Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928414

ABSTRACT

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Subject(s)
Electrons , Leukocytes , Telomere , Humans , K562 Cells , Leukocytes/radiation effects , Leukocytes/metabolism , Telomere/radiation effects , Telomere/genetics , Telomere/metabolism , Leukemia/genetics , Leukemia/pathology , Leukemia/radiotherapy , Telomere Homeostasis/radiation effects , In Situ Hybridization, Fluorescence , Telomere Shortening/radiation effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation
2.
Cancer ; 130(12): 2215-2223, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38376914

ABSTRACT

BACKGROUND: Telomere length is associated with cancer risk and cancer aggressiveness. Radioactive iodine (RAI) therapy for thyroid cancer has raised concerns for second primary malignancy (SPM) in patients with high cumulative doses. The association between RAI dose and peripheral blood leukocyte telomere length was examined. METHODS: A total of 425 patients were included who underwent total thyroidectomy and were followed up for at least 1 year with or without RAI treatment. The relative telomere length (RTL) of the patients was assessed via a quantitative polymerase chain reaction amplification method. RAI doses were divided into five groups on the basis of cumulative dose, and a comparison was made among these groups. RESULTS: The number of patients with RAI treatment was 287 (67.5%), and the cumulative RAI dose was 3.33 GBq (range, 1.11-131.35 GBq). The mean RTL was significantly shorter in the highest RAI group (>22.2 GBq) compared to both the no-RAI and lower dose groups. The association between RAI dose and RTL was positive in the lower RAI group (1.1-3.7 GBq) and negative in the highest RAI group in both univariate and multivariate analyses. We observed 59 (13.9%) SPMs and 20 (4.7%) mortalities, and RTL did not show a significant risk effect for all-cause, thyroid cancer-specific, or SPM-specific mortality. CONCLUSIONS: In patients with thyroid cancer who underwent total thyroidectomy, peripheral blood leukocyte telomere length exhibited a significant association with cumulative RAI dose higher than 22.2 GBq. These results suggest the possibility of telomere length shortening in patients who undergo high-dose RAI treatment.


Subject(s)
Iodine Radioisotopes , Leukocytes , Telomere , Thyroid Neoplasms , Thyroidectomy , Humans , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/blood , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Iodine Radioisotopes/therapeutic use , Male , Female , Middle Aged , Adult , Leukocytes/radiation effects , Aged , Telomere/radiation effects , Telomere Shortening/radiation effects , Young Adult , Neoplasms, Second Primary/blood , Adolescent
3.
Int J Radiat Biol ; 97(9): 1166-1180, 2021.
Article in English | MEDLINE | ID: mdl-34259614

ABSTRACT

PURPOSE: DNA, the hereditary material of a human cell generally exists as Watson-Crick base paired double-stranded B-DNA. Studies suggest that DNA can also exist in non-B forms, such as four stranded G-quadruplexes (G4 DNA). Recently, our studies revealed that the regions of DNA that can fold into G-quadruplex structures are less sensitive to ionizing radiation (IR) compared to B-DNA. Importantly, we reported that the planar G-quartet of a G4 structure is shielded from radiation induced DNA breaks, while the single- and double-stranded DNA regions remained susceptible. Thus, in the present study, we investigate whether telomeric repeat DNA present at the end of telomere, known to fold into G4 DNA can protect from radiation induced damages including strand breaks, oxidation of purines and bulky adduct formation on DNA. MATERIALS AND METHODS: For plasmid irradiation assay, plasmids containing human telomeric repeat DNA sequence TTAGGG (0.8 kb or 1.8 kb) were irradiated with increasing doses of IR along with appropriate control plasmids and products were resolved on 1% agarose gel. Radioprotection was evaluated based on extent of conversion of supercoiled to nicked or linear forms of the DNA following irradiation. Formation of G-quadruplex structure on supercoiled DNA was evaluated based on circular dichroism (CD) spectroscopy studies. Cleavage of radiation induced oxidative damage and extent of formation of nicks was further evaluated using base and nucleotide excision repair proteins. RESULTS: Results from CD studies showed that the plasmid DNA harboring human telomeric repeats (TTAGGG) can fold into G-quadruplex DNA structures. Further, results showed that human telomeric repeat sequence when present on a plasmid can protect the plasmid DNA against IR induced DNA strand breaks, unlike control plasmids bearing random DNA sequence. CONCLUSIONS: Human telomeric repeat sequence when present on plasmids can fold into G-quadruplex DNA structures, and can protect the DNA against IR induced DNA strand breaks and oxidative damage. These results in conjunction with our previous studies suggest that telomeric repeat sequence imparts less sensitivity to IR and thus telomeres of chromosomes are protected from radiation.


Subject(s)
DNA Adducts/genetics , DNA Adducts/radiation effects , G-Quadruplexes/radiation effects , Gamma Rays/adverse effects , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Telomere/genetics , Base Sequence , Humans , Telomere/radiation effects
4.
Cell Rep ; 33(10): 108435, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33242411

ABSTRACT

Telomeres, repetitive terminal features of chromosomes essential for maintaining genome integrity, shorten with cell division, lifestyle factors and stresses, and environmental exposures, and so they provide a robust biomarker of health, aging, and age-related diseases. We assessed telomere length dynamics (changes over time) in three unrelated astronauts before, during, and after 1-year or 6-month missions aboard the International Space Station (ISS). Similar to our results for National Aeronautics and Space Administration's (NASA's) One-Year Mission twin astronaut (Garrett-Bakelman et al., 2019), significantly longer telomeres were observed during spaceflight for two 6-month mission astronauts. Furthermore, telomere length shortened rapidly after return to Earth for all three crewmembers and, overall, telomere length tended to be shorter after spaceflight than before spaceflight. Consistent with chronic exposure to the space radiation environment, signatures of persistent DNA damage responses were also detected, including mitochondrial and oxidative stress, inflammation, and telomeric and chromosomal aberrations, which together provide potential mechanistic insight into spaceflight-specific telomere elongation.


Subject(s)
DNA Damage/genetics , DNA Repair/physiology , Telomere/genetics , Adult , Astronauts , DNA/genetics , DNA/radiation effects , DNA Breaks, Double-Stranded , DNA Damage/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Extraterrestrial Environment , Female , Humans , Male , Space Flight , Telomere/metabolism , Telomere/radiation effects , Time Factors , Weightlessness/adverse effects
5.
Int J Radiat Biol ; 96(2): 214-219, 2020 02.
Article in English | MEDLINE | ID: mdl-31622124

ABSTRACT

Purpose: The premature chromosome condensation (PCC) technique is used to study exposure to external radiation through the determination of chromosome fragments observed in interphase cells. The presence of large telomeric signals in CHO cells interferes with the detection of PCC fragments and the identification of dicentric chromosomes. We present an improved method for the fusion of G0-lymphocytes with mitotic Akodon cells (few chromosomes and weakly-staining telomeric sequences) to induce PCC in combination with rapid quantification of dicentric chromosomes and centric rings as an alternative to the classical CHO cell fusion technique.Materials and methods: Whole blood from three healthy volunteers was γ-irradiated with 0, 2, or 4 Gy. Following a 24 h incubation post-exposure at 37 °C, chromosome spreads of isolated lymphocytes were prepared by standard PCC procedures using mitotic Akodon cells.Results: The percentage of scorable fusions, measured by telomere/centromere (T/C) staining, for Akodon-induced PCC was higher than that for CHO-induced PCC, irrespective of radiation exposure. Importantly, both techniques gave the same result for biodosimetry evaluation.Conclusion: The mitotic Akodon cell-induced PCC fusion assay, in combination with the scoring of dicentric chromosomes and rings by T/C staining of G0-lymphocytes is a suitable alternative for fast and reliable dose estimation after accidental radiation exposure.


Subject(s)
Chromosomes/radiation effects , Chromosomes/ultrastructure , Lymphocytes/cytology , Mitosis , Adult , Animals , CHO Cells , Centromere/radiation effects , Centromere/ultrastructure , Cricetinae , Cricetulus , Gamma Rays , Healthy Volunteers , Humans , Middle Aged , Radiometry , Rodentia , Telomere/radiation effects , Telomere/ultrastructure , Young Adult
6.
PLoS One ; 14(5): e0216081, 2019.
Article in English | MEDLINE | ID: mdl-31059552

ABSTRACT

A sensitive biodosimetry tool is required for rapid individualized dose estimation and risk assessment in the case of radiological or nuclear mass casualty scenarios to prioritize exposed humans for immediate medical countermeasures to reduce radiation related injuries or morbidity risks. Unlike the conventional Dicentric Chromosome Assay (DCA), which takes about 3-4 days for radiation dose estimation, cell fusion mediated Premature Chromosome Condensation (PCC) technique in G0 lymphocytes can be rapidly performed for radiation dose assessment within 6-8 hrs of sample receipt by alleviating the need for ex vivo lymphocyte proliferation for 48 hrs. Despite this advantage, the PCC technique has not yet been fully exploited for radiation biodosimetry. Realizing the advantage of G0 PCC technique that can be instantaneously applied to unstimulated lymphocytes, we evaluated the utility of G0 PCC technique in detecting ionizing radiation (IR) induced stable and unstable chromosomal aberrations for biodosimetry purposes. Our study demonstrates that PCC coupled with mFISH and mBAND techniques can efficiently detect both numerical and structural chromosome aberrations at the intra- and inter-chromosomal levels in unstimulated T- and B-lymphocytes. Collectively, we demonstrate that the G0 PCC technique has the potential for development as a biodosimetry tool for detecting unstable chromosome aberrations (chromosome fragments and dicentric chromosomes) for early radiation dose estimation and stable chromosome exchange events (translocations) for retrospective monitoring of individualized health risks in unstimulated lymphocytes.


Subject(s)
Chromosome Aberrations/radiation effects , Lymphocytes/radiation effects , Radiometry/methods , Animals , CHO Cells/radiation effects , Cell Fusion , Centromere/radiation effects , Cricetulus , Female , Gamma Rays/adverse effects , Humans , In Situ Hybridization, Fluorescence , Male , Radiation Injuries/diagnosis , Radiation Injuries/genetics , Radiation, Ionizing , Retrospective Studies , Spectral Karyotyping/methods , Telomere/radiation effects , X-Rays/adverse effects
7.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31101499

ABSTRACT

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Glycosylases/genetics , DNA Repair/radiation effects , Genomic Instability/radiation effects , Guanine/analogs & derivatives , Telomere/radiation effects , Cell Division/radiation effects , Cell Line, Tumor , Cell Survival/radiation effects , DNA Damage , DNA Glycosylases/deficiency , DNA Replication/radiation effects , Gene Expression , Guanine/agonists , Guanine/biosynthesis , HeLa Cells , Humans , Light/adverse effects , Micronuclei, Chromosome-Defective/radiation effects , Optogenetics , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoblasts/radiation effects , Oxidative Stress/radiation effects , Singlet Oxygen/agonists , Singlet Oxygen/metabolism , Telomere/metabolism , Telomere Homeostasis/radiation effects
8.
Methods Mol Biol ; 1999: 295-306, 2019.
Article in English | MEDLINE | ID: mdl-31127586

ABSTRACT

Telomere repeats at chromosomal ends are essential for genome stability and sustained cellular proliferation but are susceptible to DNA damage. Repair of damage at telomeres is influenced by numerous factors including telomeric binding proteins, sequence and structure. Ultraviolet (UV) light irradiation induces DNA photoproducts at telomeres that can interfere with telomere maintenance. Here we describe a highly sensitive method for quantifying the formation and removal of UV photoproducts in telomeres isolated from UV irradiated cultured human cells. Damage is detected by immunospot blotting of telomeres with highly specific antibodies against UV photoproducts. This method is adaptable for measuring other types of DNA damage at telomeres as well.


Subject(s)
Genomics/methods , Immunoblotting/methods , Pyrimidine Dimers/analysis , Telomere/radiation effects , Ultraviolet Rays/adverse effects , Antibodies/immunology , Cell Line , DNA/analysis , DNA/genetics , DNA/radiation effects , DNA Damage/radiation effects , DNA Repair , Genomic Instability , Humans , Pyrimidine Dimers/genetics , Pyrimidine Dimers/radiation effects , Telomere/genetics , Telomere/immunology , Telomere-Binding Proteins/immunology
9.
Angew Chem Int Ed Engl ; 58(13): 4334-4338, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30682233

ABSTRACT

The polymorphic nature of G-quadruplex (G4) DNA structures points to a range of potential applications in nanodevices and an opportunity to control G4 in biological settings. Light is an attractive means for the regulation of oligonucleotide structure as it can be delivered with high spatiotemporal precision. However, surprisingly little attention has been devoted towards the development of ligands for G4 that allow photoregulation of G4 folding. We report a novel G4-binding chemotype derived from stiff-stilbene. Surprisingly however, whilst the ligand induces high stabilization in the potassium form of human telomeric DNA, it causes the unfolding of the same G4 sequence in sodium buffer. This effect can be reversed on demand by irradiation with 400 nm light through deactivation of the ligand by photo-oxidation. By fuelling the system with the photolabile ligand, the conformation of G4 DNA was switched five times.


Subject(s)
DNA/chemistry , G-Quadruplexes/radiation effects , Stilbenes/chemistry , Telomere/chemistry , DNA/radiation effects , Humans , Ligands , Stilbenes/radiation effects , Telomere/radiation effects
10.
Health Phys ; 115(1): 102-107, 2018 07.
Article in English | MEDLINE | ID: mdl-29787435

ABSTRACT

Exposure of cells to ionizing radiation induces DNA double-strand breaks. To repair double-strand breaks correctly, cells must distinguish between the ends of chromosomes (telomeres) and DNA double-strand breaks within chromosomes. Double-strand breaks in telomeric DNA may lead to telomere shortening and mutagenesis. Eukaryotic cells repair double-strand breaks primarily by two mechanisms: error-free homologous recombination and error-prone nonhomologous end joining, of which homologous recombination is used in early meiotic prophase I to create recombined haploid gametes by two meiotic cell divisions lacking an intervening S-phase. Genotoxic exposures put meiosis at risk to transmit mutations, and ionizing radiation is known to induce large double-strand break-marking phospho (gamma)-H2AX foci along the cores and ends of mouse meiotic chromosomes. However, it remained unclear through which repair pathway the ionizing radiation-induced telomeric double-strand breaks are repaired in late prophase I spermatocytes. Using male wild-type and nonhomologous end joining-deficient (severe combined immunodeficient) mice, this study investigated the kinetics of in vivo double-strand break formation and repair at telomeres of late prophase I chromosomes up to 12 h after 0.5 Gy of whole-body gamma irradiation. Late pachytene and diplotene spermatocytes revealed overlapping gamma-H2AX and telomere repeat signal foci, indicating telomeric DNA damage. The comparison of double-strand break repair rates at telomeres and internal prophase chromosome sites revealed a more rapid double-strand break repair at wild-type telomeres during the first hour after irradiation. Increased double-strand break foci numbers at nonhomologous end joining-deficient telomeres and chromosomes and a slowed repair rate in this DNA-dependent protein kinase catalytic subunit mutant suggest that the fast repair of double-strand breaks in telomeric DNA repeats during late prophase I is largely mediated by canonical nonhomologous end joining.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA End-Joining Repair , Gamma Rays , Meiotic Prophase I/genetics , Spermatocytes/metabolism , Telomere/genetics , Animals , Cells, Cultured , Male , Meiotic Prophase I/radiation effects , Mice , Mice, SCID , Spermatocytes/radiation effects , Telomere/radiation effects
11.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Article in English | MEDLINE | ID: mdl-29327260

ABSTRACT

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Subject(s)
Cataract/genetics , Radiation Injuries, Experimental/genetics , Animals , Cataract/etiology , Chromosome Aberrations/radiation effects , Dose-Response Relationship, Radiation , Female , Kaplan-Meier Estimate , Male , Mice , Radiation Injuries, Experimental/etiology , Radiation Protection , Risk Assessment , Telomere/radiation effects , Time Factors
12.
J Radiat Res ; 59(suppl_2): ii114-ii120, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29281054

ABSTRACT

Although the vast majority of DNA damage induced by radiation exposure disappears rapidly, some lesions remain in the cell nucleus in very small quantities for days to months. These lesions may cause a considerable threat to an organism and include certain types of DNA double-strand breaks (DSBs) called 'unrepairable DSBs'. Unrepairable DSBs are thought to cause persistent malfunctioning of cells and tissues or cause late effects of radiation, especially the induction of delayed cell death, mutation, senescence, or carcinogenesis. Moreover, the measurement of unrepairable DSBs could potentially be used for retrospective biodosimetry or for identifying individuals at greater risk for developing the adverse effects associated with radiotherapy or chemotherapy. This review summarizes the concept of unrepairable DSBs in the context of persistent repair foci formed at DSBs.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , Radiation , Radiometry , Biomarkers/metabolism , Humans , Telomere/metabolism , Telomere/radiation effects
13.
Cancer ; 123(21): 4207-4214, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28654149

ABSTRACT

BACKGROUND: Large epidemiologic studies have reported the premature onset of age-related conditions, such as ischemic heart disease and diabetes mellitus, in childhood cancer survivors, decades earlier than in their peers. The authors investigated whether young adult survivors of childhood acute lymphoblastic leukemia (ALL) have a biologic phenotype of cellular ageing and chronic inflammation. METHODS: Plasma inflammatory cytokines were measured using a cytometric bead array in 87 asymptomatic young adult survivors of childhood ALL (median age, 25 years; age range, 18-35 years) who attended annual follow-up clinic and compared with healthy, age-matched and sex-matched controls. Leukocyte telomere length (LTL) was measured using Southern blot analysis. RESULTS: Survivors had significant elevation of plasma interleukin-2 (IL-2), IL-10, IL-17a, and high-sensitivity C-reactive protein levels (all P < .05). A raised high-sensitivity C-reactive protein level (>0.8 mg/dL) was related to increased odds of having metabolic syndrome (odds ratio, 7.256; 95% confidence interval, 1.501-35.074). Survivors also had significantly shorter LTL compared with controls (median, 9866 vs 10,392 base pairs; P = .021). Compared with published data, LTL in survivors was similar to that in healthy individuals aged 20 years older. Survivors who received cranial irradiation had shorter LTL compared with those who had not (P = .013). CONCLUSIONS: Asymptomatic young adult survivors of childhood ALL demonstrate a biologic profile of chronic inflammation and telomere attrition, consistent with an early onset of cellular processes that drive accelerated aging. These processes may explain the premature development of age-related chronic conditions in childhood cancer survivors. Understanding their molecular basis may facilitate targeted interventions to disrupt the accelerated aging process and its long-term impact on overall health. Cancer 2017;123:4207-4214. © 2017 American Cancer Society.


Subject(s)
Adult Survivors of Child Adverse Events , C-Reactive Protein/analysis , Cellular Senescence , Inflammation/blood , Interleukins/blood , Phenotype , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Telomere Shortening , Adolescent , Adult , Aging , Biomarkers/blood , Case-Control Studies , Chronic Disease , Cranial Irradiation/adverse effects , Female , Humans , Interleukin-10/blood , Interleukin-17/blood , Interleukin-2/blood , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/radiotherapy , Telomere/radiation effects , Young Adult
14.
Int J Radiat Biol ; 93(10): 1040-1053, 2017 10.
Article in English | MEDLINE | ID: mdl-28649877

ABSTRACT

PURPOSE: Cohorts allowing joint epidemiological and biological analyses are essential for radiation risk assessment. The French Hemangioma Cohort (FHC), studied within the European project EpiRadBio, is one of the rare cohorts suitable for studying the effect of low dose radiation exposure (<100 mGy at organs), with a long-term follow-up. This highly homogeneous cohort consists of healthy individuals belonging to a normal population, except for the presence of skin hemangioma (age at exposure: between 6 months and 3 years of age). Published epidemiological studies have demonstrated that the risk of developing cancer is three times higher in the exposed individuals than in the general population. Here, we present the biobanking of samples (nucleated blood cells, cytogenetic slides of T and B lymphocytes) from the FHC and a primary feasibility study of biomarker analysis focusing on mean telomere length (MTL). Telomeres act as an internal clock, regulating the lifetime of the cell by their shortening during cell division. MTL is thus a biomarker of age. Many in vitro studies have linked MTL and radiosensitivity. The FHC will make it possible to discriminate between the effects of aging and radiation on this biomarker. CONCLUSION: The establishment of a biobank of essentially healthy individuals (369 in total), exposed 40-70 years before, during their early childhood, is a logistical challenge. Even among those who previously participated to a self-questionnaire based study, the response rate was only 30%. The first biomarker to be studied was the MTL to discriminate age effects from those of radiation exposure. MTL showed significant variation within age groups (4-11 kb) in both the exposed and non-exposed groups. MTL within the limited age window (i.e. 40-73 year) examined, showed age-dependent changes of 46 bp/year, consistent with the age-dependent decline of 41 bp/year previously reported. We observed no significant changes in MTL according to the average active bone marrow dose. However, we were able to demonstrate that exposure to radiation causes the loss of cells with, on average, shorter telomeres, by applying a model in which both the heterogeneity of the individual dose received at the bone marrow and the heterogeneity of the intercellular distribution of MTL were taken into account.


Subject(s)
Aging/genetics , Biological Specimen Banks , Hemangioma/genetics , Hemangioma/radiotherapy , Radiation Exposure/adverse effects , Telomere/genetics , Telomere/radiation effects , Adolescent , Adult , Aged , Aging/radiation effects , Bone Marrow/radiation effects , Child , Cohort Studies , Dose-Response Relationship, Radiation , Female , Genetic Markers/genetics , Humans , Male , Middle Aged , Radiation Exposure/analysis , Retrospective Studies
15.
Nucleic Acids Res ; 45(8): 4577-4589, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28334768

ABSTRACT

Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y'-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y'-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu-Sir4 interaction, but Sir2 and Sir3 independent.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/radiation effects , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Sirtuin 2/genetics , Telomere/radiation effects , DNA Damage , DNA, Fungal/genetics , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Kinetics , Nucleosomes/chemistry , Nucleosomes/metabolism , Protein Binding , Protein Folding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2/metabolism , Telomere/chemistry , Telomere/metabolism , Ultraviolet Rays
16.
Mol Cell ; 65(5): 818-831.e5, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28216227

ABSTRACT

Telomeric repeat binding factor 1 (TRF1) is essential to the maintenance of telomere chromatin structure and integrity. However, how telomere integrity is maintained, especially in response to damage, remains poorly understood. Here, we identify Nek7, a member of the Never in Mitosis Gene A (NIMA) kinase family, as a regulator of telomere integrity. Nek7 is recruited to telomeres and stabilizes TRF1 at telomeres after damage in an ATM activation-dependent manner. Nek7 deficiency leads to telomere aberrations, long-lasting γH2AX and 53BP1 foci, and augmented cell death upon oxidative telomeric DNA damage. Mechanistically, Nek7 interacts with and phosphorylates TRF1 on Ser114, which prevents TRF1 from binding to Fbx4, an Skp1-Cul1-F box E3 ligase subunit, thereby alleviating proteasomal degradation of TRF1, leading to a stable association of TRF1 with Tin2 to form a shelterin complex. Our data reveal a mechanism of efficient protection of telomeres from damage through Nek7-dependent stabilization of TRF1.


Subject(s)
DNA Damage , NIMA-Related Kinases/metabolism , Oxidative Stress , Telomere-Binding Proteins/metabolism , Telomere/enzymology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , F-Box Proteins/genetics , F-Box Proteins/metabolism , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , NIMA-Related Kinases/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Stability , RNA Interference , Shelterin Complex , Telomere/genetics , Telomere/radiation effects , Telomere-Binding Proteins/genetics , Time Factors , Transfection , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitination
17.
Radiat Res ; 187(1): 98-106, 2017 01.
Article in English | MEDLINE | ID: mdl-27959588

ABSTRACT

In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.


Subject(s)
Breast Neoplasms/pathology , Exosomes/genetics , Exosomes/radiation effects , Genomic Instability/radiation effects , Mammary Glands, Human/pathology , Telomere/genetics , Telomere/radiation effects , Bystander Effect/radiation effects , Humans , MCF-7 Cells , Time Factors , X-Rays/adverse effects
18.
Urol Oncol ; 35(3): 112.e1-112.e11, 2017 03.
Article in English | MEDLINE | ID: mdl-27956006

ABSTRACT

INTRODUCTION: Accurate assessment and monitoring of the therapeutic efficacy of locally advanced prostate cancer remains a major clinical challenge. Contrary to prostate biopsies, circulating tumor cells (CTCs) are a cellular source repeatedly obtainable by blood sampling and could serve as a surrogate marker for treatment efficacy. In this study, we used size-based filtration to isolate and enumerate CTCs from the blood of 20 patients with high-risk (any one of cT3, Gleason 8-10, or prostate-specific antigen>20ng/ml), nonmetastatic, and treatment-naive prostate cancer before and after androgen deprivation therapy (ADT) and radiation therapy (RT). MATERIALS AND METHODS: We performed 3D telomere-specific quantitative fluorescence in situ hybridization on isolated CTCs to determine 3D telomere profiles for each patient before and throughout the course of both ADT and RT. RESULTS: Based on the distinct 3D telomere signatures of CTC before treatment, patients were divided into 3 groups. ADT and RT resulted in distinct changes in 3D telomere signatures of CTCs, which were unique for each of the 3 patient groups. CONCLUSION: The ability of 3D telomere analysis of CTCs to identify disease heterogeneity among a clinically homogeneous group of patients, which reveals differences in therapeutic responses, provides a new opportunity for better treatment monitoring and management of patients with high-risk prostate cancer.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Genomic Instability/drug effects , Neoplastic Cells, Circulating/drug effects , Prostatic Neoplasms/therapy , Telomere/drug effects , Aged , Androgen Antagonists/therapeutic use , Cell Count/methods , Cell Nucleus/metabolism , Chemoradiotherapy/methods , Female , Genomic Instability/radiation effects , Healthy Volunteers , Humans , Imaging, Three-Dimensional/methods , Immunohistochemistry , In Situ Hybridization, Fluorescence/methods , Kallikreins/blood , Male , Microscopy, Fluorescence , Middle Aged , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/radiation effects , Prostate/pathology , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Telomere/metabolism , Telomere/radiation effects , Telomere/ultrastructure , Treatment Outcome
19.
Radiat Res ; 186(4): 367-376, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27626826

ABSTRACT

In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.


Subject(s)
Nuclear Weapons , Radiation Exposure/adverse effects , Survivors , T-Lymphocytes/radiation effects , Telomere/genetics , Telomere/radiation effects , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Aging/metabolism , Aging/radiation effects , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Young Adult
20.
Radiat Res ; 185(6): 658-67, 2016 06.
Article in English | MEDLINE | ID: mdl-27340887

ABSTRACT

Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.


Subject(s)
Alpha Particles/adverse effects , Gamma Rays/adverse effects , Nuclear Reactors , Occupational Exposure/adverse effects , Telomere/genetics , Telomere/radiation effects , Aged , Aged, 80 and over , Aging/genetics , Dose-Response Relationship, Radiation , Female , Humans , Male , Middle Aged , Russia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...