Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 21(1): 114, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32005143

ABSTRACT

BACKGROUND: Chloroplast (cp) genome information would facilitate the development and utilization of Taxodium resources. However, cp genome characteristics of Taxodium were poorly understood. RESULTS: We determined the complete cp genome sequences of T. distichum, T. mucronatum, and T. ascendens. The cp genomes are 131,947 bp to 132,613 bp in length, encode 120 genes with the same order, and lack typical inverted repeat (IR) regions. The longest small IR, a 282 bp trnQ-containing IR, were involved in the formation of isomers. Comparative analysis of the 3 cp genomes showed that 91.57% of the indels resulted in the periodic variation of tandem repeat (TR) motifs and 72.46% single nucleotide polymorphisms (SNPs) located closely to TRs, suggesting a relationship between TRs and mutational dynamics. Eleven hypervariable regions were identified as candidates for DNA barcode development. Hypothetical cp open reading frame 1(Ycf1) was the only one gene that has an indel in coding DNA sequence, and the indel is composed of a long TR. When extended to cupressophytes, ycf1 genes have undergone a universal insertion of TRs accompanied by extreme length expansion. Meanwhile, ycf1 also located in rearrangement endpoints of cupressophyte cp genomes. All these characteristics highlight the important role of repeats in the evolution of cp genomes. CONCLUSIONS: This study added new evidence for the role of repeats in the dynamics mechanism of cp genome mutation and rearrangement. Moreover, the information of TRs and hypervariable regions would provide reliable molecular resources for future research focusing on the infrageneric taxa identification, phylogenetic resolution, population structure and biodiversity for the genus Taxodium and Cupressophytes.


Subject(s)
Chloroplasts/genetics , Sequence Analysis, DNA/methods , Taxodium/classification , Evolution, Molecular , Genetic Variation , Genome Size , Genome, Chloroplast , High-Throughput Nucleotide Sequencing , Phylogeny , Taxodium/genetics
2.
PLoS One ; 11(9): e0162867, 2016.
Article in English | MEDLINE | ID: mdl-27618547

ABSTRACT

Responses of bald cypress (Taxodium distichum) and pond cypress (Taxodium ascendens) saplings in photosynthesis and growth to long-term periodic submergence in situ in the hydro-fluctuation zone of the Three Gorges Dam Reservoir (TGDR) were studied. Water treatments of periodic deep submergence (DS) and moderate submergence (MS) in situ were imposed on 2-year-old bald cypress and pond cypress saplings. The effects of periodic submergence on photosynthesis and growth were investigated after 3 years (i.e. 3 cycles) compared to a control (i.e. shallow submergence, abbreviated as SS). Results showed that pond cypress had no significant change in net photosynthetic rate (Pn) in response to periodic moderate and deep submergence in contrast to a significant decrease in Pn of bald cypress under both submergence treatments, when compared to that of SS. Ratios of Chlorophyll a/b and Chlorophylls/Carotenoid of pond cypress were significantly increased in periodic moderate submergence and deep submergence, while bald cypress showed no significant change. Diameter at breast height (DBH) and tree height of both species were significantly reduced along with submergence depth. Relative diameter and height growth rates of the two species were also reduced under deeper submergence. Moreover, bald cypress displayed higher relative diameter growth rate than pond cypress under deep submergence mainly attributed to higher productivity of the larger crown area of bald cypress. When subjected to deep subergence, both species showed significant reduction in primary branch number, while in moderate submergence, bald cypress but not pond cypress showed significant reduction in primary branch number. These results indicate that both bald cypress and pond cypress are suitbale candidates for reforestation in the TGDR region thanks to their submergence tolerance characteristics, but bald cypress can grow better than pond cypress under deep submergence overall.


Subject(s)
Photosynthesis , Taxodium/physiology , China , Species Specificity , Taxodium/classification , Taxodium/growth & development
3.
SELECTION OF CITATIONS
SEARCH DETAIL
...