Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Food Funct ; 14(11): 5277-5289, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37195071

ABSTRACT

Bile acids, such as taurochenodeoxycholic acid (TCDCA), are considered as functional small molecules involved in nutrition regulation or acting with adjuvant therapeutic effects against metabolic or immune diseases. The homeostasis of the intestinal epithelium depends on the conventional cellular proliferation and apoptosis of cells. Herein, mice and normal intestinal epithelial cells (IPEC-J2, a widely used normal intestinal epithelial cell line derived from porcine) were used as models to explore the regulatory effect of TCDCA on the proliferation of intestinal epithelial cells (IECs). In the mouse study, the oral gavage of TCDCA led to a significant reduction in weight gain, small intestinal weight, and the villus height of the intestinal epithelium while inhibiting the gene expression of Ki-67 in the intestinal epithelial crypts of mice (P < 0.05). TCDCA significantly downregulated the expression of the farnesoid X receptor (FXR) and upregulated the expression of caspase-9 in the jejunum (P < 0.05). The results of real-time quantitative PCR (RT-qPCR) suggested that TCDCA significantly inhibited the expression of tight junction proteins zonula occludens (ZO)-1, occludin, claudin-1, and mucin-2 (P < 0.05). In terms of apoptosis-related genes, TCDCA significantly inhibited the expression of Bcl2 and increased the expression of caspase-9 (P < 0.05). At the protein level, TCDCA decreased the expression of Ki-67 and PCNA, as well as FXR (P < 0.05). Caspase inhibitor Q-VD-OPh and guggulsterone, an FXR antagonist, significantly improved the inhibition of TCDCA-induced cell proliferation. Moreover, guggulsterone enhanced TCDCA-induced cell late apoptosis through flow cytometry and significantly lowered the TCDCA-induced up-regulated gene expression of caspase 9, despite both TCDCA and guggulsterone down-regulating the expression of FXR (P < 0.05). Overall, the effect of TCDCA on the induction of apoptosis is not dependent on FXR, whereas it would function via the activation of the caspase system. This provides a new perspective for the application of TCDCA or bile acid as functional small molecules in food, additives, and medicine.


Subject(s)
Intestinal Mucosa , Taurochenodeoxycholic Acid , Mice , Animals , Swine , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/metabolism , Caspase 9/metabolism , Ki-67 Antigen/metabolism , Cell Proliferation , Intestinal Mucosa/metabolism , Bile Acids and Salts/metabolism , Apoptosis
2.
Immunobiology ; 228(3): 152388, 2023 05.
Article in English | MEDLINE | ID: mdl-37079985

ABSTRACT

OBJECTIVE: Multiple sclerosis (MS) is an immune regulatory disease that affects the central nervous system (CNS). The main pathological features include demyelination and neurodegeneration, and the pathogenesis is associated with astrocytic neuroinflammation. Taurochenodeoxycholic acid (TCDCA) is one of the conjugated bile acids in animal bile, and it is not clear whether TCDCA could improve MS by inhibiting the activation of astrocytes. This study was aimed to evaluate the effects of TCDCA on experimental autoimmune encephalomyelitis (EAE)-a classical animal model of MS, and to probe its mechanism from the aspect of suppressing astrocytic neuroinflammation. It is expected to prompt the potential application of TCDCA for the treatment of MS. RESULTS: TCDCA effectively alleviated the progression of EAE and improved the impaired neurobehavior in mice. It mitigated the hyperactivation of astrocytes and down-regulated the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and IL-6 in the brain cortex. In the C6 astrocytic cell line induced by lipopolysaccharide (LPS), TCDCA treatment dose-dependently decreased the production of NO and the protein expression of iNOS and glial fibrillary acidic protein (GFAP). TCDCA consistently inhibited the mRNA expressions of COX2, iNOS and other inflammatory mediators. Furthermore, TCDCA decreased the protein expression of phosphorylated serine/threonine kinase (AKT), inhibitor of NFκB α (IκBα) and nuclear factor κB (NFκB). And TCDCA also inhibited the nuclear translocation of NFκB. Conversely, as an inhibitor of the G-protein coupled bile acid receptor Gpbar1 (TGR5), triamterene eliminated the effects of TCDCA in LPS-stimulated C6 cells. CONCLUSION: TCDCA improves the progress of EAE by inhibiting the astrocytic neuroinflammation, which might be exerted by the regulation of TGR5 mediated AKT/NFκB signaling pathway. These findings may prompt the potential application of TCDCA for MS therapy by suppressing astrocyte inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Astrocytes/metabolism , Astrocytes/pathology , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , NF-kappa B/metabolism , RNA, Messenger/genetics , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism
3.
Front Endocrinol (Lausanne) ; 14: 1090039, 2023.
Article in English | MEDLINE | ID: mdl-36896173

ABSTRACT

Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.


Subject(s)
Adiposity , Taurochenodeoxycholic Acid , Humans , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Taurochenodeoxycholic Acid/metabolism , Adipose Tissue/metabolism , Obesity/drug therapy , Obesity/metabolism
4.
Br J Nutr ; 130(1): 33-41, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36210537

ABSTRACT

Duyun compound green tea (DCGT) is a healthy beverage with lipid-lowering effect commonly consumed by local people, but its mechanism is not very clear. We evaluated the effect of DCGT treatment on bile acids (BA) metabolism of mice with high-fat diet (HFD) - induced hyperlipidaemia by biochemical indexes and metabolomics and preliminarily determined the potential biomarkers and metabolic pathways of hyperlipidaemia mice treated with DCGT as well as investigated its lipid-lowering mechanism. The results showed that DCGT treatment could reduce HFD - induced gain in weight and improve dyslipidaemia. In addition, a total of ten types of BA were detected, of which seven changed BA metabolites were observed in HFD group mice. After DCGT treatment, glycocholic acid, tauroursodeoxycholic acid and taurochenodeoxycholic acid were significantly down-regulated, while hyodeoxycholic acid, deoxycholic acid and chenodeoxycholic acid were markedly up-regulated. These results demonstrated that DCGT treatment was able to make the BA metabolites in the liver of hyperlipidaemia mice normal and alleviate hyperlipidaemia by regulating the metabolites such as glycocholic acid, tauroursodeoxycholic acid and taurochenodeoxycholic, as well as the BA metabolic pathway and cholesterol metabolic pathway involved.


Subject(s)
Hyperlipidemias , Metabolic Diseases , Mice , Animals , Diet, High-Fat/adverse effects , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/metabolism , Liver/metabolism , Cholesterol/metabolism , Tea/chemistry , Hyperlipidemias/drug therapy , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Glycocholic Acid/metabolism , Bile Acids and Salts/metabolism , Lipid Metabolism , Mice, Inbred C57BL
5.
Cell Mol Life Sci ; 79(10): 527, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36151409

ABSTRACT

It has been reported that aging-generated gut microecosystem may promote host hepatic lipid dysmetabolism through shaping the pattern of secondary bile acids (BAs). Then as an oral drug, melatonin (Mel)-mediated beneficial efforts on the communication between gut microbiota and aging host are still not clearly. Here, we show that aging significantly shapes the pattern of gut microbiota and BAs, whereas Mel treatment reverses these phenotypes (P < 0.05), which is identified to depend on the existence of gut microbiota. Mechanistically, aging-triggered high-level expression of ileac farnesoid X receptor (FXR) is significantly decreased through Mel-mediated inhibition on Campylobacter jejuni (C. jejuni)-induced deconjugation of tauroursodeoxycholic acid (TUDCA) and glycoursodeoxycholic acid (GUDCA) (P < 0.05). The aging-induced high-level of serum taurine chenodeoxycholic acid (TCDCA) activate trimethylamine-N-oxide (TMAO)-triggered activating transcriptional factor 4 (ATF4) signaling via hepatic FXR, which further regulates hepatic BAs metabolism, whereas TUDCA inhibits aging-triggered high-level of hepatic ATF4. Overall, Mel reduces C. jejuni-mediated deconjugation of TUDCA to inhibit aging-triggered high-level expression of hepatic FXR, which further decreases hepatic TMAO production, to relieve hepatic lipid dysmetabolism.


Subject(s)
Gastrointestinal Microbiome , Melatonin , Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/physiology , Lipids , Liver/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Methylamines , Oxides/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology
6.
Transl Neurodegener ; 11(1): 33, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659112

ABSTRACT

Most neurodegenerative disorders are diseases of protein homeostasis, with misfolded aggregates accumulating. The neurodegenerative process is mediated by numerous metabolic pathways, most of which lead to apoptosis. In recent years, hydrophilic bile acids, particularly tauroursodeoxycholic acid (TUDCA), have shown important anti-apoptotic and neuroprotective activities, with numerous experimental and clinical evidence suggesting their possible therapeutic use as disease-modifiers in neurodegenerative diseases. Experimental evidence on the mechanisms underlying TUDCA's neuroprotective action derives from animal models of Alzheimer's disease, Parkinson's disease, Huntington's diseases, amyotrophic lateral sclerosis (ALS) and cerebral ischemia. Preclinical studies indicate that TUDCA exerts its effects not only by regulating and inhibiting the apoptotic cascade, but also by reducing oxidative stress, protecting the mitochondria, producing an anti-neuroinflammatory action, and acting as a chemical chaperone to maintain the stability and correct folding of proteins. Furthermore, data from phase II clinical trials have shown TUDCA to be safe and a potential disease-modifier in ALS. ALS is the first neurodegenerative disease being treated with hydrophilic bile acids. While further clinical evidence is being accumulated for the other diseases, TUDCA stands as a promising treatment for neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Bile Acids and Salts/therapeutic use , Neurodegenerative Diseases/drug therapy , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use
7.
Molecules ; 26(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885648

ABSTRACT

Taurochenodeoxycholic acid (TCDCA) is one of the main components of bile acids (BAs). TCDCA has been reported as a signaling molecule, exerting anti-inflammatory and immunomodulatory functions. However, it is not well known whether those effects are mediated by TGR5. This study aimed to elucidate the interaction between TCDCA and TGR5. To achieve this aim, first, the TGR5 eukaryotic vector was constructed. The expression level of TGR5 in 293T cells was determined by immunofluorescence, real-time quantitative PCR (RT-PCR, qPCR), and Western blot. The luciferase assay, fluorescence microscopy, and enzyme-linked immunosorbent assay (ELISA) were recruited to check the interaction of TCDCA with TGR5. TCDCA treatment in 293T cells resulted in TGR5 internalization coupled with a significant increase in cAMP luciferase expression. Our results demonstrated that TCDCA was able to bind to the TGR5 receptor and activate it. These results provide an excellent potential therapeutic target for TCDCA research. Moreover, these findings also provide theoretical evidence for further TCDCA research.


Subject(s)
Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cyclic AMP/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology , Cell Membrane/metabolism , HEK293 Cells , Humans , Ligands , Plasmids/genetics , Protein Binding , Receptors, G-Protein-Coupled/genetics , Transfection
8.
Food Funct ; 12(10): 4315-4324, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34031676

ABSTRACT

Bile salt hydrolase (BSH)-producing bacteria are negatively related to the body weight gain and energy storage of the host. We aimed to obtain a novel BSH-producing strain with excellent anti-obesity effect and explained its mechanism. Here, we selected a strain named Lactiplantibacillus plantarum H-87 (H-87) with excellent ability to hydrolyze glycochenodeoxycholic acid (GCDCA) and tauroursodeoxycholic acid (TUDCA) in vitro from 12 lactobacilli, and evaluated its anti-obesity effect in high-fat diet (HFD)-fed C57BL/6J mice. The results suggested that H-87 could inhibit HFD-induced body weight gain, fat accumulation, liver lipogenesis and injury, insulin resistance and dyslipidemia. In addition, H-87 could colonize in the ileum and hydrolyze GCDCA and TUDCA, reflected as changes in the concentrations of GCDCA, TUDCA, CDCA and UDCA in the ileum or liver. Furthermore, the study identified that H-87 reduced TUDCA and GCDCA levels in the ileum, which decreased the GLP-1 secretion by L cells to alleviate insulin resistance in HFD-fed mice. Furthermore, H-87 increased the CDCA level in the ileum and liver to activate FXR signaling pathways to inhibit liver lipogenesis in HFD-fed mice. In addition, the decrease of intestinal conjugated bile acids (TUDCA and GCDCA) also increased fecal lipid content and decreased intestinal lipid digestibility. In conclusion, H-87 could inhibit liver fat deposition, insulin resistance and lipid digestion by changing bile acid enterohepatic circulation, and eventually alleviate HFD-induced obesity.


Subject(s)
Diet, High-Fat/adverse effects , Lactobacillus plantarum/metabolism , Obesity/microbiology , Obesity/prevention & control , Animals , Bile Acids and Salts/metabolism , Dyslipidemias/microbiology , Dyslipidemias/prevention & control , Glycochenodeoxycholic Acid/metabolism , Insulin Resistance , Lipid Metabolism , Liver/metabolism , Liver Diseases/microbiology , Liver Diseases/prevention & control , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Taurochenodeoxycholic Acid/metabolism
9.
Cell Prolif ; 54(6): e13050, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33960559

ABSTRACT

OBJECTIVES: In this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)-induced M2-phenotype (M2) macrophages and their ability to promote anti-neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model. METHODS: To this end, compared to the granulocyte-macrophage colony-stimulating factor (GM-CSF), we evaluated whether TUDCA effectively differentiates bone marrow-derived macrophages (BMDMs) into M2 macrophages. RESULTS: The M2 expression markers in the TUDCA-treated BMDM group were increased more than those in the GM-CSF-treated BMDM group. After the SCI and transplantation steps, pro-inflammatory cytokine levels and the mitogen-activated protein kinase (MAPK) pathway were significantly decreased in the TUDCA-induced M2 group more than they were in the GM-CSF-induced M1 group and in the TUDCA group. Moreover, the TUDCA-induced M2 group showed significantly enhanced tissue volumes and improved motor functions compared to the GM-CSF-induced M1 group and the TUDCA group. In addition, biotinylated dextran amine (BDA)-labelled corticospinal tract (CST) axons and neuronal nuclei marker (NeuN) levels were increased in the TUDCA-induced M2 group more than those in the GM-CSF-induced M1 group and the TUDCA group. CONCLUSIONS: This study demonstrates that the transplantation of TUDCA-induced M2 macrophages promotes an anti-neuroinflammatory effect and motor function recovery in SCI. Therefore, we suggest that the transplantation of TUDCA-induced M2 macrophages represents a possible alternative cell therapy for SCI.


Subject(s)
Macrophages/transplantation , Spinal Cord Injuries/therapy , Taurochenodeoxycholic Acid/metabolism , Animals , Cells, Cultured , Female , Inflammation/metabolism , Inflammation/physiopathology , Inflammation/therapy , Macrophages/metabolism , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology
10.
Res Vet Sci ; 137: 56-67, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33932824

ABSTRACT

Probiotics, including Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01, can improve growth performance and immunity of piglets, and relieve weaning stress-related immune disorders such as intestinal infections and inflammation. This study aimed to evaluate the ability of co-administration of the probiotics L. rhamnosus GG ATCC53103 and L. plantarum JL01 to stimulate immune responses and improve gut health during the critical weaning period in piglets. Forty-eight weaned piglets were randomly divided into four groups, and fed daily for 28 days either without, or with the two probiotics independently, or in combination. On day 28, we analyzed the cytokine and bacterial changes in intestinal mucosa and the hepatic portal vein blood metabolites of the weaned piglets. Our results showed that combined L. rhamnosus GG ATCC53103 and L. plantarum JL01 significantly increased (p < 0.05) the growth performance and expression of IL-10 and TGF-ß1 mRNAs. In contrast, this treatment significantly decreased (p < 0.05) IL-1ß mRNA level in the jejunum, ileum, and cecum. Furthermore, the secretion of IL-6 in the cecum, IL-1ß in the jejunum, ileum, and cecum, and TNF-α in the jejunum and ileum was significantly decreased (p < 0.05). The relative abundance of Prevotella_9 and Enterococcus in ileum and cecum was significantly increased (p < 0.05). The relative abundance of Ruminococcus_1 and Ruminococcaceae_UCG-005 in cecum was significantly decreased (p < 0.05). Prevotella_9 and Enterococcus may increase the accumulation of (4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-docosahexaenoic acid (DHA) and tauroursodeoxycholic acid (TCDA) in portal vein blood, while Ruminococcus_1 and Ruminococcaceae_UCG-005 may decrease the accumulation of succinic and palmitic acids. These results indicate that L. rhamnosus GG ATCC53103 and L. plantarum JL01 may regulate cytokine levels by reducing the accumulation of succinic and palmitic acids and increasing the accumulation of TCDA and DHA, thereby enhancing the immunity of weaned piglets.


Subject(s)
Cytokines/metabolism , Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Probiotics , Swine/metabolism , Animals , Cytokines/genetics , Docosahexaenoic Acids/metabolism , Gene Expression Regulation/drug effects , Intestinal Mucosa/metabolism , Palmitic Acids/metabolism , Random Allocation , Succinic Acid/metabolism , Taurochenodeoxycholic Acid/metabolism , Weaning
11.
Life Sci ; 272: 119252, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33636170

ABSTRACT

Bear bile has been used in Traditional Chinese Medicine for thousands of years due to its therapeutic potential and clinical applications. The tauroursodeoxycholic acid (TUDCA), one of the acids found in bear bile, is a hydrophilic bile acid and naturally produced in the liver by conjugation of taurine to ursodeoxycholic acid (UDCA). Several studies have shown that TUDCA has neuroprotective action in several models of neurodegenerative disorders (ND), including Alzheimer's disease, Parkinson's disease, and Huntington's disease, based on its potent ability to inhibit apoptosis, attenuate oxidative stress, and reduce endoplasmic reticulum stress in different experimental models of these illnesses. Our research extends the knowledge of the bile acid TUDCA actions in ND and the mechanisms and pathways involved in its cytoprotective effects on the brain, providing a novel perspective and opportunities for treatment of these diseases.


Subject(s)
Neurodegenerative Diseases/drug therapy , Taurochenodeoxycholic Acid/pharmacology , Alzheimer Disease/drug therapy , Animals , Apoptosis/drug effects , Bile/metabolism , Bile Acids and Salts/metabolism , Endoplasmic Reticulum Stress/drug effects , Humans , Medicine, Chinese Traditional/methods , Taurochenodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/pharmacology
12.
Gut ; 70(9): 1675-1683, 2021 09.
Article in English | MEDLINE | ID: mdl-33087489

ABSTRACT

OBJECTIVE: Conjugated bile acids are metabolised by upper small intestinal microbiota, and serum levels of taurine-conjugated bile acids are elevated and correlated with insulin resistance in people with type 2 diabetes. However, whether changes in taurine-conjugated bile acids are necessary for small intestinal microbiome to alter insulin action remain unknown. DESIGN: We evaluated circulating and specifically brain insulin action using the pancreatic-euglycaemic clamps in high-fat (HF) versus chow fed rats with or without upper small intestinal healthy microbiome transplant. Chemical and molecular gain/loss-of-function experiments targeting specific taurine-conjugated bile acid-induced changes of farnesoid X receptor (FXR) in the brain were performed in parallel. RESULTS: We found that short-term HF feeding increased the levels of taurochenodeoxycholic acid (TCDCA, an FXR ligand) in the upper small intestine, ileum, plasma and dorsal vagal complex (DVC) of the brain. Transplantation of upper small intestinal healthy microbiome into the upper small intestine of HF rats not only reversed the rise of TCDCA in all reported tissues but also enhanced the ability of either circulating hyperinsulinaemia or DVC insulin action to lower glucose production. Further, DVC infusion of TCDCA or FXR agonist negated the enhancement of insulin action, while genetic knockdown or chemical inhibition of FXR in the DVC of HF rats reversed insulin resistance. CONCLUSION: Our findings indicate that FXR in the DVC is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats, and highlight a previously unappreciated TCDCA-FXR axis linking gut microbiome and host insulin action.


Subject(s)
Brain Stem/physiology , Gastrointestinal Microbiome/physiology , Insulin Resistance , Intestine, Small/microbiology , Receptors, Cytoplasmic and Nuclear/metabolism , Taurochenodeoxycholic Acid/metabolism , Animals , Brain/metabolism , Brain Chemistry , Brain Stem/metabolism , Diet, High-Fat , Fecal Microbiota Transplantation , Gene Knockdown Techniques , Glucose Clamp Technique , Insulin Resistance/physiology , Intestine, Small/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/analysis , Taurochenodeoxycholic Acid/analysis
13.
Mol Metab ; 44: 101132, 2021 02.
Article in English | MEDLINE | ID: mdl-33264656

ABSTRACT

OBJECTIVE: The mechanism of nutrient sensing in the upper small intestine (USI) and ileum that regulates glucose homeostasis remains elusive. Short-term high-fat (HF) feeding increases taurochenodeoxycholic acid (TCDCA; an agonist of farnesoid X receptor (FXR)) in the USI and ileum of rats, and the increase of TCDCA is prevented by transplantation of microbiota obtained from the USI of healthy donors into the USI of HF rats. However, whether changes of TCDCA-FXR axis in the USI and ileum alter nutrient sensing remains unknown. METHODS: Intravenous glucose tolerance test was performed in rats that received USI or ileal infusion of nutrients (i.e., oleic acids or glucose) via catheters placed toward the lumen of USI and/or ileum, while mechanistic gain- and loss-of-function studies targeting the TCDCA-FXR axis or bile salt hydrolase activity in USI and ileum were performed. RESULTS: USI or ileum infusion of nutrients increased glucose tolerance in healthy but not HF rats. Transplantation of healthy microbiome obtained from USI into the USI of HF rats restored nutrient sensing and inhibited FXR via a reduction of TCDCA in the USI and ileum. Further, inhibition of USI and ileal FXR enhanced nutrient sensing in HF rats, while inhibiting USI (but not ileal) bile salt hydrolase of HF rats transplanted with healthy microbiome activated FXR and disrupted nutrient sensing in the USI and ileum. CONCLUSIONS: We reveal a TCDCA-FXR axis in both the USI and ileum that is necessary for the upper small intestinal microbiome to govern local nutrient-sensing glucoregulatory pathways in rats.


Subject(s)
Intestine, Small/metabolism , Nutrients , Taurochenodeoxycholic Acid/metabolism , Animals , Bile Acids and Salts , Gastrointestinal Microbiome , Glucose/metabolism , Glucose Tolerance Test , Homeostasis , Ileum/metabolism , Male , Rats , Rats, Sprague-Dawley
14.
J Pharm Biomed Anal ; 186: 113318, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32380354

ABSTRACT

Hepatic cytochrome P450 reductase (EC 1.6.2.4, POR) deficient mice provide a useful means of investigating liver-related CYP450 drug metabolism. However, the organ-wide inactivation of CYP450s has wide ranging effects on liver physiology. Untargeted UHPLC-MS metabolic and lipid profiling of aqueous and organic solvent extracts has been employed to compare the metabolic phenotypes of livers obtained from either wild type (C57Bl6) or hepatic P450 reductase null (HRNTM) mice. The metabolic phenotyping of polar aqueous extracts revealed differences between wild type and HRNTM mice for bile acids with taurochendeoxycholic acid, and tauroursodeoxycholic acid increased in proportion in the latter and taurocholic acid reduced. Lipidomic profiling demonstrated that there were numerous differences in the lipidome, particularly relating to phospholipid synthesis with significant changes in the relative amounts of phosphatidylcholines (PC) and phosphatidylethanolamines (PE). These results illustrate the wide ranging disruptive effects on the normal hepatic phenotype that result from POR-deficiency in the the HRNTM animals.


Subject(s)
Lipidomics , Liver/metabolism , Metabolomics , NADPH-Ferrihemoprotein Reductase/genetics , Animals , Chromatography, High Pressure Liquid , Liver/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Taurochenodeoxycholic Acid/metabolism
15.
J Clin Invest ; 130(7): 3467-3482, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32182223

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the CNS. Bile acids are cholesterol metabolites that can signal through receptors on cells throughout the body, including in the CNS and the immune system. Whether bile acid metabolism is abnormal in MS is unknown. Using global and targeted metabolomic profiling, we identified lower levels of circulating bile acid metabolites in multiple cohorts of adult and pediatric patients with MS compared with controls. In white matter lesions from MS brain tissue, we noted the presence of bile acid receptors on immune and glial cells. To mechanistically examine the implications of lower levels of bile acids in MS, we studied the in vitro effects of an endogenous bile acid, tauroursodeoxycholic acid (TUDCA), on astrocyte and microglial polarization. TUDCA prevented neurotoxic (A1) polarization of astrocytes and proinflammatory polarization of microglia in a dose-dependent manner. TUDCA supplementation in experimental autoimmune encephalomyelitis reduced the severity of disease through its effects on G protein-coupled bile acid receptor 1 (GPBAR1). We demonstrate that bile acid metabolism was altered in MS and that bile acid supplementation prevented polarization of astrocytes and microglia to neurotoxic phenotypes and ameliorated neuropathology in an animal model of MS. These findings identify dysregulated bile acid metabolism as a potential therapeutic target in MS.


Subject(s)
Astrocytes/metabolism , Microglia/metabolism , Multiple Sclerosis/metabolism , Receptors, G-Protein-Coupled/metabolism , Taurochenodeoxycholic Acid , Animals , Astrocytes/pathology , Disease Models, Animal , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Mice , Microglia/pathology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology
16.
Nat Commun ; 11(1): 855, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071312

ABSTRACT

Cognitive decline is one of the complications of type 2 diabetes (T2D). Intermittent fasting (IF) is a promising dietary intervention for alleviating T2D symptoms, but its protective effect on diabetes-driven cognitive dysfunction remains elusive. Here, we find that a 28-day IF regimen for diabetic mice improves behavioral impairment via a microbiota-metabolites-brain axis: IF enhances mitochondrial biogenesis and energy metabolism gene expression in hippocampus, re-structures the gut microbiota, and improves microbial metabolites that are related to cognitive function. Moreover, strong connections are observed between IF affected genes, microbiota and metabolites, as assessed by integrative modelling. Removing gut microbiota with antibiotics partly abolishes the neuroprotective effects of IF. Administration of 3-indolepropionic acid, serotonin, short chain fatty acids or tauroursodeoxycholic acid shows a similar effect to IF in terms of improving cognitive function. Together, our study purports the microbiota-metabolites-brain axis as a mechanism that can enable therapeutic strategies against metabolism-implicated cognitive pathophysiologies.


Subject(s)
Cognitive Dysfunction/metabolism , Diabetes Mellitus, Type 2/metabolism , Fasting , Gastrointestinal Microbiome/physiology , Animals , Brain/metabolism , Cognition , Computational Biology , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/complications , Energy Metabolism/genetics , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/genetics , Gene Expression Regulation , Hippocampus/metabolism , Indoles/metabolism , Insulin Resistance , Male , Metabolome , Mice , Propionates/metabolism , RNA, Ribosomal, 16S , Serotonin/metabolism , Synapses/ultrastructure , Taurochenodeoxycholic Acid/metabolism
17.
Shock ; 53(2): 217-222, 2020 02.
Article in English | MEDLINE | ID: mdl-30998645

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the changes of bile acids in the liver during hemorrhagic shock (HS) and their potential to attenuate liver injury via activation of SIRT1 (sirtuin 1)-FXR (farnesoid X receptor) signaling. METHODS: A Sprague-Dawley (SD) rat HS model was established, whereas HepG2 cells were hypoxically cultured to simulate HS in vitro. Liver bile acids (BA) were profiled with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). FXR expression was detected by western blot and immunohistochemistry. The mRNA levels of SIRT1 and FXR were detected by polymerase chain reaction. Protein expression of SIRT1, FoxM1, NF-κB, acetyl-NF-κB, p53, and acetyl-p53 was analyzed by western blot. Hepatocyte apoptosis and proliferation were measured by TUNEL assay and Ki-67 staining, respectively. Serum and supernatant cytokines were analyzed using ELISA assays. Liver injury was also assessed. To investigate the possible mechanisms, SIRT1 agonist (SRT1720), SIRT1 inhibitor (EX527), and FXR inhibitor (Z-guggulsterone) were used. RESULTS: Tauroursodeoxycholic acid (TUDCA) in the liver decreased significantly after HS. SIRT1 and FXR expression was time-dependently downregulated by HS or hypoxia condition. TUDCA upregulated SIRT1-FXR activity, which inhibited expression and acetylation of NF-κB and p53 and increased FoxM1 expression, leading to decreased inflammatory response and apoptosis and increased proliferative capacity in hepatocytes, and attenuation of liver injury. EX527 pretreatment reversed the protective effect of TUDCA. Moreover, Z-guggulsterone supplementation decreased the protective effect of TUDCA in vitro. CONCLUSION: TUDCA in the liver decreased during HS. TUDCA supplementation might attenuate HS-induced liver injury by upregulating SIRT1-FXR signaling.


Subject(s)
Liver/metabolism , Shock, Hemorrhagic/metabolism , Sirtuin 1/metabolism , Taurochenodeoxycholic Acid/metabolism , Animals , Forkhead Box Protein M1/metabolism , Hep G2 Cells , Humans , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Tumor Suppressor Protein p53/metabolism
18.
Radiat Res ; 192(1): 28-39, 2019 07.
Article in English | MEDLINE | ID: mdl-31058578

ABSTRACT

Exposures to ionizing radiation can cause depletion in stem cell reservoirs and lead to chronic injury processes that exacerbate carcinogenic and inflammatory responses. Therefore, radioprotective measures, against both acute and chronic biological effects of radiation, require frequent intake of nontoxic natural products, which have practical oral administration. The goal of this study was to characterize the radioprotective, radiomitigative and radiation-induced bystander effect-inhibiting properties of endogenous metabolites: phenylacetate, ursodeoxycholate and tauroursodeoxycholate. Compounds were administered pre- and postirradiation as well as in donor and recipient bystander flasks to analyze whether these might adequately protect against radiation injury as well as facilitate recovery from the exposures. The clonogenic HCT116 p53 wild-type cancer cell line in this study shares characteristics of stem cells, such as high reproductive viability, which is an effective marker to demonstrate compound effectiveness. Clonogenic assays were therefore used to characterize radioprotective, radiomitigative and bystander inhibiting properties of treatment compounds whereby cellular responses to radiation were quantified with macroscopic colony counts to measure cell survival in flasks. The results were statistically significant for phenylacetate and tauroursodeoxycholate when administered preirradiation, conferring radioprotection up to 2 Gy, whereas administration postirradiation and in bystander experiments did not confer radioprotection in vitro. These findings suggest that phenylacetate and tauroursodeoxycholate might be effective radioprotectors, although they possess no radiomitigative properties.


Subject(s)
Acetates/pharmacology , Bystander Effect/drug effects , Bystander Effect/radiation effects , Phenols/pharmacology , Radiation-Protective Agents/pharmacology , Signal Transduction/drug effects , Taurochenodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/pharmacology , Acetates/metabolism , Cell Survival/radiation effects , Colonic Neoplasms/pathology , Dose-Response Relationship, Radiation , HCT116 Cells , Humans , Phenols/metabolism , Radiation-Protective Agents/metabolism , Signal Transduction/radiation effects , Taurochenodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/metabolism
19.
Protein Sci ; 28(5): 910-919, 2019 05.
Article in English | MEDLINE | ID: mdl-30839141

ABSTRACT

7α-Hydroxysteroid dehydrogenase (7α-HSDH) is an NAD(P)H-dependent oxidoreductase belonging to the short-chain dehydrogenases/reductases. In vitro, 7α-HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α-HSDH (named as St-2-1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St-2-1 differs from the 7α-HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α-HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.


Subject(s)
Cloning, Molecular/methods , Feces/microbiology , Hydroxysteroid Dehydrogenases/chemistry , Hydroxysteroid Dehydrogenases/metabolism , Animals , Enzyme Stability , Evolution, Molecular , Gastrointestinal Microbiome , Hydrogen-Ion Concentration , Hydroxysteroid Dehydrogenases/genetics , Molecular Weight , Protein Multimerization , Taurochenodeoxycholic Acid/metabolism , Thermodynamics , Ursidae
20.
Sci Rep ; 8(1): 11088, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038332

ABSTRACT

Although several biomarkers can be used to distinguish cholangiocarcinoma (CCA) from healthy controls, differentiating the disease from benign biliary disease (BBD) or pancreatic cancer (PC) is a challenge. CCA biomarkers are associated with low specificity or have not been validated in relation to the biological effects of CCA. In this study, we quantitatively analyzed 15 biliary bile acids in CCA (n = 30), BBD (n = 57) and PC (n = 17) patients and discovered glycocholic acid (GCA) and taurochenodeoxycholic acid (TCDCA) as specific CCA biomarkers. Firstly, we showed that the average concentration of total biliary bile acids in CCA patients was quantitatively less than in other patient groups. In addition, the average composition ratio of primary bile acids and conjugated bile acids in CCA patients was the highest in all patient groups. The average composition ratio of GCA (35.6%) in CCA patients was significantly higher than in other patient groups. Conversely, the average composition ratio of TCDCA (13.8%) in CCA patients was significantly lower in all patient groups. To verify the biological effects of GCA and TCDCA, we analyzed the gene expression of bile acid receptors associated with the development of CCA in a CCA cell line. The gene expression of transmembrane G protein coupled receptor (TGR5) and sphingosine 1-phosphate receptor 2 (S1PR2) in CCA cells treated with GCA was 8.6-fold and 3.4-fold higher compared with control (untreated with bile acids), respectively. Gene expression of TGR5 and S1PR2 in TCDCA-treated cells was not significantly different from the control. Taken together, our study identified GCA and TCDCA as phenotype-specific biomarkers for CCA.


Subject(s)
Bile Duct Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/metabolism , Glycocholic Acid/metabolism , Taurochenodeoxycholic Acid/metabolism , Bile Duct Neoplasms/genetics , Cell Line, Tumor , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...