Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Chem Phys Lipids ; 259: 105378, 2024 03.
Article in English | MEDLINE | ID: mdl-38325711

ABSTRACT

The proportion of sodium taurolithocholate (NaTLC) is extremely low in human bile salts. NaTLC forms aggregates with other lipids in the bile and functions as an emulsifying and solubilizing agent. The molecular structure of NaTLC contains hydrophilic hydroxyl and sulfonic acid groups at both ends of the steroid ring. This molecular structure is similar to bolaform amphiphilic substance having hydrophilic groups at both ends due to the characteristics of its molecular structure. This study investigated the aggregate properties of the NaTLC using surface tension measurements, light scattering, small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM). Surface tension measurement showed that the surface tension of the NaTLC solution decreased to 54 mN m-1. The concentration that showed the minimum surface tension corresponded to the critical micelle concentration (CMC: 0.6 mmol L-1, 308 K) determined by the change in light scattering intensity. On the other hand, the degree of counterion (sodium ions) binding to the micelles increased with increasing NaTLC concentration. SAXS and cryo-TEM measurements showed that the NaTLC formed large string-like micelles. The surface activity and large aggregates showed the potential for use as biosurfactants. However, because of the relatively low solubility of NaTLC in water, its use as a biosurfactant is limited to a narrow concentration range.


Subject(s)
Micelles , Taurolithocholic Acid , Humans , Sodium , Scattering, Small Angle , X-Ray Diffraction
2.
Turk J Gastroenterol ; 34(3): 298-307, 2023 03.
Article in English | MEDLINE | ID: mdl-36919835

ABSTRACT

BACKGROUND: It was well defined that proliferative effects of bile acids on colon epithelium are through interaction with muscarinic-3 receptors. Recently, microRNA emerged as an important regulator of gene expression and has been implicated in pathogenesis of many malignancies. However, the interaction of CHRM3 and microRNAs and their potential effects on colon carcinogenesis remains to be elucidated. METHODS: In the current study, analysis of cell proliferation for 6 days after treatment with sodium taurolithocholate was analyzed by using WST-1 method. microRNAs which possibly target CHRM3 were identified by in silico analyses. Expression profiling of these microRNAs, expression changes of CHRM3 gene at mRNA level for H508 and SNU-C4 colon cancer cells were analyzed by quantitative polymerase chain reaction; the protein level of CHRM3 was analyzed using Western blot; apoptotic experiments were analyzed using the Annexin V assay. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the miRPath v3.0. RESULTS: It was found that the expression level of CHRM3 gene was 6.133 ± 0.698-fold in H508 cells compared with SNU-C4 cells (P =.004). Treatment of H508 cells with sodium taurolithocholate caused 1.34 ± 0.4156-fold change in the expression level of CHRM3 gene (P =.0448). No apoptotic changes were observed in both colon cancer cells after treatment with sodium taurolithocholate. Different expression changes were detected of hsa-miR-129-5p, hsa-miR-30c-5p, hsa-miR-224-5p, hsa-miR-30b-5p, hsa-miR-522-3p, and hsa-miR-1246. Finally, hsa-miR-1246 and hsa-miR-522-3p could play a critical role in tumor development via bile acid-related genes in colon cancer. CONCLUSION: These findings reflected that CHRM3-dependent oncogenetic pathways might be in charge of colon cancer. We suggest that the microRNA expression profile of each individual colon cancer tissue is a unique digital signature.


Subject(s)
Colonic Neoplasms , MicroRNAs , Humans , Taurolithocholic Acid , MicroRNAs/genetics , MicroRNAs/metabolism , Colonic Neoplasms/genetics , Cell Proliferation/genetics , Receptor, Muscarinic M3
3.
J Cell Physiol ; 237(2): 1455-1470, 2022 02.
Article in English | MEDLINE | ID: mdl-34705285

ABSTRACT

Spinal cord injury (SCI) causes cell death and consequently the breakdown of axons and myelin. The accumulation of myelin debris at the lesion site induces inflammation and blocks axonal regeneration. Hematogenous macrophages contribute to the removal of myelin debris. In this study, we asked how the inflammatory state of macrophages affects their ability to phagocytose myelin. Bone marrow-derived macrophages (BMDM) and Raw264.7 cells were stimulated with lipopolysaccharides (LPS) or interferon gamma (IFNγ), which induce inflammatory stress, and the endocytosis of myelin was examined. We found that activation of the TLR4-NFκB pathway reduced myelin uptake by BMDM, while IFNγ-Jak/STAT1 signaling did not. Since bile acids regulate lipid metabolism and in some cases reduce inflammation, our second objective was to investigate whether myelin clearance could be improved with taurolithocholic acid (TLCA), tauroursodeoxycholic acid or hyodeoxycholic acid. In BMDM only TLCA rescued myelin phagocytosis, when this activity was suppressed by LPS. Inhibition of protein kinase A blocked the effect of TLCA, while an agonist of the farnesoid X receptor did not rescue phagocytosis, implicating TGR5-PKA signaling in the effect of TLCA. To shed light on the mechanism, we measured whether TLCA affected the expression of CD36, triggering receptor on myeloid cells-2 (TREM2), and Gas6, which are known to be involved in phagocytosis and affected by inflammatory stimuli. Concomitant with an increase in expression of tumour necrosis factor alpha, LPS reduced expression of TREM2 and Gas6 in BMDM, and TLCA significantly diminished this downregulation. These findings suggest that activation of bile acid receptors may be used to improve myelin clearance in neuropathologies.


Subject(s)
Lipopolysaccharides , Taurolithocholic Acid , Humans , Inflammation/pathology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Myelin Sheath , Phagocytosis , Taurochenodeoxycholic Acid , Taurolithocholic Acid/metabolism , Taurolithocholic Acid/pharmacology
4.
Biomed Pharmacother ; 142: 112062, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34435589

ABSTRACT

OBJECTIVES: To investigate the protective effects of Salidroside (Sal) on AP cell model induced by taurolithocholic acid 3-sulfate (TLC-S) as well as its underlying mechanism. METHODS: AR42J cells were divided into normal group (N group), AP cell model group (Mod group), Sal treated alone group (S+N group) and Sal treated AP cell model group (S+Mod group). The cell viability was examined by CCK-8 assay. Secretion of lipase and trypsin by AR42J cells, quantified using commercial assay kits, was used as the markers of TLC-S-induced pancreatitis. The levels of TNF-α, IL-1ß, IL-8, IL-6 and IL-10 in the cell supernatant were measured by ELISA. The effect of Sal on molecules in the NF-κB signaling pathway and autophagy was investigated by qRT-PCR and western blot. RESULTS: The decreased cell viability in Mod group was increased by Sal (P < 0.01). The upheaved activities of lipase and trypsin in AP cell model were declined by Sal (P < 0.01). The levels of TNF-α, IL-1ß, IL-8 and IL-6 in the cell supernatant, Beclin-1 and LC3-Ⅱ mRNA and protein, p-p65/p65 protein, which were increased in AP cell model, were decreased by Sal; and IL-10 in the cell supernatant, LAMP2 mRNA and protein, p-IκBα/IκBα protein which was declined in AP cell model, was increased by Sal (P < 0.05 or 0.01). There were no significant differences in all indexes between the N and S+N groups (P > 0.05). CONCLUSIONS: Sal alleviated AR42J cells injury induced by TLC-S, inhibited the inflammatory responses and modulated the autophagy, mainly through inhibiting the NF-κB signaling pathway.


Subject(s)
Autophagy/drug effects , Glucosides/pharmacology , Pancreatitis/prevention & control , Phenols/pharmacology , Signal Transduction/drug effects , Animals , Cell Line , Cell Survival/drug effects , Inflammation/prevention & control , NF-kappa B/metabolism , Pancreas/cytology , Pancreas/drug effects , Pancreas/pathology , Rats , Taurolithocholic Acid/analogs & derivatives
5.
Mol Med Rep ; 22(3): 2496-2506, 2020 09.
Article in English | MEDLINE | ID: mdl-32705196

ABSTRACT

Acute pancreatitis (AP) is a common digestive disorder with high morbidity and mortality. The present study aimed to investigate the expression of early growth response protein 1 (Egr1), and the effect of competing endogenous (ce)RNA network on trypsinogen activation. Pancreatic acinar intracellular trypsinogen activation (PAITA) is an important event in the early stage of AP; however, the underlying mechanisms remain unclear. The present study used taurolithocholic acid 3­sulfate (TLC­S)­treated AR42J cells (pancreatic cell line) to establish a PAITA model. A gene microarray and bioinformatics analysis was performed to identify the potential key targets in PAITA. The results demonstrated that Egr1, an important transcription factor, was significantly overexpressed in PAITA. In Egr1 small interfering (si)RNA­transfected cells, Egr1 expression was decreased and trypsinogen activation was significantly decreased compared with negative control siRNA­transfected cells, indicating that in TLC­S­induced PAITA, overexpression of Egr1 enhanced trypsinogen activation. A ceRNA network [mRNA­microRNA (miRNA/miR)­long non­coding (lnc)RNA] generated using the PAITA model revealed that the effects of Egr1 on PAITA may be regulated by multiple ceRNA pairs, and the lncRNAs (including NONRATT022624 and NONRATT031002) and miRNAs [including Rattus norvegicus (rno)­miR­214­3p and rno­miR­764­5p] included in the ceRNA pairs may serve roles in PAITA by regulating the expression of Egr1. The results of the present study may provide novel targets for researching the underlying mechanisms of, and developing treatments for AP.


Subject(s)
Early Growth Response Protein 1/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Pancreatitis/genetics , Taurolithocholic Acid/analogs & derivatives , Trypsinogen/metabolism , Animals , Cell Line , Computational Biology , Early Growth Response Protein 1/antagonists & inhibitors , Enzyme Activation/drug effects , MicroRNAs/genetics , Models, Biological , Oligonucleotide Array Sequence Analysis , Pancreatitis/chemically induced , Pancreatitis/metabolism , RNA, Long Noncoding/genetics , RNA, Small Interfering/pharmacology , Rats , Taurolithocholic Acid/adverse effects , Up-Regulation/drug effects
6.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G303-G308, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32597704

ABSTRACT

The purpose of this study was to demonstrate the aberrant metabolism of bile acids in patients with cholesterol gallstone and explore for its underlying mechanisms. The composition of bile acids collected from the patients with cholelithiasis and the control individuals was analyzed by LC-MS. The expression of genes regulating the metabolism of bile acids was quantitatively determined by real-time PCR or Western blot analysis. Cholesterol saturation index of patients with gallstone was significantly higher than that of the controls. The concentrations of taurodeoxycholic acid and taurolithocholic acid in the bile of patients were significantly higher than that of the controls. When compared with the controls, it was remarkable in the patients that the mRNA expression of farnesoid X receptor (FXR) was lower, whereas that of organic anion transporting polypeptide (OATP1A2) was higher. However, the expressions of both mRNA and protein of cytochrome P-450 family 8 subfamily B member 1 (CYP8B1) did not differ between the patients and the controls. Although the protein level of CYP8B1 was significantly lower in the subjects with single nucleotide polymorphism (SNP) rs3732860(G), the composition of bile acids and the ratio of CA to CDCA remained unaltered in the patients with different SNP genotype of CYP8B1. In conclusion, the axis of FXR-OATP1A2 that physiologically regulated the reabsorption of bile acids might play an important role in the composition of bile acids and the development of gallstone. CYP8B1 gene was irrelevant to the altered composition of bile acids in patients with gallstone.NEW & NOTEWORTHY For the first time, our results indicate that the axis of farnesoid X receptor-organic anion transporter polypeptide 1A2 that physiologically regulates the reabsorption of bile acids might play an important role in the regulation of the composition of bile acids and make contribution to the development of cholelithiasis.


Subject(s)
Bile Acids and Salts/metabolism , Cholelithiasis/genetics , Cholesterol/metabolism , Organic Anion Transporters/genetics , RNA-Binding Proteins/genetics , Adult , Cholelithiasis/metabolism , Female , Humans , Male , Middle Aged , Organic Anion Transporters/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Taurodeoxycholic Acid/metabolism , Taurolithocholic Acid/metabolism
7.
ACS Infect Dis ; 6(4): 603-612, 2020 04 10.
Article in English | MEDLINE | ID: mdl-31851822

ABSTRACT

Biofilm inhibition by exogenous molecules has been an attractive strategy for the development of novel therapeutics. We investigated the biofilm inhibitor taurolithocholic acid (TLCA) and its effects on the specialized metabolism, virulence, and biofilm formation of the clinically relevant bacterium Pseudomonas aeruginosa strain PA14. Our study shows that TLCA alters the specialized metabolism, thereby affecting P. aeruginosa colony biofilm physiology. We observed an upregulation of metabolites correlated to virulence such as the siderophore pyochelin. A wax moth virulence assay confirmed that treatment with TLCA increases the virulence of P. aeruginosa. On the basis of our results, we believe that future endeavors to identify biofilm inhibitors must consider how a putative lead alters the specialized metabolism of a bacterial community to prevent pathogens from entering a highly virulent state.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Taurolithocholic Acid/pharmacology , Biofilms/growth & development , Metabolic Networks and Pathways/drug effects , Pseudomonas aeruginosa/pathogenicity , Virulence/drug effects
8.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L264-L275, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31800261

ABSTRACT

Duodenogastroesophageal reflux (DGER) is associated with chronic lung disease. Bile acids (BAs) are established markers of DGER aspiration and are important risk factors for reduced post-transplant lung allograft survival by disrupting the organ-specific innate immunity, facilitating airway infection and allograft failure. However, it is unknown whether BAs also affect airway reactivity. We investigated the acute effects of 13 BAs detected in post-lung-transplant surveillance bronchial washings (BW) on airway contraction. We exposed precision-cut slices from human and mouse lungs to BAs and monitored dynamic changes in the cross-sectional luminal area of peripheral airways using video phase-contrast microscopy. We also used guinea pig tracheal rings in organ baths to study BA effects in proximal airway contraction induced by electrical field stimulation. We found that most secondary BAs at low micromolar concentrations strongly and reversibly relaxed smooth muscle and inhibited peripheral airway constriction induced by acetylcholine but not by noncholinergic bronchoconstrictors. Similarly, secondary BAs strongly inhibited cholinergic constrictions in tracheal rings. In contrast, TC-G 1005, a specific agonist of the BA receptor Takeda G protein-coupled receptor 5 (TGR5), did not cause airway relaxation, and Tgr5 deletion in knockout mice did not affect BA-induced relaxation, suggesting that this receptor is not involved. BAs inhibited acetylcholine-induced inositol phosphate synthesis in human airway smooth muscle cells overexpressing the muscarinic M3 receptor. Our results demonstrate that select BAs found in BW of patients with lung transplantation can affect airway reactivity by inhibiting the cholinergic contractile responses of the proximal and peripheral airways, possibly by acting as antagonists of M3 muscarinic receptors.


Subject(s)
Acetylcholine/metabolism , Bile Acids and Salts/pharmacology , Bronchoconstriction/drug effects , Lung/physiopathology , Animals , Bronchoconstrictor Agents/pharmacology , Chenodeoxycholic Acid/pharmacology , Electric Stimulation , Guinea Pigs , Humans , Inositol Phosphates/biosynthesis , Lung/drug effects , Male , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Muscarinic/metabolism , Serotonin/pharmacology , Taurolithocholic Acid/pharmacology , Trachea/drug effects
9.
Autophagy ; 16(7): 1314-1331, 2020 07.
Article in English | MEDLINE | ID: mdl-31651224

ABSTRACT

Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures. These organelles can be up to 12 µm in diameter and can be actinated (i.e. coated with F-actin). Notably, EVs can undergo intracellular rupture and fusion with the plasma membrane, providing trypsin with access to cytoplasmic and extracellular targets. Unraveling the mechanisms involved in cellular processing of EVs is an interesting cell biological challenge with potential benefits for understanding acute pancreatitis. In this study we have investigated autophagy of EVs and discovered that it involves a non-canonical LC3-conjugation mechanism, reminiscent in its properties to LC3-associated phagocytosis (LAP); in both processes LC3 was recruited to single, outer organellar membranes. Trypsinogen activation peptide was observed in approximately 55% of LC3-coated EVs indicating the relevance of the described process to the early cellular events of acute pancreatitis. We also investigated relationships between actination and non-canonical autophagy of EVs and concluded that these processes represent sequential steps in the evolution of EVs. Our study expands the known roles of LAP and indicates that, in addition to its well-established functions in phagocytosis and macropinocytosis, LAP is also involved in the processing of post-exocytic organelles in exocrine secretory cells. ABBREVIATIONS: AP: acute pancreatitis; CCK: cholecystokinin; CLEM: correlative light and electron microscopy; DPI: diphenyleneiodonium; EV: endocytic vacuole; LAP: LC3-associate phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PACs: pancreatic acinar cells; PFA: paraformaldehyde; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; Res: resveratrol; TAP: trypsinogen activation peptide; TEM: transmission electron microscopy; TLC-S: taurolithocholic acid 3-sulfate; TRD: Dextran Texas Red 3000 MW Neutral; ZGs: zymogen granules.


Subject(s)
Acinar Cells/metabolism , Autophagy , Endocytosis , Microtubule-Associated Proteins/metabolism , Pancreas/cytology , Phagocytosis , Vacuoles/metabolism , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology , Acinar Cells/drug effects , Acinar Cells/ultrastructure , Actins/metabolism , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/antagonists & inhibitors , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Proteins/chemistry , Autophagy-Related Proteins/metabolism , Chloroquine/pharmacology , Cholecystokinin/pharmacology , Mice, Inbred C57BL , Onium Compounds/pharmacology , Phagocytosis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Protein Domains , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Resveratrol/pharmacology , Taurolithocholic Acid/analogs & derivatives , Trypsinogen/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/drug effects
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-828518

ABSTRACT

OBJECTIVE@#To explore the effects of taurolithocholic acid (tLCA) and chenodeoxycholic acid (CDCA) on the expression of aorexigenic neuropeptide in mouse hypothalamus GT1-7 cells.@*METHODS@#Mouse hypothalamic GT1-7 cells were treated with culture medium containing 10% FBS (control group, =3) or with 10 nmol/L, 100 nmol/L, 1 μmol/L and 10 μmol/L tLCA (tLCA group, =3) or CDCA (CDCA group, =3) for 12, 24 or 48 h. Real-time PCR was performed to determine the expression levels of proopiomelanocortin (POMC) mRNA in the cells, and the production levels of α-melanocyte-stimulating hormone (α-MSH) were assessed using an ELISA kit. Signal transduction and activator of transcription 3 phosphorylation (p-STAT3), threonine kinase phosphorylation (p-AKT), suppressor of cytokine signaling 3 (SOCS3), G protein-coupled bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) protein were detected by Western blotting.@*RESULTS@#Western blotting results showed that mouse hypothalamic GT1-7 cells expressed two bile acid receptors, TGR5 and FXR, whose expressions were regulated by bile acids. Real-time PCR showed that the expression of POMC mRNA was significantly increased in the cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. POMC-derived anorexigenic peptide α-MSH increased significantly in GT1-7 cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. Treatment of the cells with tLCA or CDCA significantly increased the expressions of intracellular signaling proteins including p-STAT3, p-AKT and SOCS3.@*CONCLUSIONS@#Mouse hypothalamic GT1-7 cells express bile acid receptors TGR5 and FXR. Bile acids tLCA or CDCA can promote the expression of POMC mRNA and increase the production of the anorexigenic peptide α-MSH. The intracellular signaling proteins p-AKT, p-STAT3 and SOCS3 are likely involved in bile acid-induced anorexigenic peptide production.


Subject(s)
Animals , Mice , Cell Line , Chenodeoxycholic Acid , Pharmacology , Gene Expression Regulation , Hypothalamus , Cell Biology , Neuropeptides , Genetics , Metabolism , Pro-Opiomelanocortin , Genetics , RNA, Messenger , Genetics , STAT3 Transcription Factor , Metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Metabolism , Taurolithocholic Acid , Pharmacology , alpha-MSH , Genetics
11.
Arch Toxicol ; 93(8): 2279-2294, 2019 08.
Article in English | MEDLINE | ID: mdl-31300867

ABSTRACT

Taurolithocholate (TLC) is a cholestatic bile salt that induces disinsertion of the canalicular transporter Abcc2 (Mrp2, multidrug resistance-associated protein 2). This internalization is mediated by different intracellular signaling proteins such as PI3K, PKCε and MARCK but the initial receptor of TLC remains unknown. A few G protein-coupled receptors interact with bile salts in hepatocytes. Among them, sphingosine-1 phosphate receptor 2 (S1PR2) represents a potential initial receptor for TLC. The aim of this study was to evaluate the role of this receptor and its downstream effectors in the impairment of Abcc2 function induced by TLC. In vitro, S1PR2 inhibition by JTE-013 or its knockdown by small interfering RNA partially prevented the decrease in Abcc2 activity induced by TLC. Moreover, adenylyl cyclase (AC)/PKA and PI3K/Akt inhibition partially prevented TLC effect on canalicular transporter function. TLC produced PKA and Akt activation, which were blocked by JTE-013 and AC inhibitors, connecting S1PR2/AC/PKA and PI3K/Akt in a same pathway. In isolated perfused rat liver, injection of TLC triggered endocytosis of Abcc2 that was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Abcc2 substrate dinitrophenyl-glutathione until the end of the perfusion period. S1PR2 or AC inhibition did not prevent the initial decay, but they accelerated the recovery of these parameters and the reinsertion of Abcc2 into the canalicular membrane. In conclusion, S1PR2 and the subsequent activation of AC, PKA, PI3K and Akt is partially responsible for the cholestatic effects of TLC through sustained internalization of Abcc2.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenylyl Cyclases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Taurolithocholic Acid/pharmacology , Animals , Cells, Cultured , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Metabolic Networks and Pathways/drug effects , Organ Culture Techniques , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Rats, Wistar , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/genetics , Taurolithocholic Acid/metabolism
12.
J Phys Chem B ; 123(34): 7302-7312, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31298856

ABSTRACT

The liver performs critical physiological functions, including metabolizing and removing substances, such as toxins and drugs, from the bloodstream. Hepatotoxicity itself is intimately linked to abnormal hepatic transport, and hepatotoxicity remains the primary reason drugs in development fail and approved drugs are withdrawn from the market. For this reason, we propose to analyze, across liver compartments, the transport kinetics of fluorescein-a fluorescent marker used as a proxy for drug molecules-using intravital microscopy data. To resolve the transport kinetics quantitatively from fluorescence data, we account for the effect that different liver compartments (with different chemical properties) have on fluorescein's emission rate. To do so, we develop ordinary differential equation transport models from the data where the kinetics is related to the observable fluorescence levels by "measurement parameters" that vary across different liver compartments. On account of the steep non-linearities in the kinetics and stochasticity inherent to the model, we infer kinetic and measurement parameters by generalizing the method of parameter cascades. For this application, the method of parameter cascades ensures fast and precise parameter estimates from noisy time traces.


Subject(s)
Intravital Microscopy , Liver/metabolism , Animals , Biological Transport , Intravital Microscopy/methods , Kinetics , Liver/drug effects , Liver/ultrastructure , Models, Biological , Rats , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Taurolithocholic Acid/metabolism , Taurolithocholic Acid/pharmacokinetics , Taurolithocholic Acid/toxicity
13.
J Biol Chem ; 294(31): 11853-11862, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31201272

ABSTRACT

Sodium taurocholate cotransporting polypeptide (NTCP, encoded by Slc10a1/SLC10A1) deficiency can result in hypercholanemia but no obvious symptoms in both mice and humans. However, the consequence of and response to long-term hypercholanemia caused by NTCP deficiency remain largely unexplored. Here, we analyzed lifelong dynamics of serum total bile acid (TBA) levels in Slc10a1-/- mice, and we also assessed changes of TBA levels in 33 young individuals with SLC10A1 loss-of-function variant p.Ser267Phe. We found that overall serum TBA levels tended to decrease gradually with age in both Slc10a1-/- mice and p.Ser267Phe individuals. Liver mRNA profiling revealed notable transcription alterations in hypercholanemic Slc10a1-/- mice, including inhibition of bile acid (BA) synthesis, enhancement of BA detoxification, and altered BA transport. Members of the sulfotransferase (SULT) family showed the most dramatic increases in livers of hypercholanemic Slc10a1-/- mice, and one of their BA sulfates, taurolithocholic acid 3-sulfate, significantly increased. Importantly, consistent with the mouse studies, comprehensive profiling of 58 BA species in sera of p.Ser267Phe individuals revealed a markedly increased level of BA sulfates. Together, our findings indicate that the enhanced BA sulfation is a major mechanism for BA detoxification and elimination in both mice and humans with Slc10a1/SLC10A1 deficiency.


Subject(s)
Bile Acids and Salts/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Taurolithocholic Acid/analogs & derivatives , Animals , Bile Acids and Salts/blood , Chromatography, High Pressure Liquid , Female , Homozygote , Humans , Hypercholesterolemia/pathology , Hypercholesterolemia/veterinary , Liver/metabolism , Male , Mice , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/deficiency , Symporters/deficiency , Tandem Mass Spectrometry , Taurolithocholic Acid/blood , Taurolithocholic Acid/metabolism , Taurolithocholic Acid/urine
14.
J Pharmacol Exp Ther ; 369(3): 389-405, 2019 06.
Article in English | MEDLINE | ID: mdl-30918069

ABSTRACT

Lithocholic acid (LCA) is a bile acid associated with adverse effects, including cholestasis, and it exists in vivo mainly as conjugates known as glyco-LCA (GLCA) and tauro-LCA (TLCA). Tamoxifen has been linked to the development of cholestasis, and it inhibits sulfotransferase 2A1 (SULT2A1)-catalyzed dehydroepiandrosterone (DHEA) sulfonation. The present study was done to characterize the sulfonation of LCA, GLCA, and TLCA and to investigate whether triphenylethylene (clomifene, tamoxifen, toremifene, ospemifene, droloxifene), benzothiophene (raloxifene, arzoxifene), tetrahydronaphthalene (lasofoxifene, nafoxidine), indole (bazedoxifene), and benzopyran (acolbifene) classes of selective estrogen receptor modulator (SERM) inhibit LCA, GLCA, and TLCA sulfonation. Human recombinant SULT2A1, but not SULT2B1b or SULT1E1, catalyzed LCA, GLCA, and TLCA sulfonation, whereas each of these enzymes catalyzed DHEA sulfonation. LCA, GLCA, and TLCA sulfonation is catalyzed by human liver cytosol, and SULT2A1 followed the substrate inhibition model with comparable apparent K m values (≤1 µM). Each of the SERMs inhibited LCA, GLCA, and TLCA sulfonation with varying potency and mode of enzyme inhibition. The potency and extent of inhibition of LCA sulfonation were attenuated or increased by structural modifications to toremifene, bazedoxifene, and lasofoxifene. The inhibitory effect of raloxifene, bazedoxifene, and acolbifene on LCA sulfonation was also observed in HepG2 human hepatocellular carcinoma cells. Overall, among the SERMs investigated, bazedoxifene and raloxifene were the most effective inhibitors of LCA, GLCA, and TLCA sulfonation. These findings provide insight into the structural features of specific SERMs that contribute to their inhibition of SULT2A1-catalyzed LCA sulfonation. Inhibition of LCA, GLCA, and TLCA detoxification by a SERM may provide a biochemical basis for adverse effects associated with a SERM.


Subject(s)
Biocatalysis/drug effects , Lithocholic Acid/analogs & derivatives , Selective Estrogen Receptor Modulators/chemistry , Selective Estrogen Receptor Modulators/pharmacology , Sulfonic Acids/metabolism , Sulfotransferases/metabolism , Taurolithocholic Acid/metabolism , Cytosol/drug effects , Cytosol/metabolism , Hep G2 Cells , Humans , Kinetics , Lithocholic Acid/metabolism , Liver/cytology , Oxidation-Reduction , Selective Estrogen Receptor Modulators/metabolism , Sulfotransferases/antagonists & inhibitors
15.
J Pharm Sci ; 108(8): 2756-2764, 2019 08.
Article in English | MEDLINE | ID: mdl-30905707

ABSTRACT

The present study examined the significance of enterohepatic circulation and the effect of rifampicin [an inhibitor of organic anion-transporting polypeptide 1B (OATP1B)] on the plasma concentrations of bile acid-O-sulfates (glycochenodeoxycholate-O-sulfate, lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate) in monkeys and human liver-transplanted chimeric mice (PXB mouse). Rifampicin significantly increased the area under the curve of bile acid-O-sulfates in monkeys (13-69 times) and PXB mice (13-25 times) without bile flow diversion. Bile flow diversion reduced the concentration of plasma bile acid-O-sulfates under control conditions in monkeys and the concentration of plasma glycochenodeoxycholate-O-sulfate in PXB mice. It also diminished diurnal variation of plasma lithocholate-O-sulfate, glycolithocholate-O-sulfate, and taurolithocholate-O-sulfate in PXB mice under control conditions. Bile flow diversion did not affect the plasma concentration of bile acid-O-sulfates in monkeys and PXB mice treated with rifampicin. Plasma coproporphyrin I and III levels were constant in monkeys throughout the study, even with bile flow diversion. This study demonstrated that bile acid-O-sulfates are endogenous OATP1B biomarkers in monkeys and PXB mice. Enterohepatic circulation can affect the baseline levels of plasma bile acid-O-sulfates and modify the effect of OATP1B inhibition.


Subject(s)
Glycocholic Acid/analogs & derivatives , Lithocholic Acid/analogs & derivatives , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Rifampin/pharmacology , Taurolithocholic Acid/analogs & derivatives , Animals , Glycocholic Acid/blood , Humans , Lithocholic Acid/blood , Liver/metabolism , Liver Transplantation , Macaca fascicularis , Male , Mice , Rifampin/administration & dosage , Taurolithocholic Acid/blood
16.
Biochem Biophys Res Commun ; 500(4): 952-957, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29709472

ABSTRACT

Impairment of mitochondrial biogenesis has been associated with vascular pathophysiology. The G-protein-coupled receptor (TGR5) is an important mediator of bile acid signaling and glucose metabolism. However, the effects of TGR5 on mitochondrial biogenesis in endothelial cells remain elusive. In this study, we found that activation of TGR5 using its specific agonist taurolithocholic acid (TLCA) promoted the expression of PGC-1α, a master regulator of mitochondrial biogenesis in human aortic endothelial cells (HAECs). Additionally, activation of TGR5 increased the expression of PGC-1α target genes, such as NRF1 and TFAM. Indeed, we found that TLCA treatment promoted mitochondrial biogenesis by increasing mitochondrial mass, mitochondrial-to-nuclear DNA (mtDNA/nDNA), COX-Ⅰ expression, and cytochrome c oxidase activity in HAECs. Notably, our results displayed that activation of TGR5 resulted in a functional gain in mitochondria by increasing the rate of respiration and ATP production. Mechanistically, we found that TLCA treatment activated the transcriptional factor CREB by inducing the phosphorylation of CREB at Ser133. Using the PKA/CREB inhibitor H89 abolished the effects of TLCA on PGC-1α, NRF1 and TFAM expression as well as the increase in mtDNA/nDNA and ATP production. These findings suggest that activation of TGR5 promoted mitochondrial biogenesis in endothelial cells, which is mediated by the CREB/PGC-1α signaling pathway.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Endothelial Cells/drug effects , Mitochondria/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, G-Protein-Coupled/genetics , Taurolithocholic Acid/pharmacology , Adenosine Triphosphate/biosynthesis , Cell Line , Cell Respiration , Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation , Humans , Isoquinolines/pharmacology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Sulfonamides/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Pancreas ; 47(1): 18-24, 2018 01.
Article in English | MEDLINE | ID: mdl-29200128

ABSTRACT

OBJECTIVES: Mitochondrial permeability transition pore inhibition is a promising approach to treat acute pancreatitis (AP). We sought to determine (i) the effects of the mitochondrial permeability transition pore inhibitor 3,5-seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) on murine and human pancreatic acinar cell (PAC) injury induced by fatty acid ethyl esters (FAEEs) or taurolithocholic acid-3-sulfate and (ii) TRO40303 pharmacokinetics and efficacy in experimental alcoholic AP (FAEE-AP). METHODS: Changes in mitochondrial membrane potential (Δψm), cytosolic Ca ([Ca]c), and cell fate were examined in freshly isolated murine or human PACs by confocal microscopy. TRO40303 pharmacokinetics were assessed in cerulein-induced AP and therapeutic efficacy in FAEE-AP induced with palmitoleic acid and ethanol. Severity of AP was assessed by standard biomarkers and blinded histopathology. RESULTS: TRO40303 prevented loss of Δψm and necrosis induced by 100 µM palmitoleic acid ethyl ester or 500 µM taurolithocholic acid-3-sulfate in murine and human PACs. Pharmacokinetic analysis found TRO40303 accumulated in the pancreas. A single dose of 3 mg/kg TRO40303 significantly reduced serum amylase (P = 0.043), pancreatic trypsin (P = 0.018), and histopathology scores (P = 0.0058) in FAEE-AP. CONCLUSIONS: TRO40303 protects mitochondria and prevents necrotic cell death pathway activation in murine and human PACs, ameliorates the severity of FAEE-AP, and is a candidate drug for human AP.


Subject(s)
Esters/pharmacology , Fatty Acids/pharmacology , Mitochondria/drug effects , Oximes/pharmacology , Pancreatitis, Alcoholic/prevention & control , Secosteroids/pharmacology , Acinar Cells/drug effects , Acinar Cells/metabolism , Acute Disease , Animals , Ceruletide , Esters/metabolism , Fatty Acids/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Mitochondria/metabolism , Necrosis/prevention & control , Oximes/pharmacokinetics , Pancreatitis/chemically induced , Pancreatitis/prevention & control , Pancreatitis, Alcoholic/metabolism , Pancreatitis, Alcoholic/pathology , Secosteroids/pharmacokinetics , Taurolithocholic Acid/analogs & derivatives , Taurolithocholic Acid/pharmacology
18.
J Endocrinol ; 236(2): 85-97, 2018 02.
Article in English | MEDLINE | ID: mdl-29233934

ABSTRACT

Bile acids can function in the postprandial state as circulating signaling molecules in the regulation of glucose and lipid metabolism via the transmembrane receptor TGR5 and nuclear receptor FXR. Both receptors are present in the central nervous system, but their function in the brain is unclear. Therefore, we investigated the effects of intracerebroventricular (i.c.v.) administration of taurolithocholate (tLCA), a strong TGR5 agonist, and GW4064, a synthetic FXR agonist, on energy metabolism. We determined the effects of chronic i.c.v. infusion of tLCA, GW4064, or vehicle on energy expenditure, body weight and composition as well as tissue specific fatty acid uptake in mice equipped with osmotic minipumps. We found that i.c.v. administration of tLCA (final concentration in cerebrospinal fluid: 1 µM) increased fat oxidation (tLCA group: 0.083 ±â€…0.006 vs control group: 0.036 ±â€…0.023 kcal/h, F = 5.46, P = 0.04) and decreased fat mass (after 9 days of tLCA infusion: 1.35 ±â€…0.13 vs controls: 1.96 ±â€…0.23 g, P = 0.03). These changes were associated with enhanced uptake of triglyceride-derived fatty acids by brown adipose tissue and with browning of subcutaneous white adipose tissue. I.c.v. administration of GW4064 (final concentration in cerebrospinal fluid: 10 µM) did not affect energy metabolism, body composition nor bile acid levels, negating a role of FXR in the central nervous system in metabolic control. In conclusion, bile acids such as tLCA may exert metabolic effects on fat metabolism via the brain.


Subject(s)
Brain/drug effects , Lipid Metabolism/drug effects , Taurolithocholic Acid/administration & dosage , Animals , Body Composition/drug effects , Brain/metabolism , Drug Administration Schedule , Energy Metabolism/drug effects , Homeostasis/drug effects , Infusions, Intraventricular , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Time Factors , Triglycerides/metabolism
19.
Physiol Rep ; 5(23)2017 Dec.
Article in English | MEDLINE | ID: mdl-29192063

ABSTRACT

Taurolithocholate (TLC) produces cholestasis by inhibiting biliary solute secretion in part by retrieving MRP2 from the plasma membrane (PM). Tauroursodeoxycholate (TUDC) and cAMP reverse TLC-induced cholestasis by inhibiting TLC-induced retrieval of MRP2. However, cellular mechanisms for this reversal are incompletely understood. Recently, we reported that TLC decreases PM-MRP2 by activating PKCε followed by phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS). Thus, cAMP and TUDC may reverse TLC-induced cholestasis by inhibiting the TLC/PKCε/MARCKS phosphorylation pathway. We tested this hypothesis by determining whether TUDC and/or cAMP inhibit TLC-induced activation of PKCε and phosphorylation of MARCKS Studies were conducted in HuH-NTCP cell line and rat hepatocytes. Activation of PKCε was determined from the translocation of PKCε to PM using a biotinylation method. Phosphorylation of MARCKS was determined by immunoblotting with a phospho-MARCKS antibody. TLC, but not cAMP and TUDC, activated PKCε and increased MARCKS phosphorylation in HuH-NTCP as well in rat hepatocytes. Treatment with TUDC or cAMP inhibited TLC-induced activation of PKCε and increases in MARCKS phosphorylation in both cell types. Based on these results, we conclude that the reversal of TLC-induced cholestasis by cAMP and TUDC involves, at least in part, inhibition of TLC-mediated activation of the PKCε/MARCKS phosphorylation pathway.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Cell Membrane/metabolism , Cholagogues and Choleretics/pharmacology , Cholestasis/metabolism , Cyclic AMP/pharmacology , Taurochenodeoxycholic Acid/pharmacology , Taurolithocholic Acid/pharmacology , Animals , Cell Line , Cell Membrane/drug effects , Cells, Cultured , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Protein Kinase C-epsilon/metabolism , Protein Transport , Rats , Rats, Wistar , Signal Transduction
20.
Sci Rep ; 7(1): 15276, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127325

ABSTRACT

Clinical acute pancreatitis (AP) is marked by an early phase of systemic inflammatory response syndrome (SIRS) with multiorgan dysfunction (MODS), and a late phase characterized by sepsis with MODS. However, the mechanisms of acinar injury in human AP and the associated systemic inflammation are not clearly understood. This study, for the first time, evaluated the early interactions of bile acid induced human pancreatic acinar injury and the resulting cytokine response. We exposed freshly procured resected human pancreata to taurolithocolic acid (TLCS) and evaluated for acinar injury, cytokine release and interaction with peripheral blood mononuclear cells (PBMCs). We observed autophagy in acinar cells in response to TLCS exposure. There was also time-dependent release of IL-6, IL-8 and TNF-α from the injured acini that resulted in activation of PBMCs. We also observed that cytokines secreted by activated PBMCs resulted in acinar cell apoptosis and further cytokine release from them. Our data suggests that the earliest immune response in human AP originates within the acinar cell itself, which subsequently activates circulating PBMCs leading to SIRS. These findings need further detailed evaluation so that specific therapeutic targets to curb SIRS and resulting early adverse outcomes could be identified and tested.


Subject(s)
Acinar Cells , Leukocytes, Mononuclear/metabolism , Pancreas , Pancreatitis , Taurolithocholic Acid/adverse effects , Acinar Cells/metabolism , Acinar Cells/pathology , Acute Disease , Cytokines/metabolism , Female , Humans , Leukocytes, Mononuclear/pathology , Male , Multiple Organ Failure/metabolism , Multiple Organ Failure/pathology , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/pathology , Taurolithocholic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...