untreated PP (raw PP, UTPP) and 3 - diet containing PP treated with tannase-producing bacteria (bacteria treating PP, BTPP). RESULTS: Using UTPP decreased nutrient intake compared to the control and treatment with tannase-producing bacteria again significantly increased nutrient intake compared to the UTPP (p < 0.05). The digestibilities of organic matter, neutral detergent fibre and acid detergent fibre in the control treatment were significantly higher than UTPP and BTPP and in the BTPP were significantly higher than the UTPP (p < 0.05). The use of UTPP in the diet significantly decreased the pH, ammonia nitrogen concentration and the total protozoa population of the rumen compared to the control (p < 0.05), and treatment with bacteria increased them again. The lowest total protozoa population was observed in UTPP treatments (p < 0.05). The highest concentration of blood glucose was observed in UTPP; however, the highest concentrations of blood urea nitrogen, cholesterol, triglyceride, high-density lipoprotein (non-significant) and low-density lipoprotein were in the control treatment. The effect of experimental treatments on the dry matter consumption of the whole period was significant; however, there was no significant effect on average daily gain, feed conversion ratio, feed efficiency and longissimus muscle colorimetric systems. CONCLUSIONS: Therefore, considering the positive effects of treatment PP with tannin-degrading bacteria relative to raw PP, using these bacteria is a proper way to reduce tannin, thus improving the nutritional value of PP for ruminants.


Subject(s)
Boron Compounds , Carboxylic Ester Hydrolases , Pomegranate , Porphyrins , Tannins , Animals , Detergents , Digestion , Nutritive Value , Rumen/physiology , Sheep , Sheep, Domestic , Tannins/analysis , Tannins/metabolism , Male
15.
Int J Biol Macromol ; 257(Pt 2): 128332, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043664

ABSTRACT

In this study, bioplastics with antioxidant and UV protection properties based on tannin and PVA were created for packaging uses. Using a hot water extraction method at various extraction temperatures (60-100 °C), tannins were removed from the bark of Acacia mangium. Tannins with the best antioxidant activity were extracted at 80 °C. In order to create bioplastic formulations (PVA/Tannins), the extract is then employed. The non-heating bioplastic method's preparation (M3) stage produced the highest levels of antioxidant activity. Therefore, subsequent tests were conducted using the non-heating method (M3). On the opacity, UV protective activity, antioxidant capacity, mechanical strength, thermal stability, and water vapor permeability of the resultant bioplastics, the impact of tannin concentration (0.1-0.5 g) was examined. The findings of the experiments demonstrate that PVA/Tannin bioplastics are less transparent than pure PVA. The PVA/tannin bioplastics that are formed, on the whole, show strong antioxidant and UV protection action. Comparing PVA/Tannin bioplastics to pure PVA also revealed a small improvement in thermal stability and tensile strength. In PVA bioplastics with resistant tannins, moisture content was marginally greater even at low tannin concentrations (0.1 g). Based on the findings, bioplastics made from PVA and the tannin A. mangium have the potential to be used to create packaging that is UV and active antioxidant resistant. It can be applied as the second (inner) layer of the primary packaging to protect food freshness and nutrition due to their antioxidant activity.


Subject(s)
Acacia , Tannins , Tannins/analysis , Antioxidants/pharmacology , Food Packaging , Plant Extracts/pharmacology
16.
Molecules ; 28(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067470

ABSTRACT

In this study, a validated quality evaluation method with peony flower fingerprint chromatogram combined with simultaneous determination of sixteen bioactive constituents was established using UPLC-DAD-MS/MS. The results demonstrated that the method was stable, reliable, and accurate. The UPLC chemical fingerprints of 12 different varieties of peonies were established and comprehensively evaluated by similarity evaluation (SE), hierarchical cluster analysis (HCA), principal component analysis (PCA), and quantification analysis. The results of SE indicated that similar chemical components were present in these samples regardless of variety, but there were significant differences in the content of chemical components and material basis characteristics. The results of HCA and PCA showed that 12 varieties of samples were divided into two groups. Four flavonoids (11, 12, 13, and 16), five monoterpenes and their glycosides (3, 4, 6, 14, and 15), three tannins (7, 9, and 10), three phenolic acids (1, 2, and 5), and one aromatic acid (8) were identified from sixteen common peaks by standards and liquid chromatography-mass spectrometry (LC-MS). The simultaneous quantification of six types of components was conducted with the 12 samples, it was found that the sum contents of analytes varied obviously for peony flower samples from different varieties. The content of flavonoids, tannins, and monoterpenes (≥19.34 mg/g) was the highest, accounting for more than 78.45% of the total compounds. The results showed that the flavonoids, tannins, and monoterpenes were considered to be the key indexes in the classification and quality assessment of peony flower. The UPLC-DAD-MS/MS method coupled with multiple compounds determination and fingerprint analysis can be effectively applied as a feature distinguishing method to evaluate the compounds in peony flower raw material for product quality assurance in the food, pharmaceutical, and cosmetic industries. Moreover, this study provides ideas for future research and the improvement of products by these industries.


Subject(s)
Drugs, Chinese Herbal , Paeonia , Tandem Mass Spectrometry/methods , Paeonia/chemistry , Chromatography, High Pressure Liquid/methods , Tannins/analysis , Drugs, Chinese Herbal/chemistry , Flavonoids/chemistry , Monoterpenes/analysis
17.
Environ Sci Pollut Res Int ; 30(58): 122262-122273, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37968482

ABSTRACT

Agricultural waste is an unwanted material that is not only unmarketable, but also has secondary costs such as environmental pollution. Oleaster, also known as olive Russian fruit, has various uses, but it also produces waste such as seeds and peels. Oleaster fruit and all its parts are tannin rich, which can be utilized as natural mordant. Improvement of fastness and color properties of natural dyed fibers is obtained by using mordant. The employing of this mordant is effective in reducing agricultural waste and the production of dyeing chemical waste. Reseda extract was utilized as natural dye to investigate the color characteristics. The study of the phenolic percentage of different components of the Oleaster fruit, including peel, seed, and flesh, showed that each of these materials can be used as natural mordant. The formation of physical bonds in the presence of all kinds of mordant was investigated using the FTIR method, and the results showed that their performance is similar and they are effective in surface treatment of wool. Investigation of color characteristics of the yarns showed that the color strength increases in the presence of mordant. Studying the fastness of yarns dyed with ISO methods showed that the samples have high washing fastness.


Subject(s)
Coloring Agents , Elaeagnaceae , Wool , Animals , Coloring Agents/chemistry , Environmental Pollution , Seeds , Tannins/analysis , Wool/chemistry , Elaeagnaceae/chemistry
18.
J Agric Food Chem ; 71(42): 15754-15765, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37812751

ABSTRACT

Two Pinot noir clones (AM10/5 and UCD5) were analyzed for tannin and methoxypyrazines (MPs) in different grape tissues during berry development using liquid chromatography and two-dimensional gas chromatography-mass spectrometry. On a per berry basis, skin tannins reached the maximum level about 2-3 weeks after véraison, seed tannins at around véraison, and stem tannins 4 weeks before véraison. Clone AM10/5 showed significantly higher levels of seed and stem tannins on a per berry basis at harvest. Tannin concentration and composition varied among the different tissues. On a per berry basis, stem tannin levels were comparable to skin tannins but were 3 to 4 times lower than seed tannins, while stem tannins had an intermediate galloylation (5-7%) between seed tannins (12-18%) and skin tannins (2%) and lower prodelphinidin (4-7%) than skin tannins (31-36%). The mean degree of polymerization of stem tannins was similar to seed tannins but lower than skin tannins. MPs, including 3-isopropyl-2-methoxypyrazine (IPMP), 3-s-isobutyl-2-methoxypyrazine (SBMP), and 3-isobutyl-2-methoxypyrazine (IBMP), showed significantly higher concentrations than their sensory thresholds in grape stems but not in skins. The MPs development in stems showed an increasing trend toward véraison and then a decreasing trend toward harvest. Compared to AM 10/5, UCD5 stems showed a higher level of MPs, especially significantly higher concentrations of IPMP and IBMP at harvest. The extraction of MPs from grape stems could contribute negative green and vegetative characters to Pinot noir wines.


Subject(s)
Vitis , Wine , Vitis/chemistry , Tannins/analysis , Wine/analysis , Seeds/chemistry , Fruit/chemistry
19.
Pak J Pharm Sci ; 36(2(Special)): 601-605, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37548196

ABSTRACT

Type 2 diabetes mellitus is characterized by hyperglycemia and insulin resistance. It is spreading around the globe like a pandemic. Major factors behind the development of diabetes can be genetics, environmental factors, dietary choices and obesity. Many medicinal plants have anti-diabetic potential. This study has investigated the anti-diabetic effect of curry leaves extract. This study also investigated the chemical characterization of curry leaves. Phytochemicals including saponins, tannins, alkaloids, flavonoids, phenols and glycosides were also investigated. Encapsulated 5mg per kg of the body weight and 10mg per kg of the body weight were given to treatment groups I and II. Random blood sugar, fasting blood sugar and HbA1c of 45 diabetic female adults were measured on the 0-day and 45th days. All results were analyzed using the two-sample t-test in IBM SPSS Statistics 20. Curry leaves contained moisture (24.1±1.78)%, ash (17.82±2.13)%, nitrogen free extract (36.12±3.52)%, crude protein (8.32±0.83)%, crude fiber (6.98±2.31)% and crude fat (6.87±0.21)%. Mineral analysis showed that magnesium and calcium were major minerals present in curry leaves. Curry leaves extract contained saponins 2.71±0.23, flavonoids 7.84±0.42, tannins 0.91±0.09, glycosides 0.17±0.01, phenols 3.89±0.12, alkaloids 2.01±0.87. These phytochemicals were expressed in mg/100 g of the sample. Curry leaf extract showed a significant (p<0.05) reduction in fasting blood sugar, random blood sugar and glycated hemoglobin in both treatment groups.


Subject(s)
Alkaloids , Diabetes Mellitus, Type 2 , Murraya , Saponins , Adult , Humans , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose/metabolism , Murraya/chemistry , Tannins/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Alkaloids/analysis , Phytochemicals/therapeutic use , Phytochemicals/analysis , Flavonoids/therapeutic use , Flavonoids/analysis , Phenols/analysis , Dietary Supplements/analysis , Glycosides , Saponins/therapeutic use , Saponins/analysis , Body Weight , Plant Leaves/chemistry
20.
Plant Foods Hum Nutr ; 78(2): 445-451, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37354264

ABSTRACT

The quality of transgenic fruits was studied only for apple, plum and citrus. We first evaluated the transgenic fruit characteristics of pear, which is one of the most consumed fruit crops. The size, shape and biochemical composition of fruits from field-grown pear trees with marker genes were analyzed for 5 years. Soluble solids, vitamin C, and phenolic compounds varied significantly between transgenic lines, but these deviations were inconsistent. Arbutin content and sugar:acidity ratio were the most stable parameters. One transgenic line showed a stable increase in fruit weight (by 12.2-21.2%). The extremely dry and hot season increased the total phenolics (2.6-3.6 times) and tannin (3.2-3.6 times) levels, but not flavonoids. The harvest year had a stronger effect on analyzed fruit parameters than the genotype. Our study found no unintended effects of genetic transformation on pear fruit quality and confirms the importance of long-term field tests for perennial transgenic plants.


Subject(s)
Malus , Pyrus , Pyrus/genetics , Pyrus/chemistry , Fruit/genetics , Fruit/chemistry , Trees/genetics , Tannins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...