Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.215
Filter
1.
Sci Rep ; 14(1): 13159, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849401

ABSTRACT

Epigenetic mechanisms contribute to the maintenance of both type 2 diabetes mellitus (T2DM) and psychiatric disorders. Emerging evidence suggests that molecular pathways and neurocognitive performance regulate epigenetic dynamics in these disorders. The current combined and transdiagnostic study investigated whether inflammatory, oxidative stress, adhesion molecule, neurocognitive and functional performance are significant predictors of telomere dynamics in a sample stratified by global DNA methylation levels. Peripheral blood inflammation, oxidative stress and adhesion molecule biomarkers and neurocognitive function were assessed twice over a 1-year period in 80 individuals, including 16 with schizophrenia (SZ), 16 with bipolar disorder (BD), 16 with major depressive disorder (MDD), 15 with T2DM, and 17 healthy controls (HCs). Leukocyte telomere length (LTL) was measured by qRT-PCR using deoxyribonucleic acid (DNA) extracted from peripheral blood samples. A posteriori, individuals were classified based on their global methylation score (GMS) at baseline into two groups: the below-average methylation (BM) and above-average methylation (AM) groups. Hierarchical and k-means clustering methods, mixed one-way analysis of variance and linear regression analyses were performed. Overall, the BM group showed a significantly higher leukocyte telomere length (LTL) than the AM group at both time points (p = 0.02; η2p = 0.06). Moreover, the BM group had significantly lower levels of tumor necrosis factor alpha (TNF-α) (p = 0.03; η2p = 0.06) and C-reactive protein (CRP) (p = 0.03; η2p = 0.06) than the AM group at the 1-year follow-up. Across all participants, the regression models showed that oxidative stress (reactive oxygen species [ROS]) (p = 0.04) and global cognitive score [GCS] (p = 0.02) were significantly negatively associated with LTL, whereas inflammatory (TNF-α) (p = 0.04), adhesion molecule biomarkers (inter cellular adhesion molecule [ICAM]) (p = 0.009), and intelligence quotient [IQ] (p = 0.03) were significantly positively associated with LTL. Moreover, the model predictive power was increased when tested in both groups separately, explaining 15.8% and 28.1% of the LTL variance at the 1-year follow-up for the AM and BM groups, respectively. Heterogeneous DNA methylation in individuals with T2DM and severe mental disorders seems to support the hypothesis that epigenetic dysregulation occurs in a transdiagnostic manner. Our results may help to elucidate the interplay between epigenetics, molecular processes and neurocognitive function in these disorders. DNA methylation and LTL are potential therapeutic targets for transdiagnostic interventions to decrease the risk of comorbidities.


Subject(s)
DNA Methylation , Inflammation , Oxidative Stress , Schizophrenia , Telomere , Humans , Male , Female , Inflammation/blood , Inflammation/genetics , Adult , Middle Aged , Telomere/genetics , Telomere/metabolism , Schizophrenia/genetics , Schizophrenia/blood , Diabetes Mellitus, Type 2/genetics , Biomarkers/blood , Bipolar Disorder/genetics , Bipolar Disorder/blood , Depressive Disorder, Major/genetics , Depressive Disorder, Major/blood , Leukocytes/metabolism , Epigenesis, Genetic , Telomere Homeostasis , Cognition , Case-Control Studies
2.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824190

ABSTRACT

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Subject(s)
Pedigree , Shelterin Complex , Telomerase , Telomere-Binding Proteins , Telomere , Humans , Telomere/metabolism , Telomere/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Shelterin Complex/metabolism , Telomerase/genetics , Telomerase/metabolism , Male , Female , Telomere Homeostasis/genetics , Base Sequence , Adult
3.
Hum Genomics ; 18(1): 56, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831447

ABSTRACT

BACKGROUND: Several lines of evidence suggest that leukocyte telomere length (LTL) can affect the development of prostate cancer (PC). METHODS: Here, we employed single nucleoside polymorphisms (SNPs) as instrumental variables (IVs) for LTL (n = 472,174) and conducted Mendelian randomization analysis to estimate their causal impact on PCs (79,148 patients/61,106 controls and 6311 patients/88,902 controls). RESULTS: Every 1-s.d extension of LTL increased the risk of PCs by 34%. Additionally, the analysis of candidate mediators between LTL and PCs via two-step Mendelian randomization revealed that among the 23 candidates, Alzheimer's disease, liver iron content, sex hormone binding global levels, naive CD4-CD8-T cell% T cell, and circulating leptin levels played substantial mediating roles. There is no robust evidence to support the reverse causal relationship between LTL and the selected mediators of PCs. Adjusting for the former four mediators, rather than adjusting for circulating leptin levels, decreased the impact of LTL on PCs. CONCLUSION: This study provides potential intervention measures for preventing LTL-induced PCs.


Subject(s)
Leukocytes , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Prostatic Neoplasms , Telomere , White People , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Leukocytes/metabolism , Polymorphism, Single Nucleotide/genetics , White People/genetics , Telomere/genetics , Telomere Homeostasis/genetics , Leptin/genetics , Leptin/blood , Genetic Predisposition to Disease , Aged , Middle Aged
4.
Genome Biol ; 25(1): 125, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760657

ABSTRACT

BACKGROUND: Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS: Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS: Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.


Subject(s)
Mendelian Randomization Analysis , Telomere , Humans , Male , Female , Telomere/metabolism , Telomere/genetics , Telomere Shortening , Middle Aged , Leukocytes/metabolism , Aged , Telomere Homeostasis , Life Style , Adult , Body Mass Index
5.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816532

ABSTRACT

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Division , Telomerase , Telomere , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Telomere/genetics , Telomere/metabolism , Cell Division/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , Gene Expression Regulation, Plant , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Proliferation/genetics , Meristem/genetics , Meristem/metabolism
6.
Sci Rep ; 14(1): 11711, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777848

ABSTRACT

Achieving successful pregnancy outcomes is a delicate interplay between the maternal and the fetal counterparts. Paternal factors play a critical role in health and disease of offspring. Early pregnancy loss (EPL) is a psychologically devastating condition affecting the quality of life (QOL). Thus, it needs to be managed by a mind body integrated approach like yoga.The prospective single arm exploratory studyincluded male partners of couples experiencing recurrent pregnancy loss (RPL, n = 30), and recurrent implantation failure (RIF, n = 30) and semen samples wereassessed at the beginning and completion of yoga (6 weeks) (WHO 2010).A significant increase in the sperm concentration, motility, decrease in seminal ROS, DFI and increase in relative sperm telomere length was found at the end of yoga. The relative expression of genes critical for early embryonic developmentnormalized towards the levels of controls. WHOQOL-BREF questionnaire scores to assess QOL also showed improvement.Integration of regular practice yoga into our lifestyle may help in improving seminal redox status, genomic integrity, telomere length, normalizing gene expression and QOL, highlighting the need to use an integrated, holistic approach in management of such cases. This is pertinent for decreasing the transmission of mutation and epimutation load to the developing embryo, improving pregnancy outcomes and decreasing genetic and epigenetic disease burden in the next generation.


Subject(s)
Quality of Life , Spermatozoa , Yoga , Humans , Male , Female , Pregnancy , Spermatozoa/metabolism , Adult , Abortion, Habitual/genetics , Abortion, Habitual/psychology , Abortion, Habitual/therapy , Telomere/genetics , Telomere/metabolism , Prospective Studies , Telomere Homeostasis , Sperm Motility/genetics
7.
Sci Rep ; 14(1): 12162, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38802448

ABSTRACT

Many fisheries exert directional selection on traits such as body size and growth rate. Whether directional selection impacts regions of the genome associated with traits related to growth is unknown. To address this issue, we characterised copy number variation in three regions of the genome associated with cell division, (1) telomeric DNA, (2) loci transcribed as ribosomal RNA (rDNA), and (3) mitochondrial DNA (mtDNA), in three selection lines of zebrafish reared at three temperatures (22 °C, 28 °C, and 34 °C). Selection lines differed in (1) the direction of selection (two lines experienced directional selection for large or small body size) and (2) whether they experienced any directional selection itself. Lines that had experienced directional selection were smaller, had lower growth rate, shorter telomeres, and lower rDNA copy number than the line that experiencing no directional selection. Neither telomere length nor rDNA copy number were affected by temperature. In contrast, mtDNA content increased at elevated temperature but did not differ among selection lines. Though directional selection impacts rDNA and telomere length, direction of such selection did not matter, whereas mtDNA acts as a stress marker for temperature. Future work should examine the consequences of these genomic changes in natural fish stocks.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , RNA, Ribosomal , Selection, Genetic , Telomere , Zebrafish , Animals , Telomere/genetics , Zebrafish/genetics , DNA, Mitochondrial/genetics , RNA, Ribosomal/genetics , Temperature , Telomere Homeostasis , Body Size/genetics
8.
Sci Rep ; 14(1): 11208, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755232

ABSTRACT

The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.


Subject(s)
Telomere , Animals , Bees/genetics , Bees/physiology , Telomere/genetics , Telomere/metabolism , Pupa/growth & development , Pupa/genetics , Female , Male , Telomere Homeostasis , Larva/genetics , Larva/growth & development , Larva/physiology , Diapause/genetics
9.
PLoS One ; 19(5): e0303357, 2024.
Article in English | MEDLINE | ID: mdl-38743757

ABSTRACT

Short telomeres are associated with cardiovascular disease (CVD). We aimed to investigate, if genetically determined telomere-length effects CVD-risk in the Heinz-Nixdorf-Recall study (HNRS) population. We selected 14 single-nucleotide polymorphisms (SNPs) associated with telomere-length (p<10-8) from the literature and after exclusion 9 SNPs were included in the analyses. Additionally, a genetic risk score (GRS) using these 9 SNPs was calculated. Incident CVD was defined as fatal and non-fatal myocardial infarction, stroke, and coronary death. We included 3874 HNRS participants with available genetic data and had no known history of CVD at baseline. Cox proportional-hazards regression was used to test the association between the SNPs/GRS and incident CVD-risk adjusting for common CVD risk-factors. The analyses were further stratified by CVD risk-factors. During follow-up (12.1±4.31 years), 466 participants experienced CVD-events. No association between SNPs/GRS and CVD was observed in the adjusted analyses. However, the GRS, rs10936599, rs2487999 and rs8105767 increase the CVD-risk in current smoker. Few SNPs (rs10936599, rs2487999, and rs7675998) showed an increased CVD-risk, whereas rs10936599, rs677228 and rs4387287 a decreased CVD-risk, in further strata. The results of our study suggest different effects of SNPs/GRS on CVD-risk depending on the CVD risk-factor strata, highlighting the importance of stratified analyses in CVD risk-factors.


Subject(s)
Cardiovascular Diseases , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Telomere , Humans , Cardiovascular Diseases/genetics , Male , Female , Middle Aged , Aged , Telomere/genetics , Risk Factors , Telomere Homeostasis/genetics
10.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696464

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Subject(s)
DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
11.
Nat Commun ; 15(1): 4417, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789417

ABSTRACT

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Subject(s)
Genome-Wide Association Study , Telomere Homeostasis , Telomere , Humans , Telomere/genetics , Telomere/metabolism , K562 Cells , Telomere Homeostasis/genetics , Polymorphism, Single Nucleotide , Gene Expression Regulation , CRISPR-Cas Systems
12.
Am J Hum Genet ; 111(5): 927-938, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701745

ABSTRACT

Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.


Subject(s)
Malaria, Falciparum , Telomere , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Female , Adult , Africa South of the Sahara/epidemiology , Telomere/genetics , Endemic Diseases , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Black People/genetics , Middle Aged , Leukocytes/metabolism , Telomere Homeostasis/genetics , Young Adult , Sub-Saharan African People
13.
Genome Biol Evol ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771124

ABSTRACT

Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.


Subject(s)
Population Density , Selection, Genetic , Telomere , Humans , Telomere/genetics , Animals , Evolution, Molecular , Telomere Homeostasis , Biological Evolution , Aging/genetics
14.
Theriogenology ; 225: 1-8, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38781848

ABSTRACT

An established technology to create cloned animals is through the use of somatic cell nuclear transfer (SCNT), in which reprogramming the somatic cell nucleus to a totipotent state by enucleated oocyte cytoplasm is a necessary process, including telomere length reprogramming. The limitation of this technology; however, is that the live birth rate of offspring produced through SCNT is significantly lower than that of IVF. Whether and how telomere length play a role in the development of cloned animals is not well understood. Only a few studies have evaluated this association in cloned mice, and fewer still in cloned cows. In this study, we investigated the difference in telomere length as well as the abundance of some selected molecules between newborn deceased cloned calves and normal cows of different ages either produced by SCNT or via natural conception, in order to evaluate the association between telomere length and abnormal development of cloned cows. The absolute telomere length and relative mitochondrial DNA (mtDNA) copy number were determined by real-time quantitative PCR (qPCR), telomere related gene abundance by reverse-transcription quantitative PCR (RT-qPCR), and senescence-associated ß-galactosidase (SA-ß-gal) expression by SA-ß-gal staining. The results demonstrate that the newborn deceased SCNT calves had significantly shortened telomere lengths compared to newborn naturally conceived calves and newborn normal SCNT calves. Significantly lower mtDNA copy number, and significantly lower relative abundance of LMNB1 and TERT, higher relative abundance of CDKN1A, and aberrant SA-ß-gal expression were observed in the newborn deceased SCNT calves, consistent with the change in telomere length. These results demonstrate that abnormal telomere shortening, lower mtDNA copy number and abnormal abundance of related genes were specific to newborn deceased SCNT calves, suggesting that abnormally short telomere length may be associated with abnormal development in the cloned calves.


Subject(s)
Animals, Newborn , Cloning, Organism , DNA Copy Number Variations , DNA, Mitochondrial , Telomere , Animals , Cloning, Organism/veterinary , Cattle/genetics , DNA, Mitochondrial/genetics , Telomere/genetics , Nuclear Transfer Techniques/veterinary , Female , Telomere Homeostasis
15.
Elife ; 122024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656297

ABSTRACT

Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker's yeast Saccharomyces cerevisiae, the X- and Y'-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y'-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y'-elements) in telomere maintenance. Deletion of Y'-elements (SY12YΔ), X-elements (SY12XYΔ+Y), or both X- and Y'-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12YΔ, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y'-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.


Subject(s)
Repetitive Sequences, Nucleic Acid , Saccharomyces cerevisiae , Telomerase , Telomere , Saccharomyces cerevisiae/genetics , Telomere/metabolism , Telomere/genetics , Repetitive Sequences, Nucleic Acid/genetics , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion
16.
BMC Res Notes ; 17(1): 120, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679744

ABSTRACT

OBJECTIVE: Breast cancer is the leading cause of cancer incidence and mortality among Indonesian women. A comprehensive investigation is required to enhance the early detection of this disease. Mitochondrial DNA copy number (mtDNA-CN) and relative telomere length (RTL) have been proposed as potential biomarkers for several cancer risks, as they are linked through oxidative stress mechanisms. We conducted a case-control study to examine peripheral blood mtDNA-CN and RTL patterns in Indonesian breast cancer patients (n = 175) and healthy individuals (n = 181). The relative ratios of mtDNA-CN and RTL were determined using quantitative real-time PCR (qPCR). RESULTS: Median values of mtDNA-CN and RTL were 1.62 and 0.70 in healthy subjects and 1.79 and 0.73 in breast cancer patients, respectively. We found a positive association between peripheral blood mtDNA-CN and RTL (p < 0.001). In under 48 years old breast cancer patients, higher peripheral blood mtDNA-CN (mtDNA-CN ≥ 1.73 (median), p = 0.009) and RTL (continuous variable, p = 0.010) were observed, compared to the corresponding healthy subjects. We also found a significantly higher 'High-High' pattern of mtDNA-CN and RTL in breast cancer patients under 48 years old (p = 0.011). Our findings suggest that peripheral blood mtDNA-CN and RTL could serve as additional minimally invasive biomarkers for breast cancer risk evaluation.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , DNA, Mitochondrial , Telomere , Humans , Breast Neoplasms/genetics , Breast Neoplasms/blood , Female , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Indonesia , Middle Aged , Case-Control Studies , Adult , DNA Copy Number Variations/genetics , Telomere/genetics , Telomere Homeostasis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged
17.
Aging (Albany NY) ; 16(8): 7387-7404, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663933

ABSTRACT

Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.


Subject(s)
Aging , DNA Copy Number Variations , DNA, Mitochondrial , Genome-Wide Association Study , Mendelian Randomization Analysis , Telomere , Humans , DNA, Mitochondrial/genetics , Aging/genetics , Telomere/genetics , Biomarkers , Telomere Homeostasis/genetics , Telomere Shortening/genetics
18.
Mutat Res ; 828: 111857, 2024.
Article in English | MEDLINE | ID: mdl-38603928

ABSTRACT

Inhaled anesthetics, such as isoflurane, may cause side effects, including short-term immunosuppression and DNA damage. In contrast, low molecular weight fucoidan (LMF), derived from brown seaweed, exhibits promising immunomodulatory effects. In this study, we determined the effect of isoflurane on telomeres and examined the potential of LMF to ameliorate the harmful effects of isoflurane. Male Lewis rats, the mouse lymphoma cell line YAC-1, and the human nature killer cell line NK-92 MI were exposed to isoflurane. The relative telomere length (T/S) ratio and mRNA expression were determined by quantitative PCR. The viability assay was used to assess cell viability. In vivo, 2% isoflurane exposure, which is a clinically relevant concentration, reduced telomere length, and correlated with exposure frequency and duration. Isoflurane concentrations above 2% shortened YAC-1 telomeres, with minimal impact on cell viability. LMF pre-treatment enhanced NK-92 MI cell survival resulting from isoflurane exposure and exerted superior telomere protection compared with LMF post-treatment. Furthermore, adding LMF during isoflurane exposure resulted in a significant increase in IFN-γ, TNF-α, and IL-10 mRNA compared with the untreated group. LMF protected against isoflurane-induced telomere shortening, enhanced NK cell viability, and modulated cytokine expression, thus mitigating postoperative immune suppression and risk of tumor metastasis.


Subject(s)
Isoflurane , Killer Cells, Natural , Polysaccharides , Animals , Polysaccharides/pharmacology , Isoflurane/pharmacology , Isoflurane/toxicity , Mice , Male , Humans , Rats , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Cell Survival/drug effects , Telomere/drug effects , Rats, Inbred Lew , Molecular Weight , Cell Line, Tumor , Telomere Homeostasis/drug effects
19.
Nucleic Acids Res ; 52(10): 5756-5773, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38587189

ABSTRACT

Dynamic interaction between BRCA2 and telomeric G-quadruplexes (G4) is crucial for maintaining telomere replication homeostasis. Cells lacking BRCA2 display telomeric damage with a subset of these cells bypassing senescence to initiate break-induced replication (BIR) for telomere synthesis. Here we show that the abnormal stabilization of telomeric G4 following BRCA2 depletion leads to telomeric repeat-containing RNA (TERRA)-R-loop accumulation, triggering liquid-liquid phase separation (LLPS) and the assembly of Alternative Lengthening of Telomeres (ALT)-associated promyelocytic leukemia (PML) bodies (APBs). Disruption of R-loops abolishes LLPS and impairs telomere synthesis. Artificial engineering of telomeric LLPS restores telomere synthesis, underscoring the critical role of LLPS in ALT. TERRA-R-loops also recruit Polycomb Repressive Complex 2 (PRC2), leading to tri-methylation of Lys27 on histone H3 (H3K27me3) at telomeres. Half of paraffin-embedded tissue sections from human breast cancers exhibit APBs and telomere length heterogeneity, suggesting that BRCA2 mutations can predispose individuals to ALT-type tumorigenesis. Overall, BRCA2 abrogation disrupts the dynamicity of telomeric G4, producing TERRA-R-loops, finally leading to the assembly of telomeric liquid condensates crucial for ALT. We propose that modulating the dynamicity of telomeric G4 and targeting TERRA-R-loops in telomeric LLPS maintenance may represent effective therapeutic strategies for treating ALT-like cancers with APBs, including those with BRCA2 disruptions.


Subject(s)
BRCA2 Protein , DNA Replication , G-Quadruplexes , Telomere Homeostasis , Telomere , Humans , Telomere/metabolism , Telomere/genetics , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Telomere Homeostasis/genetics , DNA Replication/genetics , Histones/metabolism , Histones/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , R-Loop Structures , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Cell Line, Tumor , Female , Phase Separation
20.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38593805

ABSTRACT

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Subject(s)
DNA Damage , DNA Replication , RecQ Helicases , Telomere Homeostasis , Telomere , RecQ Helicases/metabolism , RecQ Helicases/genetics , Humans , Telomere/metabolism , Telomere/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Bloom Syndrome/enzymology , Bloom Syndrome/pathology , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...