Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.560
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829117

ABSTRACT

Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method. The thin films were deposited on soda lime glass substrates at ambient temperature. The substrates were first washed using water and soap, ultrasonically cleaned with methanol, acetone, ethanol, and deionized water for 10 min, dried with nitrogen gas and hot plate, and finally treated under UV ozone for 10 min to remove residues before the coating process. A sputter target of Bi2Te3 and Sb2Te3 with Argon gas was used, and pre-sputtering was done to clean the target's surface. Then, a few clean substrates were loaded into the sputtering chamber, and the chamber was vacuumed until the pressure reached 2 x 10-5 Torr. The thin films were deposited for 60 min with Argon flow of 4 sccm and RF power at 75 W and 30 W for Bi2Te3 and Sb2Te3, respectively. This method resulted in highly uniform n-type Bi2Te3 and p-type Sb2Te3 thin films.


Subject(s)
Antimony , Bismuth , Tellurium , Bismuth/chemistry , Antimony/chemistry , Tellurium/chemistry , Radio Waves
2.
Anal Chim Acta ; 1310: 342716, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38811135

ABSTRACT

BACKGROUND: Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS: We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 µM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE: Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.


Subject(s)
DNA , Graphite , Lead , Nanospheres , Quantum Dots , Silicon Dioxide , Spectrometry, Fluorescence , Quantum Dots/chemistry , Lead/analysis , Lead/chemistry , Graphite/chemistry , Silicon Dioxide/chemistry , Nanospheres/chemistry , DNA/chemistry , Cadmium Compounds/chemistry , Limit of Detection , Tellurium/chemistry , Aptamers, Nucleotide/chemistry , Fluorescence , Biosensing Techniques/methods
3.
Anal Chem ; 96(19): 7643-7650, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38708712

ABSTRACT

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.


Subject(s)
Cadmium Compounds , Luminescent Measurements , Nanoparticles , Tellurium , Tellurium/chemistry , Immunoassay/methods , Cadmium Compounds/chemistry , Nanoparticles/chemistry , Color , Luminescence , Automation , Humans
4.
Environ Int ; 188: 108735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761428

ABSTRACT

BACKGROUND: People worldwide are routinely exposed to tellurium mainly via dietary ingestion. There has been no study to clarify the contribution of tellurium to blood pressure in humans or animals. METHODS: In this cross-sectional study conducted in a general population of 2592 residents in Japan, the associations of urinary tellurium levels with blood pressure and prevalence of hypertension were investigated. The potential sources of tellurium were also investigated. An interventional study in mice confirmed the effect of tellurium exposure on blood pressure. RESULTS: Linear and logistic regression analyses with consideration of confounders including urinary sodium-potassium ratio showed significant positive associations of urinary tellurium level with prevalence of hypertension and blood pressure. Cereals/beans and vegetables/fruits were determined to be potential dietary sources of tellurium exposure. Intermediary analysis suggested that increased intake of cereals/beans, but not that of vegetables/fruits, is positively associated with the tellurium-mediated risk of hypertension. Correspondingly, the mouse study showed that exposure to a putative human-equivalent dose of tellurium via drinking water increased blood pressure with an elevated level of urinary tellurium. The temporally increased blood pressure was decreased to the normal level by a break of tellurium exposure with a reduced level of urinary tellurium. CONCLUSIONS: The interdisciplinary approach provided the first evidence that tellurium exposure is a potential risk for increase of blood pressure. Since the human urinary tellurium level in this study is comparable with the levels in general populations in other Asian and European countries in previous studies, exposure to tellurium may be a latent universal risk for hypertension.


Subject(s)
Blood Pressure , Hypertension , Tellurium , Animals , Humans , Mice , Hypertension/urine , Hypertension/epidemiology , Hypertension/chemically induced , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Japan , Aged
5.
Anal Methods ; 16(22): 3539-3550, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38780022

ABSTRACT

Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.


Subject(s)
Biosensing Techniques , Dengue Virus , Dengue , Tellurium , Dengue Virus/isolation & purification , Dengue Virus/immunology , Biosensing Techniques/methods , Tellurium/chemistry , Humans , Dengue/diagnosis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Quantum Dots/chemistry , Surface Plasmon Resonance/methods , Cysteine/chemistry , Cadmium Compounds/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/analysis , Immunoassay/methods , Immunoassay/instrumentation , Limit of Detection , Microscopy, Atomic Force
6.
Toxicology ; 505: 153825, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710382

ABSTRACT

Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1ß and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 µmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 µM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 µM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1ß and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.


Subject(s)
Cadmium Compounds , Macrophage Activation , Mitophagy , NF-E2-Related Factor 2 , Quantum Dots , Reactive Oxygen Species , Tellurium , Animals , Tellurium/toxicity , Quantum Dots/toxicity , Mice , Reactive Oxygen Species/metabolism , Cadmium Compounds/toxicity , Mitophagy/drug effects , NF-E2-Related Factor 2/metabolism , RAW 264.7 Cells , Macrophage Activation/drug effects , Male , Macrophages/drug effects , Macrophages/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism
7.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775232

ABSTRACT

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Subject(s)
Brain , Quantum Dots , Quantum Dots/chemistry , Brain/diagnostic imaging , Photons , Animals , Microscopy, Fluorescence, Multiphoton/methods , Cadmium Compounds/chemistry , Sulfides/chemistry , Mice , Zinc Compounds/chemistry , Tellurium/chemistry , Selenium Compounds/chemistry , Humans
8.
J Cardiothorac Surg ; 19(1): 188, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589945

ABSTRACT

Pulmonary embolism is the most common cardiovascular disease after myocardial infarction and stroke. Konstantinides (Eur Heart J 41(4):543-603, 2020) Current guidelines categorize patients with PE as being at low, intermediate, and high risk of early death, with the intermediate-risk group experiencing the greatest uncertainty regarding treatment recommendations. Rapid reduction of the thrombus load by thrombolysis significantly reduces symptoms and decreases mortality, but is accompanied by a high risk of bleeding. Meyer (N Engl J Med 370(15):1402-11, 2014) Mechanical thrombectomy (CDTE) have been proven safe and efficient, yet current ESC guidelines suggest the utilization of catheter interventions only for hypotensive patients with high bleeding risk, failed systemic thrombolysis, and cardiogenic shock or if a patient does not respond to conservative therapy Konstantinides (Eur Heart J 41(4):543-603, 2020). Here, we report a case of an intermediate-risk patient with pulmonary embolism who underwent thrombus aspiration and showed significant improvement in symptoms after treatment.


Subject(s)
Cadmium Compounds , Pulmonary Embolism , Quantum Dots , Thrombosis , Humans , Thrombectomy , Treatment Outcome , Tellurium , Pulmonary Embolism/therapy , Hemorrhage , Thrombolytic Therapy
9.
BMC Med Imaging ; 24(1): 94, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649862

ABSTRACT

BACKGROUND: Large field of view CZT SPECT cameras with a ring geometry are available for some years now. Thanks to their good sensitivity and high temporal resolution, general dynamic SPECT imaging may be performed more easily, without resorting to dedicated systems. To evaluate the dynamic SPECT imaging by such cameras, we have performed an in vivo pilot study to analyze the kidney function of a pig and compare the results to standard dynamic planar imaging by a conventional gamma camera. METHODS: A 7-week-old (12 kg) female Landrace pig was injected with [99mTc]Tc-MAG3 and a 30 min dynamic SPECT acquisition of the kidneys was performed on a CZT ring camera. A fast SPECT/CT was acquired with the same camera immediately after the dynamic SPECT, without moving the pig, and used for attenuation correction and drawing regions of interest. The next day the same pig underwent a dynamic planar imaging of the kidneys by a conventional 2-head gamma camera. The dynamic SPECT acquisition was reconstructed using a MLEM algorithm with up to 20 iterations, with and without attenuation correction. Time-activity curves of the total counts of each kidney were extracted from 2D and 3D dynamic images. An adapted 2-compartment model was derived to fit the data points and extract physiological parameters. Comparison of these parameters was performed between the different reconstructions and acquisitions. RESULTS: Time-activity curves were nicely fitted with the 2-compartment model taking into account the anesthesia and bladder filling. Kidney physiological parameters were found in agreement with literature values. Good agreement of these parameters was obtained for the right kidney between dynamic SPECT and planar imaging. Regional analysis of the kidneys can be performed in the case of the dynamic SPECT imaging and provided good agreement with the whole kidney results. CONCLUSIONS: Dynamic SPECT imaging is feasible with CZT swiveling-detector ring cameras and provides results in agreement with dynamic planar imaging by conventional gamma cameras. Regional analysis of organs uptake and clearance becomes possible. Further studies are required regarding the optimization of acquisition and reconstruction parameters to improve image quality and enable absolute quantification.


Subject(s)
Gamma Cameras , Kidney , Tellurium , Tomography, Emission-Computed, Single-Photon , Zinc , Animals , Pilot Projects , Kidney/diagnostic imaging , Female , Swine , Tomography, Emission-Computed, Single-Photon/instrumentation , Tomography, Emission-Computed, Single-Photon/methods , Cadmium , Technetium Tc 99m Mertiatide , Algorithms , Radiopharmaceuticals
10.
Anal Chim Acta ; 1304: 342579, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637044

ABSTRACT

Plasmon enhanced fluorescent (PEF) with more "hot spots" play a critical role in signal amplified technology to avoid the intrinsic limitation of fluorophore which ascribed to a strong electromagnetic field at the tip structure. However, application of PEF technique to obtain a highly sensitive analysis of medicine was still at a very early stage. Herein, a simple but versatile Ag nanocubes (Agcubes)-based PEF sensor combined with aptamer (Agcubes@SiO2-QDs-Apt) was proposed for highly sensitive detection of berberine hydrochloride (BH). The distance between the plasma Agcubes and the red-emitted CdTe quantum dots (QDs) were regulated by the thickness of silica spacer. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that Agcubes have a higher electromagnetic field than Ag nanospheres. Compared with PEF sensor, signal QDs-modified aptamer without Agcubes (QDs-Apt) showed a 10-fold higher detection limit. The linear range and detection limit of the Agcubes@SiO2-QDs-Apt were 0.1-100 µM, 87.3 nM, respectively. Furthermore, the PEF sensor was applied to analysis BH in the berberine hydrochloride tablets, compound berberine tablet and urine with good recoveries of 98.25-102.05%. These results demonstrated that the prepared PEF sensor has great potential for drug quality control and clinical analysis.


Subject(s)
Aptamers, Nucleotide , Berberine , Cadmium Compounds , Quantum Dots , Fluorescence , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Silicon Dioxide , Tellurium/chemistry , Spectrometry, Fluorescence/methods , Aptamers, Nucleotide/chemistry , Limit of Detection
11.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38587558

ABSTRACT

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Subject(s)
Cadmium Compounds , Quantum Dots , Animals , Milk , Fluorescence , Silicon Dioxide , Tellurium , Estradiol , Coloring Agents
12.
Chemosphere ; 357: 141966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614401

ABSTRACT

Chromium is widely recognized as a significant pollutant discharged into the environment by various industrial activities. The toxicity of this element is dependent on its oxidation state, making speciation analysis crucial for monitoring the quality of environmental water and assessing the potential risks associated with industrial waste. This study introduces a single-well fluorometric sensor that utilizes orange emissive thioglycolic acid stabilized CdTe quantum dots (TGA-QDs) and blue emissive carbon dots (CDs) to detect and differentiate between various chromium species, such as Cr (III) and Cr (VI) (i.e., CrO42- and Cr2O72-). The variations of fluorescence spectra of the proposed probe upon chromium species addition were analyzed using machine learning techniques such as linear discriminant analysis and partial least squares regression as a classification and multivariate calibration technique, respectively. Linear discriminant analysis (LDA) demonstrated exceptional accuracy in differentiating single-component and bicomponent samples. Additionally, the findings from the partial least squares regression (PLSR) showed that the sensor created has strong linearity within the 1.0-100.0, 1.0-100.0, and 0.1-15 µM range for Cr2O72-, CrO42-, and Cr3+, respectively. Furthermore, appropriate detection limits were successfully achieved, which were 2.6, 2.9, and 0.7 µM for Cr2O72-, CrO42-, and Cr3+, respectively. Ultimately, the successful capability of the sensing platform in the identification and quantification of chromium species in environmental water samples provides innovative insights into general speciation analytics.


Subject(s)
Chromium , Machine Learning , Quantum Dots , Water Pollutants, Chemical , Chromium/analysis , Chromium/chemistry , Quantum Dots/chemistry , Water Pollutants, Chemical/analysis , Least-Squares Analysis , Fluorescent Dyes/chemistry , Discriminant Analysis , Tellurium/chemistry , Environmental Monitoring/methods , Cadmium Compounds/chemistry , Spectrometry, Fluorescence/methods , Carbon/chemistry
13.
Int J Biol Macromol ; 268(Pt 1): 131862, 2024 May.
Article in English | MEDLINE | ID: mdl-38670183

ABSTRACT

Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach. HSA-functionalized CdTe QDs have been explored in multiple in vitro sensing and biological applications, namely, (1) sensing, (2) anti-bacterial and (3) anti-cancer properties. Using CdTe-HSA QDs as a fluorescence probe, a simple fluorometric method has been developed for highly sensitive and selective detection of blood marker bilirubin and hazardous Hg2+ ion with a limit of detection (LOD) of 3.38 and 0.53 ng/mL, respectively. CdTe-HSA QDs also acts as a sensor for standard antibiotics, tetracycline and rifampicin with LOD values of 41.34 and 114.99 ng/mL, respectively. Nano-sized biogenic CdTe-HSA QDs have shown promising anti-bacterial activities against both gram-negative, E. coli and gram-positive, E. faecalis strains confirming more effectiveness against E. faecalis strains. The treatment of human cervical cancer cell lines (HeLa cells) with the synthesized QDs reflected the proficient cytotoxic properties of QDs.


Subject(s)
Anti-Bacterial Agents , Biosensing Techniques , Cadmium Compounds , Quantum Dots , Serum Albumin, Human , Tellurium , Quantum Dots/chemistry , Tellurium/chemistry , Humans , Cadmium Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biosensing Techniques/methods , Serum Albumin, Human/chemistry , Escherichia coli/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Bilirubin
14.
NanoImpact ; 34: 100505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579989

ABSTRACT

The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 µM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 µM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1ß proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.


Subject(s)
Cadmium Compounds , Macrophages , Quantum Dots , TOR Serine-Threonine Kinases , Tellurium , Tellurium/pharmacology , Cadmium Compounds/pharmacology , Humans , Macrophages/drug effects , Macrophages/metabolism , TOR Serine-Threonine Kinases/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , THP-1 Cells , Autophagy/drug effects , Cell Differentiation/drug effects , Signal Transduction/drug effects
15.
J Hazard Mater ; 470: 134218, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581878

ABSTRACT

The development of high-performance sensors for doxycycline (DOX) detection is necessary because its residue accumulation will cause serious harm to human health and the environment. Here, a novel tri-emission ratiometric fluorescence sensor was proposed by using "post-mixing" strategy of different emissions fluorescence molecularly imprinted polymers with salicylamide as dummy template (DMIPs). BSA was chosen as assistant functional monomer, and also acted as sensitizers for the aggregation-induced emission (AIE) effect of DOX. The blue-emitting carbon dots and the red-emitting CdTe quantum dots were separately introduced into DMIPs as the response signals. Upon DOX recognition within 2 min, blue and red fluorescence of the tri-emission DMIPs sensor were quenched while green fluorescence of DOX was enhanced, resulting in a wide range of color variations observed over bluish violet-rosered-light pink-orange-yellow-green with a detection limit of 0.061 µM. The sensor possessed highly selective recognition and was successfully applied to detect DOX in complicated real samples. Moreover, with the fluorescent color collection and data processing, the smartphone-assisted visual detection of the sensors showed satisfied sensitivity with low detection limit. This work provides great potential applications for rapid and visual detection of antibiotics in complex substrates.


Subject(s)
Anti-Bacterial Agents , Cadmium Compounds , Doxycycline , Molecular Imprinting , Quantum Dots , Spectrometry, Fluorescence , Tellurium , Doxycycline/analysis , Doxycycline/chemistry , Quantum Dots/chemistry , Tellurium/chemistry , Anti-Bacterial Agents/analysis , Cadmium Compounds/chemistry , Limit of Detection , Fluorescence , Carbon/chemistry , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Smartphone
17.
ACS Appl Mater Interfaces ; 16(12): 14510-14519, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488618

ABSTRACT

Interferon-γ (IFN-γ) release assays (IGRAs) are constrained by the limited diagnostic performance of a single indicator and the excessive Mycobacterium tuberculosis (Mtb) antigen stimulation time. This study presents a simultaneous, homogeneous, rapid, and ultrasensitive fluorescence quantification strategy for IFN-γ and IFN-γ-induced protein 10 (IP-10). This method relies on the high-affinity binding of aptamers to IFN-γ and IP-10, the enzyme-free catalytic hairpin assembly reaction, and the heightened sensitivity of CdTe quantum dots to Ag+ and hairpin structure C-Ag+-C and carbon dots to Hg2+ and hairpin structure T-Hg2+-T. Under optimized conditions, the selectivity of IFN-γ and IP-10 was excellent, with a linear range spanning from 1 to 100 ag/mL and low limits of detection of 0.3 and 0.5 ag/mL, respectively. Clinical practicality was confirmed through testing of 57 clinical samples. The dual-indicator combination detection showed 92.8% specificity and 93.1% sensitivity, with an area under the curve of 0.899, representing an improvement over the single-indicator approach. The Mtb antigen stimulation time was reduced to 8 h for 6/7 clinical samples. These findings underscore the potential of our approach to enhance the efficiency and performance of a tuberculosis (TB) clinical diagnosis.


Subject(s)
Cadmium Compounds , Mercury , Mycobacterium tuberculosis , Nucleic Acids , Quantum Dots , Tuberculosis , Humans , Chemokine CXCL10 , Enzyme-Linked Immunosorbent Assay/methods , Tellurium , Tuberculosis/diagnosis , Interferon-gamma/metabolism , Antigens
18.
Phys Med Biol ; 69(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38471186

ABSTRACT

Following the rapid, but independent, diffusion of x-ray spectral and phase-contrast systems, this work demonstrates the first combination of spectral and phase-contrast computed tomography (CT) obtained by using the edge-illumination technique and a CdTe small-pixel (62µm) spectral detector. A theoretical model is introduced, starting from a standard attenuation-based spectral decomposition and leading to spectral phase-contrast material decomposition. Each step of the model is followed by quantification of accuracy and sensitivity on experimental data of a test phantom containing different solutions with known concentrations. An example of a micro CT application (20µm voxel size) on an iodine-perfusedex vivomurine model is reported. The work demonstrates that spectral-phase contrast combines the advantages of spectral imaging, i.e. high-Zmaterial discrimination capability, and phase-contrast imaging, i.e. soft tissue sensitivity, yielding simultaneously mass density maps of water, calcium, and iodine with an accuracy of 1.1%, 3.5%, and 1.9% (root mean square errors), respectively. Results also show a 9-fold increase in the signal-to-noise ratio of the water channel when compared to standard spectral decomposition. The application to the murine model revealed the potential of the technique in the simultaneous 3D visualization of soft tissue, bone, and vasculature. While being implemented by using a broad spectrum (pink beam) at a synchrotron radiation facility (Elettra, Trieste, Italy), the proposed experimental setup can be readily translated to compact laboratory systems including conventional x-ray tubes.


Subject(s)
Cadmium Compounds , Iodine , Quantum Dots , Mice , Animals , Lighting , Photons , Tellurium , Tomography, X-Ray Computed/methods , Phantoms, Imaging
19.
J Radiol Prot ; 44(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38530296

ABSTRACT

Calibration of 22 gamma camera units was performed at 15 hospitals in southern and western Sweden to estimate137Cs contamination in humans in a supine static geometry, with a new developed calibration protocol and phantom. The minimum detectable activities (MDAs) and the estimated committed effective doses (CEDs) were calculated for each calibration. Generic calibration factors were calculated for five predetermined groups based on the detector type and manufacturer. Group 1 and 2 included NaI-based gamma cameras from General Electrics (GEs) with a crystal thickness of 5/8'' and 3/8'' respectively. Group 3 and 4 included NaI-based gamma cameras from Siemens Healthineers with a crystal thickness of 3/8'', with a similar energy window as the GE NaI-based cameras and a dual window respectively. Group 5 included semiconductor-based gamma cameras from GE with a CdZnTe (CZT) detector. The generic calibration factors were 60.0 cps kBq-1, 52.3 cps kBq-1, 50.3 cps kBq-1, 53.2 cps kBq-1and 48.4 cps kBq-1for group 1, 2, 3, 4, and 5 respectively. The MDAs ranged between 169 and 1130 Bq for all groups, with measurement times of 1-10 min, corresponding to a CED of 4.77-77.6µSv. A dead time analysis was performed for group 1 and suggested a dead time of 3.17µs for137Cs measurements. The dead time analysis showed that a maximum count rate of 232 kcps could be measured in the calibration geometry, corresponding to a CED of 108-263 mSv. It has been shown that semiconductor-based gamma cameras with CZT detectors are feasible for estimating137Cs contamination. The generic calibration factors derived in this study can be used for gamma cameras of the same models in other hospitals, for measurements in the same measurement geometry. This will increase the measurement capability for estimating internal137Cs contamination in the recovery phase following radiological or nuclear events.


Subject(s)
Cadmium , Cesium Radioisotopes , Gamma Cameras , Tellurium , Zinc , Humans , Calibration
20.
Mikrochim Acta ; 191(4): 216, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38517549

ABSTRACT

A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.


Subject(s)
Cadmium Compounds , Nanoparticles , Quantum Dots , Humans , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Tellurium/chemistry , Thrombin , Reproducibility of Results , Electrochemical Techniques , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...