Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.395
Filter
1.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824190

ABSTRACT

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Subject(s)
Pedigree , Shelterin Complex , Telomerase , Telomere-Binding Proteins , Telomere , Humans , Telomere/metabolism , Telomere/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Shelterin Complex/metabolism , Telomerase/genetics , Telomerase/metabolism , Male , Female , Telomere Homeostasis/genetics , Base Sequence , Adult
2.
Medicina (Kaunas) ; 60(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38792881

ABSTRACT

Background and Objectives: Telomere length (TL) undergoes attrition over time, indicating the process of aging, and is linked to a higher risk of diabetes mellitus type 2 (DM-2). This molecular epidemiological study investigated the correlation between leukocyte TL variations and determinants of molecular aging in 121 Pakistani DM-2 patients. Materials and Methods: The ratio of telomere repeats to the SCG copy number was calculated to estimate the TL in each sample through qPCR assays. Results: In this study, smaller mean TLs were observed in 48.8% of males (6.35 ± 0.82 kb), 3.3% of underweight patients (5.77 ± 1.14 kb), 61.2% of patients on regular medication (6.50 ± 0.79 kb), 9.1% with very high stress levels (5.94 ± 0.99 kb), 31.4% of smokers (5.83 ± 0.73 kb), 40.5% of patients with low physical activity (6.47 ± 0.69 kb), 47.9% of hypertensive patients (5.93 ± 0.64 kb), 10.7% of patients with DM-2 for more than 15 years, and 3.3% of patients with a delayed onset of DM-2 (6.00 ± 0.93 kb). Conclusion: This research indicated a significant negative correlation (R2 = 0.143) between TL and the age of DM-2 patients. This study demonstrated that the correlation of telomere length with age in DM-2 patients was also influenced by various age-determining factors, including hypertension and smoking habits, with significant strong (R2 = 0.526) and moderate (R2 = 0.299) correlations, respectively; sex, obesity, the stress level and age at the onset of diabetes with significant weak correlations (R2 = 0.043, 0.041, 0.037, and 0.065, respectively), and no significant correlations of medication routine, rate of physical activity, and the durations of DM-2 with age-adjusted telomere length. These results challenge TL as the sole marker of aging, thus highlighting the need for further research to understand underlying factors and mitigate the effect of aging or premature aging on diabetic patients.


Subject(s)
Aging , Diabetes Mellitus, Type 2 , Telomere , Humans , Diabetes Mellitus, Type 2/genetics , Male , Female , Middle Aged , Adult , Aged , Aging/physiology , Age Factors , Pakistan/epidemiology , Telomere Shortening , Leukocytes/metabolism
3.
Sci Rep ; 14(1): 11711, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777848

ABSTRACT

Achieving successful pregnancy outcomes is a delicate interplay between the maternal and the fetal counterparts. Paternal factors play a critical role in health and disease of offspring. Early pregnancy loss (EPL) is a psychologically devastating condition affecting the quality of life (QOL). Thus, it needs to be managed by a mind body integrated approach like yoga.The prospective single arm exploratory studyincluded male partners of couples experiencing recurrent pregnancy loss (RPL, n = 30), and recurrent implantation failure (RIF, n = 30) and semen samples wereassessed at the beginning and completion of yoga (6 weeks) (WHO 2010).A significant increase in the sperm concentration, motility, decrease in seminal ROS, DFI and increase in relative sperm telomere length was found at the end of yoga. The relative expression of genes critical for early embryonic developmentnormalized towards the levels of controls. WHOQOL-BREF questionnaire scores to assess QOL also showed improvement.Integration of regular practice yoga into our lifestyle may help in improving seminal redox status, genomic integrity, telomere length, normalizing gene expression and QOL, highlighting the need to use an integrated, holistic approach in management of such cases. This is pertinent for decreasing the transmission of mutation and epimutation load to the developing embryo, improving pregnancy outcomes and decreasing genetic and epigenetic disease burden in the next generation.


Subject(s)
Quality of Life , Spermatozoa , Yoga , Humans , Male , Female , Pregnancy , Spermatozoa/metabolism , Adult , Abortion, Habitual/genetics , Abortion, Habitual/psychology , Abortion, Habitual/therapy , Telomere/genetics , Telomere/metabolism , Prospective Studies , Telomere Homeostasis , Sperm Motility/genetics
4.
BMC Genomics ; 25(1): 430, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693501

ABSTRACT

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Subject(s)
Chickens , Genome , Molecular Sequence Annotation , Animals , Chickens/genetics , Base Composition , Telomere/genetics , Chromosomes/genetics , Genomics/methods
5.
Mol Plant Pathol ; 25(5): e13460, 2024 May.
Article in English | MEDLINE | ID: mdl-38695626

ABSTRACT

Reverse genetic approaches are common tools in genomics for elucidating gene functions, involving techniques such as gene deletion followed by screening for aberrant phenotypes. If the generation of gene deletion mutants fails, the question arises whether the failure stems from technical issues or because the gene of interest (GOI) is essential, meaning that the deletion causes lethality. In this report, we introduce a novel method for assessing gene essentiality using the phytopathogenic ascomycete Magnaporthe oryzae. The method is based on the observation that telomere vectors are lost in transformants during cultivation without selection pressure. We tested the hypothesis that essential genes can be identified in deletion mutants co-transformed with a telomere vector. The M. oryzae gene MoPKC, described in literature as essential, was chosen as GOI. Using CRISPR/Cas9 technology transformants with deleted GOI were generated and backed up by a telomere vector carrying a copy of the GOI and conferring fenhexamid resistance. Transformants in which the GOI deletion in the genome was not successful lost the telomere vector on media without fenhexamid. In contrast, transformants with confirmed GOI deletion retained the telomere vector even in absence of fenhexamid selection. In the latter case, the maintenance of the telomere indicates that the GOI is essential for the surveillance of the fungi, as it would have been lost otherwise. The method presented here allows to test for essentiality of genes when no mutants can be obtained from gene deletion approaches, thereby expanding the toolbox for studying gene function in ascomycetes.


Subject(s)
Ascomycota , Genes, Essential , Genetic Vectors , Phenotype , Telomere , Telomere/genetics , Genetic Vectors/genetics , CRISPR-Cas Systems/genetics , Genes, Fungal/genetics , Gene Deletion , Magnaporthe/genetics , Magnaporthe/pathogenicity
6.
Sci Adv ; 10(18): eadl1922, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691604

ABSTRACT

The most common form of facioscapulohumeral dystrophy (FSHD1) is caused by a partial loss of the D4Z4 macrosatellite repeat array in the subtelomeric region of chromosome 4. Patients with FSHD1 typically carry 1 to 10 D4Z4 repeats, whereas nonaffected individuals have 11 to 150 repeats. The ~150-kilobyte subtelomeric region of the chromosome 10q exhibits a ~99% sequence identity to the 4q, including the D4Z4 array. Nevertheless, contractions of the chr10 array do not cause FSHD or any known disease, as in most people D4Z4 array on chr10 is flanked by the nonfunctional polyadenylation signal, not permitting the DUX4 expression. Here, we attempted to correct the FSHD genotype by a CRISPR-Cas9-induced exchange of the chr4 and chr10 subtelomeric regions. We demonstrated that the induced t(4;10) translocation can generate recombinant genotypes translated into improved FSHD phenotype. FSHD myoblasts with the t(4;10) exhibited reduced expression of the DUX4 targets, restored PAX7 target expression, reduced sensitivity to oxidative stress, and improved differentiation capacity.


Subject(s)
Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 4 , Genotype , Homeodomain Proteins , Muscular Dystrophy, Facioscapulohumeral , Phenotype , Telomere , Humans , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 4/genetics , CRISPR-Cas Systems , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Myoblasts/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Telomere/genetics , Telomere/metabolism , Translocation, Genetic
7.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732590

ABSTRACT

Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.


Subject(s)
Aging , Longevity , Nucleotides , Humans , Aged , Female , Male , Aging/physiology , Middle Aged , Double-Blind Method , Dietary Supplements , Geriatric Assessment/methods , DNA Methylation/drug effects , Telomere/drug effects , Leukocytes
8.
Nat Commun ; 15(1): 4322, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773107

ABSTRACT

Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1's functionality.


Subject(s)
Heterochromatin , Histones , Protein Binding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Heterochromatin/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/chemistry , Histones/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Telomere/metabolism , Telomere/genetics , Nuclear Envelope/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Crystallography, X-Ray
9.
Nat Commun ; 15(1): 4417, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789417

ABSTRACT

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Subject(s)
Genome-Wide Association Study , Telomere Homeostasis , Telomere , Humans , Telomere/genetics , Telomere/metabolism , K562 Cells , Telomere Homeostasis/genetics , Polymorphism, Single Nucleotide , Gene Expression Regulation , CRISPR-Cas Systems
10.
Sci Rep ; 14(1): 12162, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38802448

ABSTRACT

Many fisheries exert directional selection on traits such as body size and growth rate. Whether directional selection impacts regions of the genome associated with traits related to growth is unknown. To address this issue, we characterised copy number variation in three regions of the genome associated with cell division, (1) telomeric DNA, (2) loci transcribed as ribosomal RNA (rDNA), and (3) mitochondrial DNA (mtDNA), in three selection lines of zebrafish reared at three temperatures (22 °C, 28 °C, and 34 °C). Selection lines differed in (1) the direction of selection (two lines experienced directional selection for large or small body size) and (2) whether they experienced any directional selection itself. Lines that had experienced directional selection were smaller, had lower growth rate, shorter telomeres, and lower rDNA copy number than the line that experiencing no directional selection. Neither telomere length nor rDNA copy number were affected by temperature. In contrast, mtDNA content increased at elevated temperature but did not differ among selection lines. Though directional selection impacts rDNA and telomere length, direction of such selection did not matter, whereas mtDNA acts as a stress marker for temperature. Future work should examine the consequences of these genomic changes in natural fish stocks.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , RNA, Ribosomal , Selection, Genetic , Telomere , Zebrafish , Animals , Telomere/genetics , Zebrafish/genetics , DNA, Mitochondrial/genetics , RNA, Ribosomal/genetics , Temperature , Telomere Homeostasis , Body Size/genetics
11.
Front Endocrinol (Lausanne) ; 15: 1363468, 2024.
Article in English | MEDLINE | ID: mdl-38808110

ABSTRACT

Social support is vital for mental and physical health and is linked to lower rates of disease and early mortality. Conversely, anti-social behavior can increase mortality risks, both for the initiator and target of the behavior. Chronic stress, which also can increase mortality, may serve as an important link between social behavior and healthy lifespan. There is a growing body of literature in both humans, and model organisms, that chronic social stress can result in more rapid telomere shortening, a measure of biological aging. Here we examine the role of anti-social behavior and social support on physiological markers of stress and aging in the social Japanese quail, Coturnix Japonica. Birds were maintained in groups for their entire lifespan, and longitudinal measures of antisocial behavior (aggressive agonistic behavior), social support (affiliative behavior), baseline corticosterone, change in telomere length, and lifespan were measured. We found quail in affiliative relationships both committed less and were the targets of less aggression compared to birds who were not in these relationships. In addition, birds displaying affiliative behavior had longer telomeres, and longer lifespans. Our work suggests a novel pathway by which social support may buffer against damage at the cellular level resulting in telomere protection and subsequent longer lifespans.


Subject(s)
Aging , Coturnix , Longevity , Social Behavior , Telomere , Animals , Coturnix/physiology , Female , Aging/physiology , Behavior, Animal , Feathers , Telomere Shortening , Aggression/physiology , Corticosterone/blood
12.
Clin Nutr ; 43(6): 1488-1494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718720

ABSTRACT

BACKGROUND & AIMS: Leukocyte telomere length (LTL) is a biomarker of aging that may be influenced by dietary factors. Omega-3 fatty acids (n-3 FA) have been suggested to affect LTL. However, research on this effect has been inconclusive. The aim of the study was to test the hypothesis about the positive effect of n-3 FA on LTL. METHODS: Fat-1 transgenic mice, which can convert omega-6 fatty acids (n-6 FA) to n-3 FA and have elevated levels of endogenous n-3 FA in their tissues, were used to study the effects of n-3 FA on LTL at different ages. Blood samples from 10-month-old wild-type (WT) mice (n = 10) and fat-1 mice (n = 10) and 3-month-old WT mice (n = 5) and fat-1 mice (n = 5) were used to measure relative and absolute LTL. The levels of proteins critical for telomere maintenance were examined by Western blot analysis. RESULTS: Fat-1 transgenic mice had longer leukocyte telomeres than their WT siblings, suggesting a slower rate of age-related telomere shortening in fat-1 mice. In animals aged 10 months, the LTL was significantly longer in fat-1 than in WT mice (mean ± SEM; relative LTL: WT = 1.00 ± 0.09 vs. fat-1: 1.25 ± 0.05, P = 0.031; absolute LTL: WT = 64.41 ± 6.50 vs. fat-1: 78.53 ± 3.86, P = 0.048). The difference in LTL observed in three-month-old mice was insignificant, however the mean LTL was still longer in fat-1 mice than in the WT mice. Fat-1 mice also had abundant levels of two shelterin proteins: TRF1 (27%, P = 0.028) and TRF2 (47%, P = 0.040) (telomeric repeat binding factor 1 and 2) compared to WT animals. CONCLUSION: This study, for the first time in a unique animal model free of dietary confounders, has demonstrated that increased levels of n-3 FA in tissues can reduce telomere attrition. The data presented indicate the possibility of using omega-3 fatty acids to reduce accelerated telomere attrition and, consequently, counteract premature aging and reduce the risk of age-related diseases.


Subject(s)
Aging , Fatty Acids, Omega-3 , Mice, Transgenic , Telomere , Animals , Mice , Leukocytes/metabolism , Male , Telomere Shortening , Fatty Acids, Omega-6 , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Mice, Inbred C57BL , Female , Cadherins , Caenorhabditis elegans Proteins
13.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773655

ABSTRACT

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


Subject(s)
DNA Methylation , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , DNA Methylation/genetics , Female , Male , Prognosis , Middle Aged , Aged , Adult , Rituximab/therapeutic use , Aged, 80 and over , Cyclophosphamide/therapeutic use , Doxorubicin/therapeutic use , Vincristine/therapeutic use , Prednisone/therapeutic use , Telomere/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Telomere Shortening/genetics , Epigenesis, Genetic/genetics , CpG Islands/genetics
14.
Nat Commun ; 15(1): 4295, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769327

ABSTRACT

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.


Subject(s)
Capsaicin , Capsicum , Evolution, Molecular , Genome, Plant , Phylogeny , Telomere , Capsicum/genetics , Capsicum/metabolism , Capsaicin/metabolism , Telomere/genetics , Telomere/metabolism , Fruit/genetics , Fruit/metabolism , Retroelements/genetics , Gene Expression Regulation, Plant
15.
Nat Struct Mol Biol ; 31(5): 791-800, 2024 May.
Article in English | MEDLINE | ID: mdl-38714889

ABSTRACT

The recognition that DNA can be ADP ribosylated provides an unexpected regulatory level of how ADP-ribosylation contributes to genome stability, epigenetics and immunity. Yet, it remains unknown whether DNA ADP-ribosylation (DNA-ADPr) promotes genome stability and how it is regulated. Here, we show that telomeres are subject to DNA-ADPr catalyzed by PARP1 and removed by TARG1. Mechanistically, we show that DNA-ADPr is coupled to lagging telomere DNA strand synthesis, forming at single-stranded DNA present at unligated Okazaki fragments and on the 3' single-stranded telomere overhang. Persistent DNA-linked ADPr, due to TARG1 deficiency, eventually leads to telomere shortening. Furthermore, using the bacterial DNA ADP-ribosyl-transferase toxin to modify DNA at telomeres directly, we demonstrate that unhydrolyzed DNA-linked ADP-ribose compromises telomere replication and telomere integrity. Thus, by identifying telomeres as chromosomal targets of PARP1 and TARG1-regulated DNA-ADPr, whose deregulation compromises telomere replication and integrity, our study highlights and establishes the critical importance of controlling DNA-ADPr turnover for sustained genome stability.


Subject(s)
ADP-Ribosylation , DNA Replication , DNA , Poly (ADP-Ribose) Polymerase-1 , Telomere , Telomere/metabolism , Telomere/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Humans , DNA/metabolism , Animals , Mice , Adenosine Diphosphate Ribose/metabolism , Genomic Instability , Telomere Shortening
16.
J Med Virol ; 96(5): e29665, 2024 May.
Article in English | MEDLINE | ID: mdl-38738582

ABSTRACT

The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.


Subject(s)
Neoplasms , Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Humans , Neoplasms/virology , Neoplasms/genetics , Telomere/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Herpesvirus 4, Human/physiology , RNA/metabolism , RNA/genetics
17.
Sci Total Environ ; 932: 173014, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729362

ABSTRACT

BACKGROUND: Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS: Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS: We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 µg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION: We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.


Subject(s)
DNA, Mitochondrial , Mercury , Telomere , Humans , Child , Mercury/blood , Female , Male , Europe , Environmental Exposure , Methylmercury Compounds , Oxidative Stress
18.
Sci Rep ; 14(1): 11208, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755232

ABSTRACT

The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.


Subject(s)
Telomere , Animals , Bees/genetics , Bees/physiology , Telomere/genetics , Telomere/metabolism , Pupa/growth & development , Pupa/genetics , Female , Male , Telomere Homeostasis , Larva/genetics , Larva/growth & development , Larva/physiology , Diapause/genetics
19.
BMC Bioinformatics ; 25(1): 194, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755561

ABSTRACT

Telomeres are regions of repetitive DNA at the ends of linear chromosomes which protect chromosome ends from degradation. Telomere lengths have been extensively studied in the context of aging and disease, though most studies use average telomere lengths which are of limited utility. We present a method for identifying all 92 telomere alleles from long read sequencing data. Individual telomeres are identified using variant repeats proximal to telomere regions, which are unique across alleles. This high-throughput and high-resolution characterization of telomeres could be foundational to future studies investigating the roles of specific telomeres in aging and disease.


Subject(s)
Alleles , Telomere , Telomere/genetics , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Repetitive Sequences, Nucleic Acid/genetics
20.
Genome Biol ; 25(1): 125, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760657

ABSTRACT

BACKGROUND: Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS: Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS: Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.


Subject(s)
Mendelian Randomization Analysis , Telomere , Humans , Male , Female , Telomere/metabolism , Telomere/genetics , Telomere Shortening , Middle Aged , Leukocytes/metabolism , Aged , Telomere Homeostasis , Life Style , Adult , Body Mass Index
SELECTION OF CITATIONS
SEARCH DETAIL
...