Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Food Res Int ; 190: 114568, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945598

ABSTRACT

The food industry is increasingly striving to produce probiotics-based food and beverages using sustainable processes. Therefore, the use of by-products in product development has been investigated by several authors. The aim of this work was to investigate the effects of cocoa bean shell infusion in the production of kombucha through microbiological and genetic characterization. Three beverage formulations were prepared, one based on black tea (KBT), one based on cocoa bean shell infusion (KCS) and one containing 50 % black tea and 50 % cocoa shell infusion (KBL). The infusions were prepared with water, filtered, and sucrose was added. They were then homogenized and a portion of finished kombucha and SCOBY (symbiotic culture of bacteria and yeast) were added. Fermentation took place for 13 days and aliquots were collected every three days for physicochemical and microbial count analyses. Samples from the last day of fermentation were sent for DNA sequencing, extraction and quantification. The results were subjected to analysis of variance and compared by using Tukey's test (p < 0.05). The results show that there was a significant decrease in pH over time in all samples, while the titratable acidity increased, indicating an acidification of the beverage due to the production of organic acids. There was an increase in lactic acid bacterial colonies in all the formulations, which have a probiotic nature and are not always found in this type of beverage. Regarding the taxonomic classification of the samples, microorganisms of the kingdoms Fungi and Bacteria, of the families Saccharomycetaceae and Acetobacteraceae, were found in KBT, KCS and KBL, but with different microbiological compositions, with different amounts of yeasts and bacteria. Therefore, the use of by-products such as cocoa bean shell in the production of kombucha can contribute to the reduction of waste in the food industry and, at the same time, accelerate fermentation increasing the presence of lactic acid bacteria when compared to black tea.


Subject(s)
Cacao , Fermentation , Food Microbiology , Kombucha Tea , Cacao/microbiology , Cacao/chemistry , Kombucha Tea/microbiology , Tea/microbiology , Tea/chemistry , Hydrogen-Ion Concentration , Food Handling/methods , Probiotics
2.
Food Chem ; 455: 139864, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833862

ABSTRACT

Aspergillus cristatus, the predominant microbe of Fuzhuan brick tea (FBT), is responsible for the creation of distinctive golden flower and unique floral aroma of FBT. The present study examined the alterations in chemical and aromatic components of raw dark tea by solid-state fermentation using A. cristatus (MK346334), the strain isolated from FBT. As results, catechins, total ployphenols, total flavonoids, theaflavins, thearubigins and antioxidant activity were significantly reduced after fermentation. Moreover, 112 and 76 volatile substances were identified by HS-SPME-GC-MS and HS-GC-IMS, respectively, primarily composed of alcohols, ketones, esters and aldehydes. Furthermore, the calculation of odor activity values revealed that 19 volatile chemicals, including hexanal, heptanal, linalool and methyl salicylate, were the main contributors to the floral, fungal, woody and minty aroma of dark tea. The present research highlights the pivotal role played by the fermentation with A. cristatus in the chemical composition, antioxidant property and distinctive flavor of dark tea.


Subject(s)
Aspergillus , Camellia sinensis , Electronic Nose , Fermentation , Gas Chromatography-Mass Spectrometry , Odorants , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Aspergillus/metabolism , Aspergillus/chemistry , Odorants/analysis , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/microbiology , Taste , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Tea/chemistry , Tea/metabolism , Tea/microbiology , Antioxidants/metabolism , Antioxidants/chemistry
3.
Food Chem ; 455: 139932, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843719

ABSTRACT

White tea stored for various times have different flavors. However, the mechanism of flavor conversion remains elusive. Flavonoids and amino acids are two typical flavor components in tea. Herein, the contents of 46 flavonoids and 40 amino acids were measured in white tea (Shoumei) stored for 1, 3, 5 and 7 years, respectively. L-tryptophan, L-ornithine and L-theanine contribute to the refreshing taste of Shoumei 1 and 3. Quercetin, rutin and hesperidin contribute to aging charm and grain aroma of Shoumei 5 and 7. 306 bacterial OTUs and 268 fungal OTUs core microbiota existed in all samples. Interestingly, white teas contained higher richness of fungi than bacteria. The correlation analysis showed that the cooperation with bacteria and fungi may result in the flavonoids and amino acids composition changes in white teas during storage. Overall, this study provides new insights into flavor conversion of white tea during storage.


Subject(s)
Amino Acids , Bacteria , Camellia sinensis , Flavonoids , Food Storage , Fungi , Tea , Amino Acids/analysis , Amino Acids/metabolism , Tea/chemistry , Tea/microbiology , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/classification , Flavonoids/analysis , Fungi/metabolism , Camellia sinensis/chemistry , Camellia sinensis/microbiology , Taste , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Flavoring Agents/analysis , Microbiota
4.
Food Res Int ; 186: 114401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729704

ABSTRACT

Fuzhuan brick tea (FBT) fungal fermentation is a key factor in achieving its unique dark color, aroma, and taste. Therefore, it is essential to develop a rapid and reliable method that could assess its quality during FBT fermentation process. This study focused on using electronic nose (e-nose) and spectroscopy combination with sensory evaluations and physicochemical measurements for building machine learning (ML) models of FBT. The results showed that the fused data achieved 100 % accuracy in classifying the FBT fermentation process. The SPA-MLR method was the best prediction model for FBT quality (R2 = 0.95, RMSEP = 0.07, RPD = 4.23), and the fermentation process was visualized. Where, it was effectively detecting the degree of fermentation relationship with the quality characteristics. In conclusion, the current study's novelty comes from the established real-time method that could sensitively detect the unique post-fermentation quality components based on the integration of spectral, and e-nose and ML approaches.


Subject(s)
Electronic Nose , Fermentation , Spectroscopy, Near-Infrared , Taste , Tea , Tea/chemistry , Tea/microbiology , Spectroscopy, Near-Infrared/methods , Odorants/analysis , Chemometrics/methods , Humans , Fungi/metabolism , Machine Learning , Volatile Organic Compounds/analysis
5.
Sci Rep ; 14(1): 11295, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760401

ABSTRACT

Intercropping with Pleurotus ostreatus has been demonstrated to increase the tea yield and alleviate soil acidification in tea gardens. However, the underlying mechanisms remain elusive. Here, high-throughput sequencing and Biolog Eco analysis were performed to identify changes in the community structure and abundance of soil microorganisms in the P. ostreatus intercropped tea garden at different seasons (April and September). The results showed that the soil microbial diversity of rhizosphere decreased in April, while rhizosphere and non-rhizosphere soil microbial diversity increased in September in the P. ostreatus intercropped tea garden. The diversity of tea tree root microorganisms increased in both periods. In addition, the number of fungi associated with organic matter decomposition and nutrient cycling, such as Penicillium, Trichoderma, and Trechispora, was significantly higher in the intercropped group than in the control group. Intercropping with P. ostreatus increased the levels of total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) in the soil. It also improved the content of secondary metabolites, such as tea catechins, and polysaccharides in tea buds. Microbial network analysis showed that Unclassified_o__Helotiales, and Devosia were positively correlated with soil TN and pH, while Lactobacillus, Acidothermus, and Monascus were positively correlated with flavone, AE, and catechins in tea trees. In conclusion, intercropping with P. ostreatus can improve the physical and chemical properties of soil and the composition and structure of microbial communities in tea gardens, which has significant potential for application in monoculture tea gardens with acidic soils.


Subject(s)
Microbiota , Plant Roots , Pleurotus , Rhizosphere , Soil Microbiology , Soil , Tea , Pleurotus/growth & development , Pleurotus/metabolism , Plant Roots/microbiology , Tea/microbiology , Soil/chemistry , Camellia sinensis/microbiology , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Fungi/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Hydrogen-Ion Concentration
6.
Food Chem ; 454: 139658, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810451

ABSTRACT

The distinct quality of Qingzhuan tea is greatly influenced by the bacterial community but was poorly characterized. Therefore, this study investigated the Co-occurrence network and functional profiling of the bacterial community, with special attention paid to core functional bacteria in the industrial pile fermentation. Microbiomics analysis indicated that Klebsiella and Pantoea dominated raw tea leaves, and were rapidly replaced by Pseudomonas in pile fermentation, but substituted mainly by Burkholderia and Saccharopolyspora in final fermented tea. Bacterial taxa were grouped into 7 modules with the dominant in module I, III, and IV, which were involved in flavor formation and biocontrol production. Functional profiling revealed that "penicillin and cephalosporin biosynthesis" increased in pile fermentation. Twelve bacterial genera were identified as core functional bacteria, in which Klebsiella, Pantoea, and Pseudomonas also dominated the pile fermentation. This work would provide theoretical basis for its chemical biofortification and quality improvement by controlling bacterial communities.


Subject(s)
Bacteria , Camellia sinensis , Fermentation , Tea , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Camellia sinensis/microbiology , Camellia sinensis/metabolism , Camellia sinensis/chemistry , Tea/microbiology , Tea/chemistry , Tea/metabolism , Microbiota , Plant Leaves/microbiology , Plant Leaves/chemistry , Plant Leaves/metabolism
7.
Genes (Basel) ; 15(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38790239

ABSTRACT

Fertilization is an essential aspect of tea plantation management that supports a sustainable tea production and drastically influences soil microbial communities. However, few research studies have focused on the differences of microbial communities and the variation in tea quality in response to different fertilization treatments. In this work, the soil fertility, tea quality, and soil microbial communities were investigated in two domestic tea plantations following the application of chemical and organic fertilizers. We determined the content of mineral elements in the soil, including nitrogen, phosphorus, and potassium, and found that the supplementation of chemical fertilizer directly increased the content of mineral elements. However, the application of organic fertilizer significantly improved the accumulation of tea polyphenols and reduced the content of caffeine. Furthermore, amplicon sequencing results showed that the different ways of applying fertilizer have limited effect on the alpha diversity of the microbial community in the soil while the beta diversity was remarkably influenced. This work also suggests that the bacterial community structure and abundance were also relatively constant while the fungal community structure and abundance were dramatically influenced; for example, Chaetomiaceae at the family level, Hypocreaceae at the order level, Trichoderma at the genus level, and Fusarium oxysporum at the species level were predominantly enriched in the tea plantation applying organic fertilizer. Moreover, the bacterial and fungal biomarkers were also analyzed and it was found that Proteobacteria and Gammaproteobacteria (bacteria) and Tremellomycetes (fungi) were potentially characterized as biomarkers in the plantation under organic fertilization. These results provide a valuable basis for the application of organic fertilizer to improve the soil of tea plantations in the future.


Subject(s)
Camellia sinensis , Fertilizers , Microbiota , Soil Microbiology , Tea , Fertilizers/analysis , Tea/microbiology , Camellia sinensis/microbiology , Camellia sinensis/genetics , Soil/chemistry , Bacteria/genetics , Bacteria/classification , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Fungi/genetics , Fungi/classification
8.
Arch Microbiol ; 206(5): 239, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689148

ABSTRACT

Camellia sinensis is an important economic plant grown in southern subtropical hilly areas, especially in China, mainly for the production of tea. Soil acidification is a significant cause of the reduction of yield and quality and continuous cropping obstacles in tea plants. Therefore, chemical and microbial properties of tea growing soils were investigated and phenolic acid-degrading bacteria were isolated from a tea plantation. Chemical and ICP-AES investigations showed that the soils tested were acidic, with pH values of 4.05-5.08, and the pH negatively correlated with K (p < 0.01), Al (p < 0.05), Fe and P. Aluminum was the highest (47-584 mg/kg) nonessential element. Based on high-throughput sequencing, a total of 34 phyla and 583 genera were identified in tea plantation soils. Proteobacteria and Acidobacteria were the main dominant phyla and the highest abundance of Acidobacteria was found in three soils, with nearly 22% for the genus Gp2. Based on the functional abundance values, general function predicts the highest abundance, while the abundance of amino acids and carbon transport and metabolism were higher in soils with pH less than 5. According to Biolog Eco Plate™ assay, the soil microorganisms utilized amino acids well, followed by polymers and phenolic acids. Three strains with good phenolic acid degradation rates were obtained, and they were identified as Bacillus thuringiensis B1, Bacillus amyloliquefaciens B2 and Bacillus subtilis B3, respectively. The three strains significantly relieved the inhibition of peanut germination and growth by ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, cinnamic acid, and mixed acids. Combination of the three isolates showed reduced relief of the four phenolic acids due to the antagonist of B2 against B1 and B3. The three phenolic acid degradation strains isolated from acidic soils display potential in improving the acidification and imbalance in soils of C. sinensis.


Subject(s)
Camellia sinensis , Hydroxybenzoates , Soil Microbiology , Soil , Hydroxybenzoates/metabolism , Soil/chemistry , Hydrogen-Ion Concentration , Camellia sinensis/microbiology , Camellia sinensis/metabolism , China , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Tea/microbiology , Tea/chemistry , Acidobacteria/metabolism , Acidobacteria/genetics , Acidobacteria/isolation & purification
9.
Food Chem ; 450: 139376, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38648695

ABSTRACT

Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".


Subject(s)
Bacteria , Camellia sinensis , Flavoring Agents , Fungi , Metabolomics , Taste , Tea , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Tea/chemistry , Tea/microbiology , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/microbiology , Fungi/metabolism , Odorants/analysis , Humans
10.
Food Chem ; 451: 139452, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38688098

ABSTRACT

Golden-flower fungus (Eurotiwm Cristatum, EC) is widely inoculated in dark tea to endow a typical fungal floral aroma. Recently, Golden Flower White Tea (GFWT), prepared by transplanting EC-mediated fermentation to white tea (Shoumei, SM) to reform the roughness and coarseness, has attracted much attention attributed to coordinated flavor. However, the bio-chemistry reactions between EC and SM, along with origination of composited aroma are still unclear. Thus, the rejected EC, GFWT leaves and stems after EC removal were separated by layer-by-layer stripping following sensory evaluation, volatiles and microstructure analysis to uncover aroma formation mechanism. In GFWT, EC presents fungal flower aroma rather than contribution of extracellular enzymes secreted by fungus in Fu brick tea. Moreover, the short "flowering process" (7 days) endows SM with a stale, jujube, and sweet aroma, which is regarded as the typical characteristic of aged white tea. This inspires EC-mediated fermentation as a promising rapid aging process.


Subject(s)
Camellia sinensis , Fermentation , Odorants , Taste , Volatile Organic Compounds , Odorants/analysis , Camellia sinensis/chemistry , Camellia sinensis/microbiology , Camellia sinensis/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Humans , Tea/chemistry , Tea/microbiology , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Leaves/metabolism
11.
Food Res Int ; 178: 113979, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309920

ABSTRACT

The distinct sensory quality of Qingzhuan tea is mainly formed in pile fermentation by a group of functional microorganisms but the core functional ones was poorly characterized. Therefore, this study investigated the dynamic changes in the fungal community and metabolic profile by integrating microbiomics and metabolomics, and explored the core functional fungi driving the metabolic conversion in the industrial pile fermentation of Qingzhuan tea. Indicated by microbiomics analysis, Aspergillus dominated the entire pile-fermentation process, while Thermoascus, Rasamsonia, and Cylindrium successively abounded in the different stages of the pile fermentation. A total of 50 differentially changed metabolites were identified, with the hydrolysis of galloyl/polymeric catechins, biosynthesis of theabrownins, oxidation of catechins, N-ethyl-2-pyrrolidinone substitution of catechins, and deglycosylation of flavonoid glucosides. Nine fungal genera were identified as core functional fungi, in which Aspergillus linked to the hydrolysis of polymeric catechins and insoluble polysaccharides as well as biosynthesis of theabrownins, while Thermoascus participated in the biosynthesis of theabrownins, deglycosylation of flavonoid glucosides, and N-ethyl-2-pyrrolidinone substitution of catechins. These findings would advance our understanding of the quality formation of Qingzhuan tea and provide a benchmark for precise inoculation for its quality improvement.


Subject(s)
Catechin , Tea , Tea/microbiology , Fermentation , Flavonoids/metabolism , Catechin/analysis , Aspergillus/metabolism , Glucosides
12.
Sci Rep ; 13(1): 9367, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296164

ABSTRACT

A kombucha is a tea and sugar fermented by over sixty kinds of yeasts and bacteria. This symbiotic community produces kombucha mats, which are cellulose-based hydrogels. The kombucha mats can be used as an alternative to animal leather in industry and fashion once they have been dried and cured. Prior to this study, we demonstrated that living kombucha mats display dynamic electrical activity and distinct stimulating responses. For use in organic textiles, cured mats of kombucha are inert. To make kombucha wearables functional, it is necessary to incorporate electrical circuits. We demonstrate that creating electrical conductors on kombucha mats is possible. After repeated bending and stretching, the circuits maintain their functionality. In addition, the abilities and electronic properties of the proposed kombucha, such as being lighter, less expensive, and more flexible than conventional electronic systems, pave the way for their use in a diverse range of applications.


Subject(s)
Bacteria , Yeasts , Animals , Fermentation , Tea/microbiology
13.
Int J Food Microbiol ; 385: 110015, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36403330

ABSTRACT

Despite tea beneficial health effects, there is a substantial risk of tea contamination by harmful pathogens and mycotoxins. A total of 40 tea samples (17 green (raw) tea; 13 black (fermented) tea; 10 herbal infusions or white tea) were purchased from different markets located in Lisbon district during 2020. All products were directly available to consumers either in bulk (13) and or in individual packages (27). Bacterial analysis was performed by inoculating 150 µL of samples extracts in tryptic soy agar (TSA) supplemented with 0.2 % nystatin medium for mesophilic bacteria, and in Violet Red bile agar (VRBA) medium for coliforms (Gram-negative bacteria). Fungal research was performed by spreading 150 µL of samples in malt extract agar (MEA) supplemented with 0.05 % chloramphenicol and in dichloran-glycerol agar (DG18) media. The molecular detection of the Aspergillus sections Fumigati, Nidulantes, Circumdati and Flavi was carried out by Real Time PCR (qPCR). Detection of mycotoxins was performed using high performance liquid chromatograph (HPLC) with a mass spectrometry detector. Azole resistance screening was achieved following the EUCAST guidelines. The highest counts of total bacteria (TSA) were obtained in green raw tea (81.6 %), while for coliform counts (VRBA) were found in samples from black raw tea (96.2 %). The highest fungal counts were obtained in green raw tea (87.7 % MEA; 69.6 % DG18). Aspergillus sp. was the most prevalent genus in all samples on MEA (54.3 %) and on DG18 (56.2 %). In the raw tea 23 of the samples (57.5 %) presented contamination by one to five mycotoxins in the same sample. One Aspergillus section Fumigati isolate from green tea beverage recovered form itraconazole-Sabouraud dextrose agar (SDA) medium, presented itraconazole and posaconazole E-test MICs above MIC90 values. Our findings open further discussion regarding the One-Health approach and the necessary investment in researching biological hazards and azole-resistance associated with the production and consumption of tea (in particular green tea).


Subject(s)
Camellia sinensis , Mycotoxins , One Health , Agar , Aspergillus , Azoles , Bacteria , Culture Media/analysis , Itraconazole/analysis , Mycotoxins/analysis , Tea/microbiology
14.
Nutrients ; 14(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36558393

ABSTRACT

The Western diet can negatively affect the gut microbiota and is associated with metabolic disorders. Kombucha, a tea fermented by a symbiotic culture of bacteria and yeast (SCOBY), is known for its bioactive properties and has become popular in the last years. In this study, we evaluated the effects of regular kombucha consumption on the gut microbiota and on outcomes related to the intestinal health of Wistar rats fed a high-fat high-fructose diet. After eight weeks receiving a standard diet (AIN-93M) (n = 10) or a high-fat and high-fructose diet (HFHF) (n = 30) to induce metabolic disorders, the animals were subdivided into four groups: AIN-93M (n = 10); HFHF (n = 10); GTK (HFHF + green tea kombucha (n = 10); and BTK (HFHF + black tea kombucha; n = 10) for 10 weeks. Although body composition did not differ among the groups, the HFHF diet was associated with metabolic alterations, and stimulated the growth of gram-negative bacteria such as Proteobacteria and Bacteroides. Kombucha ingestion could somewhat modulate the gut microbiota, attenuating the effects of a Western diet by increasing propionate production and favoring the growth of beneficial bacteria, such as Adlercreutzia in the GTK group. Our results suggest that regular kombucha consumption may be beneficial to intestinal health, which can be mostly attributed to its high content and diversity of phenolic compounds.


Subject(s)
Camellia sinensis , Gastrointestinal Microbiome , Rats , Animals , Tea/microbiology , Rats, Wistar , Fructose/pharmacology , Polyphenols/pharmacology , Diet, High-Fat/adverse effects
15.
Int J Food Microbiol ; 382: 109937, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36155261

ABSTRACT

With the aim to reveal the microbial community succession at various temperatures in the fermentation of Qingzhuan tea (QZT), the Illumina NovaSeq sequencing was carried out to analyze bacterial and fungal community structure in tea samples collected from the fermentation set at various temperatures, i.e., 25 °C, 30 °C, 37 °C, 45 °C, 55 °C, and room temperature. The results showed that fermentation temperature profoundly affected the microbial community succession in the QZT fermentation. Microbial richness and community diversity decreased along with the increase of fermentation temperature. Despite the differences between microorganisms and their metabolic types among various temperatures, most bacteria and fungi showed positive correlations at the genera level. Klebsiella, Paenibacillus, Cohnella, and Pantoea were confirmed as the main bacterial genera, and Aspergillus and Cyberlindnera were the main fungal genera in QZT fermentation. The microbial genera (i.e. Aspergillus, Rhizomucor, Thermomyces, Ralstonia, Castellaniella, and Vibrio) were positively correlated with fermentation temperature (P < 0.05), while Klebsiella, Paenibacillus, and Aspergillus had good adaptability at different temperatures. Conversely, Pantoea and Cyberlindnera were only suitable for low temperature (≤37 °C) growth, and Thermomyces was only suitable for high temperature (>37 °C) growth. Aspergillus had a significant positive correlation with tea aroma quality (r = 0.64, p < 0.05). This study would help to understand the formation mechanism of QZT from microflora perspective.


Subject(s)
Microbiota , Aspergillus , Bacteria , Fermentation , Tea/microbiology , Temperature
16.
Int J Food Microbiol ; 382: 109934, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36130465

ABSTRACT

Kombucha is a mildly sweet, slightly acidic fermented beverage, commercially available worldwide, that has attracted increasing consumers' interest due to its potential health benefits. Kombucha is commonly prepared using sugared black or green tea, but also other plant substrates are frequently utilised. Kombucha is obtained by fermentation using a symbiotic culture of bacteria and yeasts, whose composition varies depending on inoculum origin, plant substrates and environmental conditions. After fermentation, kombucha drinks are usually refrigerated at 4 °C, in order to maintain their biological and functional properties. There are no reports on the fate of microbial communities of kombucha in relation to long-term storage time and temperature. Here, for the first time, we monitored the diversity and dynamics of the microbial communities of a kombucha beverage fermented with different herbs during storage at 4 °C and at room temperature, for a period of 90 days, utilising culture-dependent and independent approaches. Moreover, cultivable yeasts and acetic acid bacteria (AAB) were isolated from the beverage, inoculated in pure culture, identified by molecular methods, and yeasts assessed for their functional properties. Total yeast counts were not affected by storage temperature and time, although their community composition changed, as Saccharomyces species significantly decreased after 45 days of storage at room temperature, completely disappearing after 90 days. On the other hand, Dekkera anomala (Brettanomyces anomalus), representing 52 % of the yeast isolates, remained viable up to 90 days at both storage temperatures, and was able to produce high levels of organic acids and exopolysaccharides. Data from DGGE (Denaturing Gradient Gel Electrophoresis) band sequencing confirmed that it was the dominant yeast species in all samples across storage. Other yeast isolates were represented by Saccharomyces and Zygosaccharomyces species. Among AAB, Gluconobacter oxydans, Novacetimonas hansenii and Komagataeibacter saccharivorans represented 46, 36 and 18 % of the isolates, whose occurrence remained unchanged across storage at 4 °C and did not vary up to 20 days of storage at room temperature. This work showed that the combination of culture-dependent and independent approaches is important for obtaining a complete picture of the distinctive core microbial community in kombucha beverages during storage, elucidating its diversity and composition, and preliminary characterizing yeast strains with putative functional activities.


Subject(s)
Acetic Acid , Yeasts , Beverages/microbiology , Fermentation , Tea/microbiology , Temperature
17.
Vopr Pitan ; 91(4): 115-120, 2022.
Article in Russian | MEDLINE | ID: mdl-36136953

ABSTRACT

Kombucha is a beverage made by fermenting sweetened brewed tea (substrate) by symbiotic culture of yeast and bacteria. Numerous researches on optimization of fermentation process, determination of the influence of technological factors on physical and chemical properties, formation of taste and flavor profile of the beverages, prevention of industrial product risks are due to the growing popularity of kombucha in Europe and the USA. Technological features of kombucha production are to optimize conditions for the growth of symbiotic culture and substrate fermentation. The duration of the process depends on the composition of the substrate, the ratio of tea mushroom and substrate, temperature, size and shape of fermentation vessel. The aim of the work was to generalize the results of studying the technological features of the production of fermented kombucha type beverages and to identify the factors that affect the chemical composition and safety of the finished beverages. Material and methods. Analytical research was carried out on the main databases for the keyword "kombucha". The criteria for inclusion of articles in the analysis were research articles with open access and presenting detailed technology of kombucha. Results. The technology of kombucha production is based on fermentation of the substrate and obtaining the base of the beverage with high content of organic acids, mainly acetic acid. In order to ensure microbiological safety the acetic acid concentration in the beverage base must be at least 1.2%. The high organic acid content necessitates the use of only glass or stainless steel fermentation equipment approved for food contact. The fermentation temperature ranges from 18 to 32 °C. The fermentation process is monitored according to basic criteria: temperature, pH value, acidity, acetic acid content, ethyl alcohol content, and residual sugar content. Kombucha production process is connected with microbiological, chemical and physical risks which could appear in case of using low quality raw materials, equipment and consumer packaging made of materials which do not correspond to sanitary norms, violating technological regimes, storage conditions of raw materials and ready production. To prevent hazards affecting the quality and safety of the finished product, it is necessary to control the technological process at all stages of production. Conclusion. Following sanitary-hygienic norms and technological regimes allows producing kombucha with a balanced taste and aroma, which meets the safety requirements for fermented beverages.


Subject(s)
Fermented Beverages , Tea , Acetic Acid/analysis , Beverages/analysis , Beverages/microbiology , Ethanol/analysis , Fermentation , Stainless Steel , Sugars , Tea/microbiology , Technology
18.
Anal Biochem ; 653: 114771, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35660508

ABSTRACT

Penicillium is universal in dark tea, and Penicillium citrinum can produce a kidney toxin called citrinin (CIT). Determining CIT is difficult because of the complexity of the dark tea substrate and the diversity of CIT-producing fungi. Therefore, this study established a real-time PCR (qPCR) detection method for CIT-related synthetic genes (ctnD, orf1, ctnA, pksCT, orf5, orf7, and ctnG) in Liupao tea and determined the content of CIT in samples at different production stages and the toxin-producing abilities of fungi (Aspergillus oryzae, etc.) in Liupao tea. CIT was found in all samples during the pile-fermentation process of Liupao tea, and CIT was detected in two samples during the aging process. The established method demonstrated good sensitivity and specificity in detecting CIT-related synthetic genes. The reaction efficiency was within the preferred range of 100 ± 10%. CIT was not detected or was below the detection limit when the Ct value of one or more related synthetic genes was greater than 33.5. Therefore, the established qPCR method can effectively predict the production of CIT in Liupao tea, and it is applicable to the judgment of whether fungi produce CIT.


Subject(s)
Citrinin , Citrinin/metabolism , Fermentation , Fungi , Real-Time Polymerase Chain Reaction , Tea/microbiology
19.
Int J Food Microbiol ; 377: 109783, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35728418

ABSTRACT

In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.


Subject(s)
Kombucha Tea , Fermentation , Humans , Kombucha Tea/analysis , Microbial Consortia , Saccharomyces cerevisiae , Tea/microbiology
20.
Int J Food Microbiol ; 373: 109715, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35567890

ABSTRACT

The kombucha market is a fast-growing segment in the functional beverage category. The selection of kombuchas on the market varies between the traditional and flavoured kombuchas. Our research aimed to characterise the chemical, microbial, and sensory profiles of the commercial kombuchas. We analysed 16 kombuchas from 6 producers. The dominant metabolites were acetate, lactate, and ethanol, the last of which might put some kombuchas into the alcoholic beverage section in some countries. The metagenomic analyses demonstrated that LAB dominates in green tea, and AAB in black tea kombuchas. The main bacterial species were Komagataeibacter rhaeticus and Lactobacillus ssp, and yeast species Dekkera anomala and Dekkera bruxellensis. The sweet and sour balance correlated with acid concentrations. The free sorting task showed that commercial kombuchas clustered into three main categories "fruity and artificial flavour", herbal and tea notes", and "classical notes". Our research results showed the necessity of the definition of kombucha.


Subject(s)
Camellia sinensis , Tea , Beverages/microbiology , Fermentation , Tea/microbiology , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...