Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(18): 10214-21, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22901363

ABSTRACT

Tars at former manufactured gas plants (FMGPs) are a major environmental concern and present a number of challenges to remediators. This experimental study investigates the relationship between composition and tar-water interfacial tension (IFT), a property of primary importance in determining the transport of tar in porous media. Nine field-collected FMGP tars and a commercially available coal tar were characterized by means of fractionation, gas chromatography, Fourier transform infrared (FTIR) spectrometry, and vapor pressure osmometry. The tar-aqueous IFT of the tars, as well as resins and asphaltenes extracted therefrom, were measured over a range of pH. The IFTs were found to be strongly dependent on pH, with the lowest values obtained at high pH. The reduction of IFT at high pH was found to correlate well with the I(C═O) values from the FTIR analysis, which provide an indication of the relative amount of carbonyl groups present. Reductions of IFT at low pH were also observed and found to correlate well with the extractable base concentration. The aromaticity and asphaltene average molar mass are also correlated with IFT reductions at both low and high pH, suggestive of compositional patterns related to the tar source material.


Subject(s)
Coal Tar/chemistry , Tar-Water/chemistry , Chromatography, Gas , Hydrogen-Ion Concentration , Porosity , Spectroscopy, Fourier Transform Infrared , Surface Tension
2.
Chemosphere ; 73(4): 532-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18649918

ABSTRACT

Equilibrium partitioning coefficients between an industrial coal tar sample and water (KCT/w) were determined for 41 polar and nonpolar solutes in batch systems. Together with literature values, 69 KCT/w data were analyzed using the following model approaches: Raoult's law, the single parameter linear free energy relationship (SPLFER) with octanol-water partitioning coefficients (Kow), the linear solvation energy relationships (LSERs), SPARC and COSMOtherm. Estimations by Raoult's law and the SPLFER agreed well with the experimental log KCT/w values for the investigated coal tar, with root mean square errors (RMSE) of 0.31 and 0.33, respectively. LSER resulted in as good estimations (RMSE=0.29) as the previous two. The LSER analysis revealed significant hydrogen (H)-bond acceptor properties of the studied coal tar phase. Using naphthalene as a surrogate solvent for the coal tar phase, SPARC and COSMOtherm provided fairly good predictions (RMSE of 0.63 and 0.65, respectively) of log KCT/w, without any additional empirical parameter. Further calculations using SPARC and COSMOtherm for partitioning between water and other tar-components (e.g., benzofuran, phenol and quinoline) suggested that minor components in coal tar do not significantly influence KCT/w of nonpolar solutes, and that Raoult's law and the SPLFER thus may be generally applied to these types of solutes, e.g., polycyclic aromatic hydrocarbons and alkylbenzenes, regardless of coal tar compositions. In contrast, partitioning of H-bonding solutes (e.g., phenols) can significantly vary depending on the amount of polar tar-components such as N-heterocyclic aromatic compounds. Therefore, the presented successful applications of Raoult's law and SPLFER to the studied coal tar could be a special case, and these simple approaches may not provide reasonable estimations for partitioning of H-bonding solutes from compositionally different coal tars.


Subject(s)
Coal Tar/chemistry , Solvents/chemistry , Tar-Water/chemistry , Water/chemistry , Hydrogen Bonding , Tars/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...