Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
J Gene Med ; 26(1): e3639, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38058259

ABSTRACT

PD-1 monoclonal antibodies (mAb) have demonstrated remarkable efficacy in a variety of cancers, including Hepatocellular carcinoma (HCC). However, the patient response rates remain suboptimal, and a significant proportion of initial responders may develop resistance to this therapeutic approach. Akkermansia muciniphila (AKK), a microorganism implicated in multiple human diseases, has been reported to be more abundant in patients who exhibit favorable responses to PD-1mAb. However, the underlying mechanism has yet to be elucidated. In our study, we found that AKK could enhance the efficacy of PD-1mAb against HCC in a tumor-bearing mouse model. It promotes HCC tumor cells apoptosis and raise the CD8+ T proportion in the tumor microenvironment. Additionally, AKK downregulates PD-L1 expression in tumor cells. Furthermore, the analysis of metabonomics demonstrates that AKK induces alterations in the host's bile acid metabolism, leading to a significant increase in serum TUDCA levels. Considering the immunosuppresive roles of TUDCA in HCC development, it is plausible to speculate that AKK may reinforce the immunotherapy of PD-1mAb against HCC through its impact on bile acid metabolism.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Taurochenodeoxycholic Acid/therapeutic use , Tumor Microenvironment , Akkermansia
2.
Front Endocrinol (Lausanne) ; 14: 1090039, 2023.
Article in English | MEDLINE | ID: mdl-36896173

ABSTRACT

Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.


Subject(s)
Adiposity , Taurochenodeoxycholic Acid , Humans , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Taurochenodeoxycholic Acid/metabolism , Adipose Tissue/metabolism , Obesity/drug therapy , Obesity/metabolism
3.
Eur J Pharmacol ; 942: 175528, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36690052

ABSTRACT

The bile acid tauroursodeoxycholic acid (TUDCA) is of natural origin and is used in traditional Chinese medicine for centuries. Earlier its use was limited to biliary disorders but owing to its pleiotropic effects dietary TUDCA supplementation is under clinical trials for diseases including type 1 and 2 diabetic complications. The current study aims to evaluate the potential and underlying molecular mechanism of the TUDCA as a monotherapy and as an add-on therapy to telmisartan, an angiotensin II type 1 receptor (AT1R) blocker against diabetic kidney disease (DKD). We employed both in-vitro and in-vivo approaches where NRK-52E cells were incubated with high glucose, and DKD was induced in Wistar rats using streptozotocin (55 mg/kg, i.p.). After 4 weeks, animals were administered with TUDCA (250 mg/kg, i.p.), telmisartan (10 mg/kg, p.o.), and their combination for 4 weeks. Plasma was collected for the biochemical estimation and kidneys were used for immunoblotting, PCR, and histopathological analysis. Similarly, for in-vitro experiments, cells were exposed to 1000 µM of TUDCA and 10 µM of telmisartan, and their combination, followed by cell lysate collection and immunoblotting analysis. We observed that the addition of TUDCA to conventional telmisartan treatment was more effective in restoring the renal function decline and suppressing the apoptotic and fibrotic signaling as compared to monotherapies of AT1R blocker and ER stress inhibitor. The results implicate the utility of traditionally used TUDCA as a potential renoprotective compound. Since, both TUDCA and telmisartan are approved for clinical usage, thus concomitant administration of them could be a novel therapeutic strategy against DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Rats , Animals , Diabetic Nephropathies/drug therapy , Telmisartan/pharmacology , Telmisartan/therapeutic use , Streptozocin , Rats, Wistar , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Diabetes Mellitus/drug therapy
4.
J Neurochem ; 164(4): 454-467, 2023 02.
Article in English | MEDLINE | ID: mdl-36409000

ABSTRACT

Bile acids, which are synthesized in liver and colon, facilitate the digestion of dietary lipids. In addition to this metabolic function, they also act as molecular signals with activities in the nervous system. These are mediated primarily by a G-protein-coupled bile acid receptor (known as TGR5). Preceded by a long tradition in Chinese medicine, bile acids are now being investigated as therapeutic options in several neuropathologies. Specifically, one bile acid, tauroursodeoxycholic acid (TUDCA), which passes the blood-brain barrier and shows anti-inflammatory and anti-apoptotic effects, has been tested in animal models of spinal cord injury (SCI). In this review, we discuss the evidence for a therapeutic benefit in these preclinical experiments. At the time of writing, 12 studies with TGR5 agonists have been published that report functional outcomes with rodent models of SCI. Most investigations found cytoprotective effects and benefits regarding the recovery of sensorimotor function in the subacute phase. When TUDCA was applied in a hydrogel into the lesion site, a significant improvement was obtained at 2 weeks after SCI. However, no lasting improvements with TUDCA treatment were found, when animals were assessed in later, chronic stages. A combination of TUDCA with stem cell injection failed to improve the effect of the cellular treatment. We conclude that the evidence does not support the use of TUDCA as a treatment of SCI. Nevertheless, cytoprotective effects suggest that different modes of application or combinatorial therapies might still be explored.


Subject(s)
Spinal Cord Injuries , Taurochenodeoxycholic Acid , Animals , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Spinal Cord Injuries/pathology , Models, Animal , Receptors, G-Protein-Coupled/physiology
5.
Sci Rep ; 12(1): 22273, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564463

ABSTRACT

Aging is associated with glucose metabolism disturbances, such as insulin resistance and hyperinsulinemia, which contribute to the increased prevalence of type 2 diabetes (T2D) and its complications in the elderly population. In this sense, some bile acids have emerged as new therapeutic targets to treat TD2, as well as associated metabolic disorders. The taurine conjugated bile acid, tauroursodeoxycholic acid (TUDCA) improves glucose homeostasis in T2D, obesity, and Alzheimer's disease mice model. However, its effects in aged mice have not been explored yet. Here, we evaluated the actions of TUDCA upon glucose-insulin homeostasis in aged C57BL/6 male mice (18-month-old) treated with 300 mg/kg of TUDCA or its vehicle. TUDCA attenuated hyperinsulinemia and improved glucose homeostasis in aged mice, by enhancing liver insulin-degrading enzyme (IDE) expression and insulin clearance. Furthermore, the improvement in glucose-insulin homeostasis in these mice was accompanied by a reduction in adiposity, associated with adipocyte hypertrophy, and lipids accumulation in the liver. TUDCA-treated aged mice also displayed increased energy expenditure and metabolic flexibility, as well as a better cognitive ability. Taken together, our data highlight TUDCA as an interesting target for the attenuation of age-related hyperinsulinemia and its deleterious effects on metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Aged , Mice , Male , Humans , Animals , Bile Acids and Salts , Diabetes Mellitus, Type 2/drug therapy , Mice, Inbred C57BL , Hyperinsulinism/drug therapy , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Insulin/metabolism , Obesity/drug therapy , Glucose/metabolism
6.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36233018

ABSTRACT

Inflammation is the main cause of corneal and retinal damage in an ocular alkali burn (OAB). The aim of this study was to investigate the effect of tauroursodeoxycholic acid (TUDCA) on ocular inflammation in a mouse model of an OAB. An OAB was induced in C57BL/6j mouse corneas by using 1 M NaOH. TUDCA (400 mg/kg) or PBS was injected intraperitoneally (IP) once a day for 3 days prior to establishing the OAB model. A single injection of Infliximab (6.25 mg/kg) was administered IP immediately after the OAB. The TUDCA suppressed the infiltration of the CD45-positive cells and decreased the mRNA and protein levels of the upregulated TNF-α and IL-1ß in the cornea and retina of the OAB. Furthermore, the TUDCA treatment inhibited the retinal glial activation after an OAB. The TUDCA treatment not only ameliorated CNV and promoted corneal re-epithelization but also attenuated the RGC apoptosis and preserved the retinal structure after the OAB. Finally, the TUDCA reduced the expression of the endoplasmic reticulum (ER) stress molecules, IRE1, GRP78 and CHOP, in the retinal tissues of the OAB mice. The present study demonstrated that the TUDCA inhibits ocular inflammation and protects the cornea and retina from injury in an OAB mouse model. These results provide a potential therapeutic intervention for the treatment of an OAB.


Subject(s)
Burns, Chemical , Animals , Apoptosis , Burns, Chemical/drug therapy , Disease Models, Animal , Endoplasmic Reticulum Stress , Inflammation/drug therapy , Infliximab/therapeutic use , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , RNA, Messenger , Sodium Hydroxide/pharmacology , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
7.
Food Res Int ; 156: 111331, 2022 06.
Article in English | MEDLINE | ID: mdl-35651081

ABSTRACT

Early childhood malnutrition may facilitate the onset of obesity and diabetes mellitus in adulthood which, when established, makes it more resistant to therapeutic interventions. The beneficial effects of tauroursodeoxycholic acid (TUDCA) in glucose homeostasis and body fat accumulation were analyzed in protein-restricted mice fed a high-fat diet (HFD). C57BL/6 mice were fed a control (14% protein [C]) or a protein-restricted (6% protein [R]) diet for 6 weeks. Afterward, mice received an HFD or not for 12 weeks (C mice fed an HFD [CH] and R mice fed an HFD [RH]). In the last 15 days of this period, half of the mice fed a HFD received i.p. PBS (groups CH and RH) or 300 mg/kg TUDCA (groups CHT and RHT). RH mice developed obesity, as demonstrated by the increase in fat accumulation, liver steatosis, and metabolic inflexibility. Additionally, showed glucose intolerance and insulin hypersecretion. TUDCA reduced adiposity and improve metabolic flexibility through increased HSL phosphorylation and CPT1 expression in eWAT and BAT, and reduced ectopic fat deposition by activating the AMPK/HSL pathway in the liver. Also, improved glucose tolerance and insulin sensitivity, normalizing insulin secretion by reducing GDH expression and increasing insulin peripheral sensitivity by greater expression of the IRß in muscle and adipose tissue and reducing PEPCK liver expression. Our data indicate that TUDCA reduces global adiposity and improves glucose tolerance and insulin sensitivity in protein malnourished mice fed a HFD. Therefore, this is a possible strategy to reverse metabolic disorders in individuals with the double burden of malnutrition.


Subject(s)
Adiposity , Insulin Resistance , Malnutrition , Taurochenodeoxycholic Acid , Animals , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulin/metabolism , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Taurochenodeoxycholic Acid/therapeutic use
8.
Transl Neurodegener ; 11(1): 33, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659112

ABSTRACT

Most neurodegenerative disorders are diseases of protein homeostasis, with misfolded aggregates accumulating. The neurodegenerative process is mediated by numerous metabolic pathways, most of which lead to apoptosis. In recent years, hydrophilic bile acids, particularly tauroursodeoxycholic acid (TUDCA), have shown important anti-apoptotic and neuroprotective activities, with numerous experimental and clinical evidence suggesting their possible therapeutic use as disease-modifiers in neurodegenerative diseases. Experimental evidence on the mechanisms underlying TUDCA's neuroprotective action derives from animal models of Alzheimer's disease, Parkinson's disease, Huntington's diseases, amyotrophic lateral sclerosis (ALS) and cerebral ischemia. Preclinical studies indicate that TUDCA exerts its effects not only by regulating and inhibiting the apoptotic cascade, but also by reducing oxidative stress, protecting the mitochondria, producing an anti-neuroinflammatory action, and acting as a chemical chaperone to maintain the stability and correct folding of proteins. Furthermore, data from phase II clinical trials have shown TUDCA to be safe and a potential disease-modifier in ALS. ALS is the first neurodegenerative disease being treated with hydrophilic bile acids. While further clinical evidence is being accumulated for the other diseases, TUDCA stands as a promising treatment for neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Bile Acids and Salts/therapeutic use , Neurodegenerative Diseases/drug therapy , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use
9.
J Food Biochem ; 46(3): e13866, 2022 03.
Article in English | MEDLINE | ID: mdl-34278593

ABSTRACT

Taurochenodeoxycholic acid (TCDCA) is the principal ingredient of Compound Shougong Powder. Despite traditional Chinese medicine (TCM) research demonstrates that Compound Shougong Powder can restrict tumor growth, whether TCDCA exerts a role in suppressing cancer as the major ingredient of Compound Shougong Powder remains unknown. This study aims to clarify the regulatory mechanism of TCDCA on gastric cancer. Gastric cancer cells SGC-7901 were cultured to investigate the effects of TCDCA on proliferation and apoptosis. Furthermore, a subcutaneously implanted tumor model was established using SGC-7901 cells in BALB/C nude mice and tumor volume was measured under low and high dose treatment of TCDCA. Cell proliferation, apoptosis, and invasion were subjected to 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, flow cytometry, and transwell assay. Differentially expressed genes were screened by transcriptome sequencing. Nude mouse tumorigenicity assay was initiated to identify the effect of TCDCA on both tumor volume and weight, and the expression of candidate genes screened by transcriptome sequencing was determined by real-time fluorescence quantification (qPCR) and Western blot. The experiments revealed that TCDCA could significantly inhibit the proliferation and invasion of gastric cancer cells and induce apoptosis of these cells. Meanwhile, test findings via in vivo indicated that TCDCA severely diminished the volume and weight of tumors. This study first demonstrated that TCDCA inhibited the proliferation and invasion of gastric cancer and induced apoptosis, which is expected to serve as an experimental basis for the application of TCM in tumor therapeutic options. PRACTICAL APPLICATIONS: Through this study, the inhibitory effect of Taurochenodeoxycholic acid on gastric cancer can be clarified, which provides a new research basis for the application of traditional Chinese medicine (TCM) and TCM monomer in cancer. In addition, this study can further promote the research and application of Chinese traditional medicine, which has important application value and economic benefits.


Subject(s)
Stomach Neoplasms , Taurochenodeoxycholic Acid , Animals , Apoptosis , Cell Proliferation , Mice , Mice, Inbred BALB C , Mice, Nude , Powders/pharmacology , Powders/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use
10.
Nutr Neurosci ; 25(7): 1374-1391, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33345721

ABSTRACT

OBJECTIVE: Parkinson's disease (PD) is a progressive motor disease of unknown etiology. Although neuroprotective ability of endogenous bile acid, tauroursodeoxycholic acid (TUDCA), shown in various diseases, including an acute model of PD,the potential therapeutic role of TUDCA in progressive models of PD that exhibit all aspects of PD has not been elucidated. In the present study, mice were assigned to one of four treatment groups: (1) Probenecid (PROB); (2) TUDCA, (3) MPTP + PROB (MPTPp); and (3) TUDCA + MPTPp. Methods: Markers for dopaminergic function, neuroinflammation, oxidative stress and autophagy were assessed using high performance liquid chromatography (HPLC), immunohistochemistry (IHC) and western blot (WB) methods. Locomotion was measured before and after treatments. Results: MPTPp decreased the expression of dopamine transporters (DAT) and tyrosine hydroxylase (TH), indicating dopaminergic damage, and induced microglial and astroglial activation as demonstrated by IHC analysis. MPTPp also decreased DA and its metabolites as demonstrated by HPLC analysis. Further, MPTPp-induced protein oxidation; increased LAMP-1 expression indicated autophagy and the promotion of alpha-synuclein (α-SYN) aggregation. Discussion: Pretreatment with TUDCA protected against dopaminergic neuronal damage, prevented the microglial and astroglial activation, as well as the DA and DOPAC reductions caused by MPTPp. TUDCA by itself did not produce any significant change, with data similar to the negative control group. Pretreatment with TUDCA prevented protein oxidation and autophagy, in addition to inhibiting α-SYN aggregation. Although TUDCA pretreatment did not significantly affect locomotion, only acute treatment effects were measured, indicating more extensive assessments may be necessary to reveal potential therapeutic effects on behavior. Together, these results suggest that autophagy may be involved in the progression of PD and that TUDCA may attenuate these effects. The efficacy of TUDCA as a novel therapy in patients with PD clearly warrants further study.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons , Humans , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use
11.
Biochem Biophys Res Commun ; 570: 96-102, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34274852

ABSTRACT

Glucocorticoids are known to induce skeletal muscle atrophy by suppressing protein synthesis and promoting protein degradation. Tauroursodeoxycholic acid (TUDCA) has beneficial effects in several diseases, such as hepatobiliary disorders, hindlimb ischemia and glucocorticoid-induced osteoporosis. However, the effects of TUDCA on glucocorticoid -induced skeletal muscle atrophy remains unknown. Therefore, in the present research, we explored the effects of TUDCA on dexamethasone (DEX)-induced loss and the potential mechanisms involved. We found TUDCA alleviated DEX-induced muscle wasting in C2C12 myotubes, identified by improved myotube differentiation index and expression of myogenin and MHC. And it showed that TUDCA activated the Akt/mTOR/S6K signaling pathway and inhibited FoxO3a transcriptional activity to decreased expression of MuRF1 and Atrogin-1, while blocking Akt by MK2206 blocked these effects of TUDCA on myotubes. Besides, TUDCA also attenuated DEX-induced apoptosis of myotubes. Furthermore, TUDCA was administrated to the mouse model of DEX-induced skeletal muscle atrophy. The results showed that TUDCA improved DEX-induced skeletal muscle atrophy and weakness (identified by increased grip strength and prolonged running exhaustive time) in mice by suppression of apoptosis, reduction of protein degradation and promotion of protein synthesis. Taken together, our research proved for the first time that TUDCA protected against DEX-induced skeletal muscle atrophy not only by improving myogenic differentiation and protein synthesis, but also through decreasing protein degradation and apoptosis of skeletal muscle.


Subject(s)
Muscle, Skeletal/pathology , Muscular Atrophy/drug therapy , Taurochenodeoxycholic Acid/administration & dosage , Taurochenodeoxycholic Acid/therapeutic use , Animals , Apoptosis/drug effects , Cell Line , Dexamethasone , Enzyme Activation/drug effects , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/drug effects , Muscular Atrophy/prevention & control , Proto-Oncogene Proteins c-akt/metabolism , Taurochenodeoxycholic Acid/pharmacology
12.
BMC Microbiol ; 21(1): 137, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947331

ABSTRACT

BACKGROUND: Burkholderia pseudomallei, a facultative intracellular bacterium, is the aetiological agent of melioidosis that is responsible for up to 40% sepsis-related mortality in epidemic areas. However, no effective vaccine is available currently, and the drug resistance is also a major problem in the treatment of melioidosis. Therefore, finding new clinical treatment strategies in melioidosis is extremely urgent. RESULTS: We demonstrated that tauroursodeoxycholic acid (TUDCA), a clinically available endoplasmic reticulum (ER) stress inhibitor, can promote B. pseudomallei clearance both in vivo and in vitro. In this study, we investigated the effects of TUDCA on the survival of melioidosis mice, and found that treatment with TUDCA significantly decreased intracellular survival of B. pseudomallei. Mechanistically, we found that B. pseudomallei induced apoptosis and activated IRE1 and PERK signaling ways of ER stress in RAW264.7 macrophages. TUDCA treatment could reduce B. pseudomallei-induced ER stress in vitro, and TUDCA is protective in vivo. CONCLUSION: Taken together, our study has demonstrated that B. pseudomallei infection results in ER stress-induced apoptosis, and TUDCA enhances the clearance of B. pseudomallei by inhibiting ER stress-induced apoptosis both in vivo and in vitro, suggesting that TUDCA could be used as a potentially alternative treatment for melioidosis.


Subject(s)
Burkholderia pseudomallei/physiology , Endoplasmic Reticulum Stress/drug effects , Melioidosis/microbiology , Taurochenodeoxycholic Acid/pharmacology , Animals , Apoptosis/drug effects , Burkholderia pseudomallei/drug effects , Cell Line , Melioidosis/drug therapy , Mice , Signal Transduction/drug effects , Survival Analysis , Taurochenodeoxycholic Acid/therapeutic use
13.
Toxicology ; 453: 152736, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33631298

ABSTRACT

Cisplatin-induced ototoxicity is one of the important reasons that limit the drug's clinical application, and its mechanism has not been fully elucidated so far. The aim of this study was to explore the attenuate effect of tauroursodeoxycholic acid (TUDCA), a proteostasis promoter, on cisplatin-induced ototoxicity in vivo and in vitro, and to explore its possible mechanism. Auditory brainstem response (ABR) was measured to identify the attenuate effects of TUDCA administered subcutaneously [500 mg/kg/d × 3d, cisplatin: 4.6 mg/kg/d × 3d, intraperitoneal injection (i.p.)] or trans-tympanically (0.5 mg/mL, cisplatin: 12 mg/kg, i.p. with a pump) in Sprague-Dawley (SD) rats subjected to cisplatin-induced hearing loss. The cochlear explants of neonatal rats and OC1 auditory hair cell-like cell lines cultured in vitro were used to observe the number of apoptotic cells and the endoplasmic reticulum (ER) stress in the control, cisplatin (5 µM for 48 h for cochlear explants, 10 µM for 24 h for OC1 cells), and cisplatin + TUDCA (1 mM for 24 h for cochlear explants, 1.6 mM for 24 h for OC1 cells) groups. Differences in the expression of key proteins in the ER protein quality control (ERQC) system were detected. The changes in the attenuate effect of TUDCA on cisplatin-induced ototoxicity after down-regulating calreticulin (CRT), UDP-glucose ceramide glucosyltransferase-like 1 (UGGT1), and OS9 ER lectin (OS9) were also measured. The effect of TUDCA (10 mM) on stabilizing unfolded or misfolded proteins (UFP/MFP) was analyzed in a cell-free 0.2 % bovine serum albumin (BSA) aggregation system in vitro. Both the subcutaneous and trans-tympanic TUDCA administration alleviated cisplatin-induced increase in ABR thresholds in rats. TUDCA was able to reduce cisplatin-induced apoptosis and alleviate ER stress in cochlear explants and OC1 cells. Under the cisplatin treatment, the expression levels of CRT, UGGT1, and OS9 in the auditory hair cell increased, and the expression of total ubiquitinated proteins decreased. TUDCA attenuated the effect of cisplatin on UGGT1 and OS9, and recovered the protein ubiquitination levels. After down-regulating CRT, UGGT1, or OS9, the protective effect of TUDCA decreased. In the cell-free experimental system, TUDCA inhibited the aggregation of denatured BSA molecules. In summary, TUDCA can attenuate cisplatin-induced ototoxicity, possibly by inhibiting the accumulation and aggregation of UFP/MFP and the associated ER stress.


Subject(s)
Cisplatin/toxicity , Endoplasmic Reticulum/drug effects , Ototoxicity/prevention & control , Protein Aggregates/drug effects , Protein Folding/drug effects , Taurochenodeoxycholic Acid/therapeutic use , Animals , Antineoplastic Agents/toxicity , Cell Line, Transformed , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Endoplasmic Reticulum/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Male , Ototoxicity/pathology , Protein Aggregates/physiology , Rats , Rats, Sprague-Dawley , Taurochenodeoxycholic Acid/pharmacology
14.
Muscle Nerve ; 63(1): 31-39, 2021 01.
Article in English | MEDLINE | ID: mdl-33063909

ABSTRACT

An orally administered, fixed-dose coformulation of sodium phenylbutyrate-taurursodiol (PB-TURSO) significantly slowed functional decline in a randomized, placebo-controlled, phase 2 trial in ALS (CENTAUR). Herein we report results of a long-term survival analysis of participants in CENTAUR. In CENTAUR, adults with ALS were randomized 2:1 to PB-TURSO or placebo. Participants completing the 6-month (24-week) randomized phase were eligible to receive PB-TURSO in the open-label extension. An all-cause mortality analysis (35-month maximum follow-up post-randomization) incorporated all randomized participants. Participants and site investigators were blinded to treatment assignments through the duration of follow-up of this analysis. Vital status was obtained for 135 of 137 participants originally randomized in CENTAUR. Median overall survival was 25.0 months among participants originally randomized to PB-TURSO and 18.5 months among those originally randomized to placebo (hazard ratio, 0.56; 95% confidence interval, 0.34-0.92; P = .023). Initiation of PB-TURSO treatment at baseline resulted in a 6.5-month longer median survival as compared with placebo. Combined with results from CENTAUR, these results suggest that PB-TURSO has both functional and survival benefits in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/mortality , Neuroprotective Agents/therapeutic use , Phenylbutyrates/therapeutic use , Taurochenodeoxycholic Acid/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Double-Blind Method , Female , Humans , Male , Middle Aged , Time , Young Adult
15.
Hypertension ; 77(2): 718-728, 2021 02.
Article in English | MEDLINE | ID: mdl-33307852

ABSTRACT

Recent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload. High output HF was surgically induced via creation of an arterio-venous fistula in adult male Sprague-Dawley rats. Tauroursodeoxycholic acid (TUDCA), an inhibitor of ERS, or vehicle was administered intracerebroventricularly for 4 weeks post-HF induction. Compared with vehicle treatment, TUDCA improved cardiac autonomic balance (LFHRV/HFHRV ratio, 3.02±0.29 versus 1.14±0.24), reduced cardiac arrhythmia incidence (141.5±26.7 versus 35.67±12.5 events/h), and reduced abnormal respiratory patterns (Apneas: 11.83±2.26 versus 4.33±1.80 events/h). TUDCA administration (HF+Veh versus HF+TUDCA, P<0.05) attenuated cardiac hypertrophy (HW/BW 4.4±0.3 versus 4.0±0.1 mg/g) and diastolic dysfunction. Analysis of rostral ventrolateral medulla gene expression confirmed the presence of ERS, inflammation, and activation of renin-angiotensin system pathways in high output HF and showed that TUDCA treatment completely abolished ERS and ERS-related signaling. Taken together, these results support the notion that ERS plays a role in cardiorespiratory dysfunction in high output HF and more importantly that reducing brain ERS with TUDCA treatment has a potent salutary effect on cardiac function in this model.


Subject(s)
Brain Stem/drug effects , Endoplasmic Reticulum Stress/drug effects , Heart Failure/drug therapy , Taurochenodeoxycholic Acid/pharmacology , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Brain Stem/metabolism , Brain Stem/physiopathology , Heart Failure/metabolism , Heart Failure/physiopathology , Male , Rats , Rats, Sprague-Dawley , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Taurochenodeoxycholic Acid/therapeutic use
16.
Ann Hepatol ; 23: 100289, 2021.
Article in English | MEDLINE | ID: mdl-33217585

ABSTRACT

INTRODUCTION AND OBJECTIVES: The incidence of gallstone-related disease steadily increased in the last few years. Here, we aimed to investigate the effect of tauroursodeoxycholic acid1 (TUDCA) on preventing cholesterol gallstones formation in high-fat fed (HFD) mice. MATERIAL AND METHODS: Specific pathogen-free male C57Bl/6 mice were fed a lithogenic diet2 (LD group) alone or in combination with TUDCA (5g/kg diet) for 8 weeks. Upon sacrifice, serum, gallbladder, liver and small intestine were collected and the formation of gallstones or crystals in the gallbladder was analyzed. Additionally, the intestinal microbiota, and bile acid composition, serum lipids and hepatic lipids were studied. RESULTS: Cholesterol gallstones with cholesterol crystals formed in mice of the LD-fed group (15/15, 100%). However, only cholesterol crystals were found in three mice without the presence of any gallstone in the TUDCA-treated group. Both serum and hepatic total cholesterol levels in the TUDCA group were significantly decreased compared with the LD group. Concomitantly, mRNA expression of Abcg5 and Abcg8 was significantly lower in the liver of the TUDCA group whilst mRNA transcripts for Abcb11, Acat2, and Cyp27 were significantly increased compared with the LD group. Additionally, the gallbladder cholesterol saturation index (1.06±0.15) in the TUDCA group was significantly decreased compared with the LD group. Interestingly, the ratio of Firmicutes/Bacteroides in the TUDCA group was increased 3x fold. CONCLUSIONS: TUDCA can inhibit the absorption and synthesis of lipids in the small intestine by improving the intestinal microbiota in HFD-fed mice, thus reducing gallstone formation.


Subject(s)
Cholagogues and Choleretics/therapeutic use , Gallstones/prevention & control , Gastrointestinal Microbiome/drug effects , Taurochenodeoxycholic Acid/therapeutic use , Animals , Bile Acids and Salts/metabolism , Disease Models, Animal , Gallstones/metabolism , Gallstones/pathology , Lipid Metabolism/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
17.
Biol Res ; 53(1): 56, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33261652

ABSTRACT

BACKGROUND: Neuronal apoptosis plays a critical event in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). This study investigated the roles of Tauroursodeoxycholic acid (TUDCA) in attenuate neuronal apoptosis and underlying mechanisms after SAH. METHODS: Sprague-Dawley rats were subjected to model of SAH and TUDCA was administered via the internal carotid injection. Small interfering RNA (siRNA) for TGR5 were administered through intracerebroventricular injection 48 h before SAH. Neurological scores, brain water content, Western blot, TUNEL staining and immunofluorescence staining were evaluated. RESULTS: TUDCA alleviated brain water content and improved neurological scores at 24 h and 72 h after SAH. TUDCA administration prevented the reduction of SIRT3 and BCL-2 expressions, as well as the increase of BAX and cleaved caspase-3.Endogenous TGR5 expression were upregulated after SAH and treatment with TGR5 siRNA exacerbated neurological outcomes after SAH and the protective effects of TUDCA at 24 h after SAH were also abolished by TGR5 siRNA. CONCLUSIONS: Our findings demonstrate that TUDCA could attenuated neuronal apoptosis and improve neurological functions through TGR5/ SIRT3 signaling pathway after SAH. TUDCA may be an attractive candidate for anti-apoptosis treatment in SAH.


Subject(s)
Apoptosis , Neurons/pathology , Receptors, G-Protein-Coupled/physiology , Sirtuins/physiology , Subarachnoid Hemorrhage , Taurochenodeoxycholic Acid/therapeutic use , Animals , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/drug therapy
18.
N Engl J Med ; 383(10): 919-930, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32877582

ABSTRACT

BACKGROUND: Sodium phenylbutyrate and taurursodiol have been found to reduce neuronal death in experimental models. The efficacy and safety of a combination of the two compounds in persons with amyotrophic lateral sclerosis (ALS) are not known. METHODS: In this multicenter, randomized, double-blind trial, we enrolled participants with definite ALS who had had an onset of symptoms within the previous 18 months. Participants were randomly assigned in a 2:1 ratio to receive sodium phenylbutyrate-taurursodiol (3 g of sodium phenylbutyrate and 1 g of taurursodiol, administered once a day for 3 weeks and then twice a day) or placebo. The primary outcome was the rate of decline in the total score on the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) through 24 weeks. Secondary outcomes were the rates of decline in isometric muscle strength, plasma phosphorylated axonal neurofilament H subunit levels, and the slow vital capacity; the time to death, tracheostomy, or permanent ventilation; and the time to death, tracheostomy, permanent ventilation, or hospitalization. RESULTS: A total of 177 persons with ALS were screened for eligibility, and 137 were randomly assigned to receive sodium phenylbutyrate-taurursodiol (89 participants) or placebo (48 participants). In a modified intention-to-treat analysis, the mean rate of change in the ALSFRS-R score was -1.24 points per month with the active drug and -1.66 points per month with placebo (difference, 0.42 points per month; 95% confidence interval, 0.03 to 0.81; P = 0.03). Secondary outcomes did not differ significantly between the two groups. Adverse events with the active drug were mainly gastrointestinal. CONCLUSIONS: Sodium phenylbutyrate-taurursodiol resulted in slower functional decline than placebo as measured by the ALSFRS-R score over a period of 24 weeks. Secondary outcomes were not significantly different between the two groups. Longer and larger trials are necessary to evaluate the efficacy and safety of sodium phenylbutyrate-taurursodiol in persons with ALS. (Funded by Amylyx Pharmaceuticals and others; CENTAUR ClinicalTrials.gov number, NCT03127514.).


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Phenylbutyrates/therapeutic use , Taurochenodeoxycholic Acid/therapeutic use , Aged , Disease Progression , Double-Blind Method , Drug Combinations , Female , Humans , Intention to Treat Analysis , Male , Middle Aged , Phenylbutyrates/adverse effects , Severity of Illness Index , Taurochenodeoxycholic Acid/administration & dosage , Treatment Outcome
19.
Mol Neurobiol ; 57(10): 4007-4017, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32647974

ABSTRACT

We investigate the anti-inflammatory effects of injectable hydrogel containing tauroursodeoxycholic acid (TUDCA) in a spinal cord injury (SCI) model. To this end, TUDCA-hydrogel (TC gel) is created by immersing the synthesized hydrogel in a TUDCA solution for 1 h. A mechanical SCI was imposed on rats, after which we injected the TC gel. After the SCI and injections, motor functions and lesions were significantly improved in the TC gel group compared with those in the saline group. The TC gel significantly decreased pro-inflammatory cytokine levels compared with the saline; TUDCA and glycol chitosan-oxidized hyaluronate were mixed at a ratio of 9:1 (CHA) gel independently. In addition, the TC gel significantly suppressed the phosphorylation of extracellular signal-regulated kinase (p-ERK) and c-Jun N-terminal kinase (p-JNK) in the mitogen-activated protein kinase (MAPK) pathway compared with the saline, TUDCA, and CHA gel independently. It also decreased tumor necrosis factor-α (TNF-α) and glial fibrillary acidic protein (GFAP), inflammatory marker, at the injured sites more than those in the saline, TUDCA, and CHA gel groups. In conclusion, the results of this study demonstrate the neuroinflammatory inhibition effects of TC gel in SCI and suggest that TC gel can be an alternative drug system for SCI cases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hydrogels/chemistry , Injections , Spinal Cord Injuries/drug therapy , Taurochenodeoxycholic Acid/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Behavior, Animal , Chitosan/chemistry , Cytokines/metabolism , Glial Fibrillary Acidic Protein/metabolism , Hyaluronic Acid/chemistry , Inflammation Mediators/metabolism , MAP Kinase Signaling System/drug effects , Motor Activity/drug effects , Neuraminidase/metabolism , Phosphorylation/drug effects , Rats, Sprague-Dawley , Recovery of Function/drug effects , Spinal Cord Injuries/enzymology , Spinal Cord Injuries/physiopathology , Taurochenodeoxycholic Acid/pharmacology , Tumor Necrosis Factor-alpha/metabolism
20.
Cell Physiol Biochem ; 54(3): 438-456, 2020 May 02.
Article in English | MEDLINE | ID: mdl-32357291

ABSTRACT

BACKGROUND/AIMS: Calcium homeostasis plays a crucial role in neuronal development and disease. Calbindin-D9k (CaBP-9k) acts as calcium modulators and sensors in various tissues. However, the neurobiological functions of CaBP-9k are unknown. METHODS: We used CaBP-9k knockout (KO) mice to investigate the roles of these gene in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. We used anatomical and biochemical approaches to characterize functional abnormalities of the brain in the CaBP-9k KO mice. RESULTS: We found that the brains of CaBP-9k KO mice have increased APP/ß-amyloid, Tau, and α-synuclein accumulation and endoplasmic reticulum (ER) stress-induced apoptosis. Neurons deficient for these CaBP-9k had abnormal intracellular calcium levels and responses. ER stress inhibitor TUDCA reduced ER stress-induced apoptosis and restored ER stress- and apoptosis-related proteins expression to wild-type levels in CaBP-9k KO mice. Furthermore, treatment with TUDCA rescued the abnormal memory and motor behaviors exhibited by older CaBP-9k KO mice. CONCLUSION: Our results suggest that a loss of CaBP-9k may contribute to the onset and progression of neurodegenerative diseases.


Subject(s)
Alzheimer Disease/genetics , Apoptosis/genetics , Calbindins/genetics , Endoplasmic Reticulum Stress/genetics , Parkinson Disease/genetics , Taurochenodeoxycholic Acid/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apoptosis/drug effects , Brain/metabolism , Brain/pathology , Calbindins/metabolism , Calcium/metabolism , Cell Proliferation/genetics , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Maze Learning/drug effects , Memory Disorders/drug therapy , Memory Disorders/genetics , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/genetics , Neurons/metabolism , Neurons/pathology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , RNA, Small Interfering , Risk Factors , Taurochenodeoxycholic Acid/pharmacology , alpha-Synuclein/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...