Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Vet Microbiol ; 286: 109884, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832214

ABSTRACT

In 2018, a T. asinigenitalis strain (MCE663) was isolated in a Persian onager tested for contagious equine metritis (CEM) in a United Kingdom (UK) zoo. This bacterium had never been reported in the UK and Multilocus Sequence Typing described a new atypically divergent ST (ST60). Although the causative agent of CEM is the bacterium Taylorella equigenitalis, a first natural outbreak of endometritis caused by T. asinigenitalis ST70 was reported in 2019, putting its pathogenic potential into question. In this context, we aimed to further sequence the T. asinigenitalis MCE663 genome and characterize the strain using phenotypical and genetic approaches. Results showed that it gathered all identification characteristics of T. asinigenitalis with smaller colonies and it was susceptible to all tested antibiotics. Genome-level phylogeny showed that the genome MCE663 formed a distinct phylogroup, and only shared ≈ 96.1% of average nucleotide identity (ANI) with the three published T. asinigenitalis genomes, which together shared ≈ 98.3% ANI. According to current cut-offs consensus for species and subspecies delineation (95% and 98%, respectively), our results support the first insights of a sublineage delineation within the T. asinigenitalis species.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Taylorella , Female , Horses , Animals , Taylorella/genetics , Taylorella equigenitalis/genetics , Equidae , Multilocus Sequence Typing/veterinary , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Horse Diseases/epidemiology , Horse Diseases/microbiology
2.
Vet Microbiol ; 285: 109853, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633060

ABSTRACT

In Finland, Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), was first detected in 1992. The aim of this study was to genotype Finnish T. equigenitalis isolates to investigate the epidemiology of the infection in the Finnish horse population. A total of 34 T. equigenitalis isolates from 24 horses obtained during 1992-2021 were subjected to whole genome sequencing (WGS) and subsequent local ad hoc core genome multi-locus sequence typing (cgMLST) targeting 1259 loci. Classical MLST profiles were extracted from the whole-genome sequence data. Three novel MLST types, ST81, ST82 and ST83, and four previously described sequence types, ST16, ST17, ST50 and ST63 were detected among the isolates. cgMLST minimum spanning tree analysis using 12 allele difference as threshold, resulted in five clusters and three singletons. cgMLST clusters were congruent with the MLST-defined groups, except for the ST83 isolates which were divided into two clusters. However, the high discriminatory power cgMLST allowed differentiation between isolates of the same MLST type as each isolate had a unique core genome ST. Our study suggests that cgMLST has the prospective for being a standardised typing method for T. equigenitalis in the future, and further contributes to worldwide phylogenetic and spatio-temporal analyses needed to better understand the epidemiology of the bacterium.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Horses , Animals , Taylorella equigenitalis/genetics , Multilocus Sequence Typing/veterinary , Finland/epidemiology , Phylogeny , Prospective Studies , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/epidemiology , Horse Diseases/microbiology , Genome, Bacterial
3.
J Equine Vet Sci ; 126: 104248, 2023 07.
Article in English | MEDLINE | ID: mdl-36796741

ABSTRACT

Contagious equine metritis (CEM) detection by PCR is recognized by the European Union according to Commission Implementing Regulation (EU) No 846/2014, and real-time PCR is now recommended by the World Organisation for Animal Health Terrestrial Manual at the same level as the culture method. The present study highlights the creation of an efficient network of approved laboratories in France in 2017 for CEM detection by real-time PCR. The network currently consists of 20 laboratories. A first proficiency test (PT) was organized by the national reference laboratory for CEM in 2017 to evaluate the performance of the early network, followed by annual proficiency tests organized for ongoing periodic assessment of network performance. Results of the 5 PTs organized from 2017 to 2021 are presented, during which 5 real-time PCRs and 3 DNA extraction methods were used. Overall, 99.20% of the qualitative data corresponded to expected results and the R-squared of global DNA amplification calculated for each PT varied from 0.728 to 0.899. DNA extraction is also an important step in the analytical process, and results were more favorable with direct lysis compared to column extraction. Focusing on the most commonly used PCR (PCR 1: 86.4% of results) showed lowest cycle threshold values with direct lysis compared to column and magnetic bead extractions, and with magnetic bead extraction compared to column extraction, but neither of these differences were statistically significant.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Horses/genetics , Animals , Taylorella equigenitalis/genetics , Real-Time Polymerase Chain Reaction/veterinary , Horse Diseases/diagnosis , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/veterinary
4.
Vet Microbiol ; 276: 109604, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481483

ABSTRACT

Taylorella asinigenitalis is a non-pathogenic bacteria isolated from the genital tract of donkeys but also a cause of metritis and vaginal discharge in mares. It is closely related to Taylorella equigenitalis, the cause of Contagious Equine Metritis (CEM) in horses, and has been present in different countries in Europe since 1995. Up to date, there are no studies on the prevalence of T. asinigenitalis in the equine or asinine populations in Spain; this is the first report of the presence of T. asinigenitalis in donkeys (Equus asinus) from different breeds in three regions of Spain. A total of 106 healthy animals of three different Spanish donkey breeds: Andaluza (26), Majorera (12) and Zamorano-Leonés (68) were sampled between June and July 2017 and a real-time PCR was used to detect T. asinigenitalis in all samples. A total of 39/221 (17,65 %) samples from 22/106 (20,75 %) animals yielded a positive result and were further characterized by MLST; an allelic profile and Sequence Type (ST) could be assigned to 11 of the 39 positive samples, resulting in four novel STs and no clonal complexes within the PubMLST database. There were statistically significant differences in the percentage of positive animals by breed and sex, and also in the variability of STs between farms. Breeding management would have an influence on the percentage of positives in a farm; artificial insemination and separating jacks from jennies should be implemented. Further studies to detect and characterize T. asinigenitalis in donkeys and horses from Spain would be required to obtain a broader epidemiological picture in this country.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Taylorella , Horses , Animals , Female , Equidae/microbiology , Multilocus Sequence Typing/veterinary , Spain/epidemiology , Taylorella/genetics , Horse Diseases/epidemiology , Horse Diseases/microbiology , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/diagnosis
5.
J Equine Vet Sci ; 119: 104138, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244608

ABSTRACT

The study examined and compared the sensitivity of culture and a quantitative PCR assay for screening equine semen for the presence of Taylorella equigenitalis (CEMO). Chilled semen samples, both raw and treated with extender, from two stallions were spiked with the organism at seven or 23 days postejaculation and prepared in serial dilutions. Culture of the 7-day raw semen readily detected CEMO at all dilutions, but extended semen yielded counts that were two log cycles lower at equivalent dilutions, with the organism being nearly undetectable at the maximal dilutions. By contrast, PCR sensitivity was not affected by extender, but for 7-day-old raw semen, PCR detection declined abruptly three log dilutions earlier than detection by culture. The more aged 23-day-old semen proved less satisfactory for spiking, with detection of CEMO by culture failing in three of the four samples due to overgrowth with commensal organisms. However, PCR performance was similar in both the 23- and 7-day spiking series. The detection limit by PCR is estimated at between 104 and 105 cfu/mL. Typical CEMO concentrations in the semen of colonized stallions are not widely reported but where natural semen contamination has been investigated, the organism was present at this order of magnitude. The reliability of detecting CEMO infection using semen samples by either method is discussed.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Horses , Animals , Male , Reproducibility of Results , Horse Diseases/diagnosis , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/veterinary , Semen
6.
Vet Rec ; 190(6): e1602, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35303356

ABSTRACT

Taylorella equigenitalis has long been recognised as a causative agent of contagious equine metritis, but practitioners may be less familiar with Taylorella asinigenitalis, which has been identified more recently. Here, Abel Dorrego, Consuelo Serres and Fatima Cruz-Lopez of the Universidad Complutense de Madrid describe T asinigenitalis and report the findings of a survey they carried out in donkeys in Spain.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Taylorella , Animals , Equidae , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/prevention & control , Horses , Spain
7.
J Equine Vet Sci ; 110: 103829, 2022 03.
Article in English | MEDLINE | ID: mdl-34871752

ABSTRACT

The gold standard method to isolate and identify Taylorella equigenitalis, the contagious agent of equine metritis, is the culture method according to the World Organisation for Animal Health Terrestrial Manual. No selective T. equigenitalis chocolate agar medium has been developed since the 1980s and the existing media show limited performances due to the fastidious nature of T. equigenitalis and the presence of interfering bacteria in the genital tract of equines. Here, the growth rates of 6 T. equigenitalis strains and 7 non-T. equigenitalis strains were compared on Timoney's selective medium formulated with 5 different basal agars (Columbia, Eugon, Blood, Mueller-Hinton and Tryptose Blood) provided by 2 to 4 suppliers per basal agar. The impact of glucose and/or Vitox supplementation was also investigated. Overall, the performance of selective T. equigenitalis media could be improved by substituting Eugon or Columbia agar with Blood, Mueller-Hinton or Tryptose Blood agar. It is nevertheless essential to validate the basal agar/supplier pair using a panel of T. equigenitalis strains. Furthermore, our findings confirm the need to supplement the selective media with a mixture of amino acids, nucleotides, and organic, mineral and vitamin compounds, translated here by Vitox supplementation.


Subject(s)
Chocolate , Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Agar , Animals , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/microbiology , Horses
8.
J Vet Med Sci ; 84(1): 129-132, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34853198

ABSTRACT

Taylorella equigenitalis causes contagious equine metritis. Here we compared seven nucleic acid amplification tests for T. equigenitalis to select a rapid and reliable diagnostic method. The 95% detection limits of each assay varied greatly: real-time PCR had the lowest detection limit (0.77 fg/reaction); those of some of the conventional PCRs (cPCRs) were >100 fg/reaction. In experimentally infected samples, real-time PCR and semi-nested PCR showed the highest positive numbers (33 out of 42 samples), but two of the cPCRs detected only 2 and 7 positive results. Our results indicate that the use of sensitive molecular assays is important for the efficient detection of T. equigenitalis in clinical samples.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Animals , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/diagnosis , Horses , Nucleic Acid Amplification Techniques/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Taylorella equigenitalis/genetics
9.
J Equine Vet Sci ; 105: 103721, 2021 10.
Article in English | MEDLINE | ID: mdl-34607681

ABSTRACT

Venereal diseases caused by bacteria are important to the equine industry due to economic losses caused by decline of conception rate in breeding horses. Therefore, identification of infected animals as well as the implementation of appropriate managerial procedures based on accurate diagnosis is critical. In this study, two types of multiplex real-time polymerase chain reaction with high sensitivity and specificity were developed for the simultaneous detection and differentiation of five commonly associated bacterial pathogens of venereal diseases in horses, consisting of Taylorella equigenitalis, Taylorella asinigenitalis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Streptococcus zooepidemicus. The assay was applied to samples collected as part of the surveillance of T.equigenitalis infection in South Korea. Swab samples collected from horses in 2015 were tested. T. equigenitalis and K. pneumoniae was detected in 21 (21.0%) and two (2.0%) samples, respectively. No samples were positive for T. asinigenitalis, P. aeruginosa, and S. zooepidemicus. Application of this assay to an existing surveillance program has allowed for an enhanced surveillance for a wider range of venereal diseases of equine to be implemented in South Korea.


Subject(s)
Gram-Negative Bacterial Infections , Taylorella equigenitalis , Taylorella , Animals , Gram-Negative Bacterial Infections/veterinary , Horses , Real-Time Polymerase Chain Reaction/veterinary , Taylorella equigenitalis/genetics
10.
Vet J ; 270: 105629, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33641806

ABSTRACT

The cultural diagnosis of the causal agent of contagious equine metritis (Taylorella equigenitalis) using transport swabs is challenging. Swabs must be placed in Amies charcoal medium, refrigerated during transport, and plated out at the laboratory no later than 48 h after sampling. In this study, the viability of T. equigenitalis strain CIP 79.7T in 11 commercial swab transport systems was initially compared at 1 day and 2 days of storage at ambient (20 ± 3 °C) or refrigerated (5 ± 3 °C) temperature. The four best swab transport systems, systems B, E, F (used as the reference) and K, were then compared at 0, 2, 3, 4, 7 and 10 days at refrigerated temperatures. Statistically significant differences were observed after 10 days only for system K compared to the reference, with approximately 95% viable T. equigenitalis recovered in system K compared to approximately 77% in system F. System K is thus promising for preservation and transport of viable T. equigenitalis for culture.


Subject(s)
Endometritis/veterinary , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/microbiology , Preservation, Biological/veterinary , Sexually Transmitted Diseases, Bacterial/veterinary , Taylorella equigenitalis/physiology , Animals , Endometritis/microbiology , Female , Gram-Negative Bacterial Infections/microbiology , Horses , Preservation, Biological/instrumentation , Preservation, Biological/methods , Refrigeration , Sexually Transmitted Diseases, Bacterial/microbiology , Specimen Handling/instrumentation , Specimen Handling/methods , Specimen Handling/veterinary
11.
Equine Vet J ; 53(5): 990-995, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33174229

ABSTRACT

BACKGROUND: Three horse mares inadvertently inseminated with semen from a Tayorella asinigenitalis-positive Jack donkey developed severe, purulent endometritis whereas two Jenny donkeys mated naturally to the same Jack donkey did not develop clinical signs of infection. OBJECTIVES: To isolate and identify the causative agent. STUDY DESIGN: Case report. METHODS: Endometrial swabs from the infected mares were cultured on selective and non-selective media under aerobic and microaerophilic conditions. Isolates were subjected to Gram staining, oxidase and catalase tests, the Monotayl Latex Agglutination test and PCR to test for both T. equigenitalis and T. asinigenitalis. In vitro antimicrobial susceptibility testing was performed and the bacterial isolate was genotyped using MLST. RESULTS: A new sequence type of T. asinigenitalis was confirmed. MAIN LIMITATIONS: A limited numbers of mares and donkeys are described. CONCLUSIONS: This strain of T. asinigenitalis causes a severe venereal infection in mares but not in Jenny donkeys.


Subject(s)
Gram-Negative Bacterial Infections , Horse Diseases , Taylorella equigenitalis , Animals , Equidae , Female , Gram-Negative Bacterial Infections/veterinary , Horses , Multilocus Sequence Typing/veterinary , Taylorella , Virulence
12.
J Equine Vet Sci ; 95: 103276, 2020 12.
Article in English | MEDLINE | ID: mdl-33276932

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is used for bacterial identification by analyzing the spectra of isolates and comparing them against a database of reference spectra; it is known for its rapidity and accuracy. Although MALDI-TOF MS is used for identification of bacterial isolates from animals, not all animal pathogens are identified correctly. In this study, we used a commercial MALDI-TOF MS identification system to examine 3724 bacterial isolates from horses and their environments. Isolates that could not be identified with MALDI-TOF MS were identified by 16S rRNA gene sequence taxonomic analysis. MALDI-TOF MS could identify 86.2% of the isolates from horses to the species level, showing that this method could be successfully applied for bacterial identification in horses. However, some species known to be equine pathogenic agents including Taylorella equigenitalis and Rhodococcus equi were difficult to identify with MALDI-TOF MS, which might be the result of an inadequate reference database. Some Prevotella, Staphylococcus, and Streptococcus isolates, which could not be identified with either MALDI-TOF MS or 16S rRNA gene sequencing analysis, formed clusters in the 16S rRNA phylogenic tree, and might be unknown species isolated from horses. Adding the spectra of isolates identified in this study to an in-house database might make MALDI-TOF MS a more useful tool for identifying equine isolates.


Subject(s)
Taylorella equigenitalis , Animals , Horses , RNA, Ribosomal, 16S/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary , Staphylococcus
13.
Vet Microbiol ; 242: 108597, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32122601

ABSTRACT

The accurate identification of Taylorella equigenitalis strains is essential to improve worldwide prevention and control strategies for contagious equine metritis (CEM). This study compared 367 worldwide equine strains using multilocus sequence typing according to the geographical origin, isolation year and equine breed. The strains were divided into 49 sequence types (STs), including 10 described for the first time. Three major and three minor clonal complexes (CCs), and 11 singletons, were identified. The genetic heterogeneity was low (0.13 STs/strain) despite the wide diversity of geographical origins (n = 16), isolation years (1977-2018) and equine breeds (n = 18). It was highest outside Europe and in the 1977-1997 period; current major STs and CCs already existed before 1998. Previous data associated the major CC1 with the first CEM outbreaks in 1977-1978 in the United Kingdom, Australia and the United States, and revealed its circulation in France. Our study confirms its circulation in France over a longer period of time (1992-2018) and its distribution in Spain and Germany but not throughout Europe. In addition to CC1, relationships between non-European and European countries were observed only through ST4, ST17 and ST30. Within Europe, several STs emerged with cross-border circulation, in particular ST16 and ST46 from the major complexes CC2 and CC8. These results constitute a baseline for monitoring the spread of CEM outbreaks. A retrospective analysis of a higher number of strains isolated worldwide between 1977 and the early 2000s would be helpful to obtain an exhaustive picture of the original CEM situation.


Subject(s)
Disease Outbreaks/veterinary , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/epidemiology , Horses/microbiology , Spatio-Temporal Analysis , Taylorella equigenitalis/classification , Animals , Australia , Bacterial Typing Techniques , Europe , Gram-Negative Bacterial Infections/epidemiology , Multilocus Sequence Typing , Phylogeny , Retrospective Studies , United States
14.
J Vet Diagn Invest ; 31(5): 792-794, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31423914

ABSTRACT

We report herein the use of crude extracts obtained from samples of Taylorella equigenitalis-infected horses for the purpose of multi-locus sequence typing (MLST). Samples (n = 36) were collected from horses in South Africa from 1996 to 2017: 34 from genital swabs (stored at -20°C for 2-3 y) and 2 from cryopreserved raw semen aliquots (stored at -70°C for 18 y) prior to assay. The MLST assay showed a single sequence type (ST), designated ST4, that supported a point introduction and thus a common source for the South African outbreak of contagious equine metritis.


Subject(s)
Gram-Negative Bacterial Infections/veterinary , Horse Diseases/diagnosis , Multilocus Sequence Typing/veterinary , Reproductive Tract Infections/veterinary , Semen/microbiology , Taylorella equigenitalis/isolation & purification , Animals , DNA, Bacterial/analysis , Female , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Horse Diseases/microbiology , Horses , Male , Reproductive Tract Infections/microbiology , South Africa
15.
J Equine Vet Sci ; 78: 10-13, 2019 07.
Article in English | MEDLINE | ID: mdl-31203971

ABSTRACT

Taylorella equigenitalis can be transmitted during artificial insemination. This report describes clinical T. equigenitalis transmission by cryopreserved stallion semen. T. equigenitalis isolates from a mare's vaginal discharge and semen from the same batch of the cryopreserved semen used for the insemination gave identical API ZYM, antibiotic susceptibility, and multilocus sequence typing results (ST-46); furthermore, the multilocus sequence typing lineage ST-46 is known to circulate in the country of semen collection. These results support the need for strict contagious equine metritis screening of processed semen before use for artificial insemination.


Subject(s)
Endometritis/veterinary , Gram-Negative Bacterial Infections/veterinary , Horse Diseases , Taylorella equigenitalis , Animals , Female , Horses , Humans , Male , Semen
16.
Diagn Microbiol Infect Dis ; 94(4): 326-330, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30928178

ABSTRACT

Misidentification between Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), and Taylorella asinigenitalis is observed by the gold standard culture method. The performance of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for Taylorella species identification was evaluated using 85 T. equigenitalis and 28 T. asinigenitalis strains selected on the basis of multilocus sequence typing data. Seven of the T. equigenitalis and 9 of the T. asinigenitalis strains were used to generate in-house reference spectra to expand the existing commercial Bruker database. Two bacterial incubation times and 3 different sample preparation procedures were compared. Overall, we demonstrated the usefulness of MALDI-TOF MS as a differential diagnostic tool for CEM; however, commercial spectra databases should be expanded with T. asinigenitalis reference spectra to achieve the expected performance. Moreover, direct spotting of 48-h colonies was not only the most efficient protocol but also the easiest to implement in a clinical setting.


Subject(s)
Gram-Negative Bacterial Infections/veterinary , Horse Diseases/microbiology , Taylorella equigenitalis/classification , Taylorella equigenitalis/isolation & purification , Taylorella/classification , Taylorella/isolation & purification , Animals , Databases, Factual , Equidae , Female , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Horse Diseases/diagnosis , Horses , Male , Multilocus Sequence Typing , Phylogeny , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Equine Vet J ; 51(2): 227-230, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29935036

ABSTRACT

BACKGROUND: Sets of genital swabs are routinely taken from horses to screen for the presence of Taylorella equigenitalis, the cause of contagious equine metritis. Typically, two to four different sites are swabbed at a time and tested by culture or PCR. OBJECTIVES: This study explored the feasibility of pooling these swabs for a single PCR test per animal instead of testing each swab individually. STUDY DESIGN: In vitro. METHODS: PCR signal strengths (Ct values) from 149 historical PCR positive genital swabs, together with historical data on the number of swabs in a set expected to be positive, were used to assess the suitability of pooling for screening horses for T. equigenitalis infection in the population at large. Twenty-four sets of four equine genital swabs were tested. The sets were prepared in the laboratory using one or more swabs positive for T. equigenitalis from naturally infected cases. Positive and negative swabs were selected to reflect a typical range of PCR Ct values expected in field cases of T. equigenitalis infection. These pools were tested by an established PCR to assess the impact and suitability of a PCR test on pooled swabs compared to individual swab testing, by comparing the Ct values. RESULTS: Pooling one positive swab with three negative swabs produced a small drop in Ct value but all pools were still clearly positive. MAIN LIMITATIONS: Large numbers of field positive horses are not available, but the proof of concept approach with laboratory prepared pools shows the method is applicable to field cases. CONCLUSIONS: It was concluded that pooling of swabs would confer no appreciable drop in the ability to detect a positive animal compared to individual swab testing; pooling is therefore a suitable alternative to individual swab testing with reduced costs. The Summary is available in Spanish - see Supporting Information.


Subject(s)
Genitalia, Female/microbiology , Genitalia, Male/microbiology , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/diagnosis , Polymerase Chain Reaction/veterinary , Taylorella equigenitalis/isolation & purification , Animals , Female , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Horse Diseases/microbiology , Horses , Male , Polymerase Chain Reaction/methods , Specimen Handling
18.
Vet Rec ; 183(3): 96, 2018 07 21.
Article in English | MEDLINE | ID: mdl-29695449

ABSTRACT

The performance of culture and PCR methods routinely used to diagnose contagious equine metritis (CEM) was evaluated and compared by two interlaboratory trials involving a total of 24 European laboratories, including 22 National Reference Laboratories for CEM. Samples were swab specimens artificially contaminated with bacteria present in the genital tract of Equidae, some with and some without Taylorella equigenitalis, the causative agent of CEM, and T asinigenitalis, responsible for possible misidentification as T equigenitalis Throughout both interlaboratory trials, PCR performed better in terms of specificity and sensitivity than the culture method, supporting the assertion that PCR should be accepted for CEM diagnosis. However, the culture performance during the second interlaboratory trial was better than during the first one, suggesting that the expertise of participants improved. This reveals the advantage of regular interlaboratory trials to constantly improve the expertise of laboratories. It also shows the need to develop new culture media that are more selective and/or better geared to the metabolism of T equigenitalis in order to improve the bacteriological diagnosis of CEM.


Subject(s)
Culture Techniques/veterinary , Endometritis/veterinary , Horse Diseases/diagnosis , Laboratories/organization & administration , Polymerase Chain Reaction/veterinary , Animals , Endometritis/diagnosis , Europe , Female , Horse Diseases/microbiology , Horses , Sensitivity and Specificity , Taylorella equigenitalis/isolation & purification
19.
PLoS One ; 13(3): e0194253, 2018.
Article in English | MEDLINE | ID: mdl-29584782

ABSTRACT

Contagious equine metritis is a disease of worldwide concern in equids. The United States is considered to be free of the disease although sporadic outbreaks have occurred over the last few decades that were thought to be associated with the importation of horses. The objective of this study was to create finished, reference quality genomes that characterize the diversity of Taylorella equigenitalis isolates introduced into the USA, and identify their differences. Five isolates of T. equigenitalis associated with introductions into the USA from unique sources were sequenced using both short and long read chemistries allowing for complete assembly and annotation. These sequences were compared to previously published genomes as well as the short read sequences of the 200 isolates in the National Veterinary Services Laboratories' diagnostic repository to identify unique regions and genes, potential virulence factors, and characterize diversity. The 5 genomes varied in size by up to 100,000 base pairs, but averaged 1.68 megabases. The majority of that diversity in size can be explained by repeat regions and 4 main regions of difference, which ranged in size from 15,000 to 45,000 base pairs. The first region of difference contained mostly hypothetical proteins, the second contained the CRISPR, the third contained primarily hemagglutinin proteins, and the fourth contained primarily segments of a type IV secretion system. As expected and previously reported, little evidence of recombination was found within these genomes. Several additional areas of interest were also observed including a mechanism for streptomycin resistance and other virulence factors. A SNP distance comparison of the T. equigenitalis isolates and Mycobacterium tuberculosis complex (MTBC) showed that relatively, T. equigenitalis was a more diverse species than the entirety of MTBC.


Subject(s)
Genetic Variation , Genome, Bacterial , Genomics , Introduced Species , Taylorella equigenitalis/classification , Taylorella equigenitalis/genetics , Animals , Anti-Bacterial Agents/pharmacology , Computational Biology/methods , Drug Resistance, Bacterial , Female , Genomics/methods , Horse Diseases/microbiology , Horses , Male , Phylogeny , Taylorella equigenitalis/drug effects , United States
20.
Res Vet Sci ; 109: 101-106, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27892857

ABSTRACT

A total of 124 Taylorella (T.) equigenitalis and five T. asinigenitalis field isolates collected between 2002 and 2014 were available for genotyping using REP- (repetitive extragenic palindromic) PCR and PFGE (pulsed-field gel electrophoresis). The study comprised 79 T. equigenitalis field isolates originating from ten defined breeds of German horses and revealed a spectrum of five REP (rep-E1-E4, rep-E3a) and 15 PFGE (TE-A1-A9, TE-B1-B3, TE-C, TE-E1, and TE-E2) genotypes. T. equigenitalis field isolates (n=40) obtained from Austrian Lipizzaner horses were differentiated into three REP (rep-E1, rep-E3a, and rep-E4) and three PFGE genotypes (TE-A2, TE-A5, and TE-D); those isolated from four Austrian Trotters belonged to the REP/PFGE genotype rep-E2/TE-A1. Interestingly, a T. equigenitalis isolate recovered from a Holsteiner stallion living in South Africa revealed the REP/PFGE genotype rep-E1/TE-A5 which was otherwise exclusively present in the majority of Austrian Lipizzaner horses in our study. The type strain included in this study revealed the genotype REP/PFGE rep-E1/TE-F. Six strains of T. asinigenitalis including the type strain were separated into three REP (rep-A1-A3) and six PFGE genotypes (TA-A1, TA-A2, TA-A3, TA-B, TA-C, TA-D). Overall, the generated REP and PFGE genotypes showed a good correlation, whereas REP-PCR proved to be a suitable method for molecular epidemiological screening of T. equigenitalis and T. asinigenitalis isolates that should be differentiated in detail by genotyping using PFGE.


Subject(s)
Genotype , Gram-Negative Bacterial Infections/veterinary , Horse Diseases/genetics , Inverted Repeat Sequences , Taylorella equigenitalis/genetics , Animals , Austria , Electrophoresis, Gel, Pulsed-Field/veterinary , Female , Germany , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/microbiology , Horse Diseases/microbiology , Horses , Male , Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...