Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588418

ABSTRACT

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Subject(s)
Caenorhabditis elegans Proteins , Telomere-Binding Proteins , Animals , Telomere-Binding Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dimerization , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/metabolism , Protein Binding , Telomere/genetics , Telomere/metabolism , Shelterin Complex , DNA/metabolism , Telomeric Repeat Binding Protein 2 , Mammals/genetics
2.
BMC Cancer ; 23(1): 1101, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953246

ABSTRACT

TAB182 participates in DNA damage repair and radio-/chemosensitivity regulation in various tumors, but its role in tumorigenesis and therapeutic resistance in breast cancer remains unclear. In the current paper, we observed that triple-negative Breast Cancer (TNBC), a highly aggressive type of breast cancer, exhibits a lower expression of TAB182. TAB182 knockdown stimulates the proliferation, migration, and invasion of TNBC cells. Our study first obtained RNA-seq data to explore the cellular functions mediated by TAB182 at the genome level in TNBC cells. A transcriptome analysis and in vitro experiments enabled us to identify that TAB182 downregulation drives the enhanced properties of cancer stem-like cells (CSCs) in TNBC cells. Furthermore, TAB182 deletion contributes to the resistance of cells to olaparib or cisplatin, which can be rescued by silencing GLI2, a gene downstream of cancer stemness-related signaling pathways. Our results reveal a novel function of TAB182 as a potential negative regulator of cancer stem-like properties and drug sensitivity in TNBC cells, suggesting that TAB182 may be a tumor suppressor gene and is associated with increased therapeutic benefits for TNBC patients.


Subject(s)
Neoplastic Stem Cells , Telomeric Repeat Binding Protein 1 , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Telomeric Repeat Binding Protein 1/genetics
3.
Chemistry ; 29(55): e202300970, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37332024

ABSTRACT

In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells. We have shown in vitro within SPR experiments that our modified peptide PEP1 molecule interacts with TRF1, presumably at the site originally occupied by the TIN2 protein. Disturbance of the shelterin complex by studied molecule may not in short term lead to cytotoxic effects, however blocking TRF1-TIN2 resulted in cellular senescence in cellular breast cancer lines used as a cancer model. Thus, our compounds appeared useful as starting model compounds for precise blockage of TRF proteins.


Subject(s)
Shelterin Complex , Telomeric Repeat Binding Protein 2 , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomere/metabolism , Peptides/pharmacology
4.
J Am Chem Soc ; 145(19): 10872-10879, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37141574

ABSTRACT

Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.


Subject(s)
Telomere , Telomeric Repeat Binding Protein 1 , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomere/metabolism , Proteins/genetics , Cell Line , Proteasome Endopeptidase Complex/metabolism
5.
Biophys J ; 122(10): 1822-1832, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37081787

ABSTRACT

Telomeres, complexes of DNA and proteins, protect ends of linear chromosomes. In humans, the two shelterin proteins TRF1 and TIN2, along with cohesin subunit SA1, were proposed to mediate telomere cohesion. Although the ability of the TRF1-TIN2 and TRF1-SA1 systems to compact telomeric DNA by DNA-DNA bridging has been reported, the function of the full ternary TRF1-TIN2-SA1 system has not been explored in detail. Here, we quantify the compaction of nanochannel-stretched DNA by the ternary system, as well as its constituents, and obtain estimates of the relative impact of its constituents and their interactions. We find that TRF1, TIN2, and SA1 work synergistically to cause a compaction of the DNA substrate, and that maximal compaction occurs if all three proteins are present. By altering the sequence with which DNA substrates are exposed to proteins, we establish that compaction by TRF1 and TIN2 can proceed through binding of TRF1 to DNA, followed by compaction as TIN2 recognizes the previously bound TRF1. We further establish that SA1 alone can also lead to a compaction, and that compaction in a combined system of all three proteins can be understood as an additive effect of TRF1-TIN2 and SA1-based compaction. Atomic force microscopy of intermolecular aggregation confirms that a combination of TRF1, TIN2, and SA1 together drive strong intermolecular aggregation as it would be required during chromosome cohesion.


Subject(s)
Telomere , Telomeric Repeat Binding Protein 1 , Humans , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomere/metabolism , Shelterin Complex , DNA
6.
Zool Res ; 44(3): 636-649, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37070589

ABSTRACT

Telomeres are nucleoprotein structures located at the end of each chromosome, which function in terminal protection and genomic stability. Telomeric damage is closely related to replicative senescence in vitro and physical aging in vivo. As relatively long-lived mammals based on body size, bats display unique telomeric patterns, including the up-regulation of genes involved in alternative lengthening of telomeres (ALT), DNA repair, and DNA replication. At present, however, the relevant molecular mechanisms remain unclear. In this study, we performed cross-species comparison and identified EPAS1, a well-defined oxygen response gene, as a key telomeric protector in bat fibroblasts. Bat fibroblasts showed high expression of EPAS1, which enhanced the transcription of shelterin components TRF1 and TRF2, as well as DNA repair factor RAD50, conferring bat fibroblasts with resistance to senescence during long-term consecutive expansion. Based on a human single-cell transcriptome atlas, we found that EPAS1 was predominantly expressed in the human pulmonary endothelial cell subpopulation. Using in vitro-cultured human pulmonary endothelial cells, we confirmed the functional and mechanistic conservation of EPAS1 in telomeric protection between bats and humans. In addition, the EPAS1 agonist M1001 was shown to be a protective compound against bleomycin-induced pulmonary telomeric damage and senescence. In conclusion, we identified a potential mechanism for regulating telomere stability in human pulmonary diseases associated with aging, drawing insights from the longevity of bats.


Subject(s)
Chiroptera , Humans , Animals , Chiroptera/genetics , Telomeric Repeat Binding Protein 2/genetics , Endothelial Cells/metabolism , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomere/genetics , Telomere/metabolism , DNA-Binding Proteins/genetics , Acid Anhydride Hydrolases/genetics
7.
J Biomol Struct Dyn ; 41(24): 14665-14688, 2023.
Article in English | MEDLINE | ID: mdl-36995171

ABSTRACT

By limiting chromosome erosion and end-to-end fusions, telomere integrity is critical for chromosome stability and cell survival. During mitotic cycles or due to environmental stresses, telomeres become progressively shorter and dysfunctional, thus triggering cellular senescence, genomic instability and cell death. To avoid such consequences, the telomerase action, as well as the Shelterin and CST complexes, assure the telomere's protection. Telomeric repeat binding factor 1 (TERF1), which is one of the primary components of the Shelterin complex, binds directly to the telomere and controls its length and function by regulating the telomerase activity. Several reports about TERF1 gene variations have been associated with different diseases, and some of them have linked these variations to male infertility. Hence, this paper can be advantageous to investigate the association between the missense variants of the TERF1 gene and the susceptibility to male infertility. The stepwise prediction of SNPs pathogenicity followed in this study was based on stability and conservation analysis, post-translational modification, secondary structure, functional interaction prediction, binding energy evaluation and finally molecular dynamic simulation. Prediction matching among the tools revealed that out of 18 SNPs, only four (rs1486407144, rs1259659354, rs1257022048 and rs1320180267) were predicted as the most damaging and highly deleterious SNPs affecting the TERF1 protein and its molecular dynamics when interacting with the TERB1 protein by influencing the function, structural stability, flexibility and compaction of the overall complex. Interestingly, these polymorphisms should be considered during genetic screening so they can be used effectively as genetic biomarkers for male infertility diagnosis.Communicated by Ramaswamy H. Sarma.


Subject(s)
Infertility, Male , Telomerase , Humans , Male , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Molecular Dynamics Simulation , Telomerase/genetics , Telomerase/metabolism , Polymorphism, Single Nucleotide/genetics , Telomere-Binding Proteins/genetics , Telomere/metabolism , Infertility, Male/genetics , Shelterin Complex
8.
Stem Cell Res ; 68: 103045, 2023 04.
Article in English | MEDLINE | ID: mdl-36805322

ABSTRACT

Telomeric repeat binding factor 1 (TRF1) plays an essential role in maintaining telomere length. Here, we established TRF1-knockout human pluripotent stem cells (hPSCs; hTRF1-KO) using the CRISPR/Cas9 technology. The hTRF1-KO cell lines expressed pluripotency markers and demonstrated a normal karyotype (46, XX) and DNA profile. In addition, hTRF1-KOcells spontaneously differentiated into all three germ layers in vitro. Thus, these cell lines could be useful models in various research fields.


Subject(s)
Human Embryonic Stem Cells , Telomere , Humans , Telomere/genetics , Telomere/metabolism , CRISPR-Cas Systems/genetics , Human Embryonic Stem Cells/metabolism , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Cell Line
9.
Cells ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36497103

ABSTRACT

Telomere shortening is well known to be associated with ageing. Age is the most decisive risk factor for age-related macular degeneration (AMD) development. The older the individual, the higher the AMD risk. For this reason, we aimed to find any associations between telomere length, distribution of genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TRF2, and TNKS2), and serum TERF-1 and TERF2 levels on AMD development. METHODS: Our study enrolled 342 patients with AMD and 177 healthy controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using the real-time polymerase chain reaction method. Serum TERF-1 and TERF2 levels were measured by enzymatic immunoassay (ELISA). RESULTS: We found longer telomeres in early AMD patients compared to the control group. Additionally, we revealed that minor allele C at TRF1 rs10107605 was associated with decreases the odds of both early and exudative AMD. Each minor allele G at TRF2 rs251796 and TRF1 rs1545827 C/T genotype and C/T+T/T genotypes, compared to the C/C genotype, increases the odds of having shorter telomeres. Furthermore, we found elevated TERF1 serum levels in the early AMD group compared to the control group. CONCLUSIONS: In conclusion, these results suggest that relative leukocyte telomere length and genetic variants of TRF1 and TRF2 play a role in AMD development. Additionally, TERF1 is likely to be associated with early AMD.


Subject(s)
Macular Degeneration , Tankyrases , Telomerase , Humans , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomerase/genetics , Telomerase/metabolism , Leukocytes/metabolism , Macular Degeneration/genetics , DNA
10.
Nat Commun ; 13(1): 5656, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202783

ABSTRACT

TRF1 is an essential component of the telomeric protective complex or shelterin. We previously showed that dysfunctional telomeres in alveolar type II (ATII) cells lead to interstitial lung fibrosis. Here, we study the lung pathologies upon telomere dysfunction in fibroblasts, club and basal cells. TRF1 deficiency in lung fibroblasts, club and basal cells induced telomeric damage, proliferative defects, cell cycle arrest and apoptosis. While Trf1 deletion in fibroblasts does not spontaneously lead to lung pathologies, upon bleomycin challenge exacerbates lung fibrosis. Unlike in females, Trf1 deletion in club and basal cells from male mice resulted in lung inflammation and airway remodeling. Here, we show that depletion of TRF1 in fibroblasts, Club and basal cells does not lead to interstitial lung fibrosis, underscoring ATII cells as the relevant cell type for the origin of interstitial fibrosis. Our findings contribute to a better understanding of proper telomere protection in lung tissue homeostasis.


Subject(s)
Pulmonary Fibrosis , Telomeric Repeat Binding Protein 1 , Animals , Bleomycin/toxicity , Female , Fibroblasts/metabolism , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Telomere/metabolism , Telomeric Repeat Binding Protein 1/genetics
11.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142374

ABSTRACT

RNA-protein interactions drive key cellular pathways such as protein translation, nuclear organization and genome stability maintenance. The human telomeric protein TRF2 binds to the long noncoding RNA TERRA through independent domains, including its N-terminal B domain. We previously demonstrated that TRF2 B domain binding to TERRA supports invasion of TERRA into telomeric double stranded DNA, leading to the formation of telomeric RNA:DNA hybrids. The other telomeric protein TRF1, which also binds to TERRA, suppresses this TRF2-associated activity by preventing TERRA-B domain interactions. Herein, we show that the binding of both TRF1 and TRF2 to TERRA depends on the ability of the latter to form G-quadruplex structures. Moreover, a cluster of arginines within the B domain is largely responsible for its binding to TERRA. On the other side, a patch of glutamates within the N-terminal A domain of TRF1 mainly accounts for the inhibition of TERRA-B domain complex formation. Finally, mouse TRF2 B domain binds to TERRA, similarly to its human counterpart, while mouse TRF1 A domain lacks the inhibitory activity. Our data shed further light on the complex crosstalk between telomeric proteins and RNAs and suggest a lack of functional conservation in mouse.


Subject(s)
RNA, Long Noncoding , Telomeric Repeat Binding Protein 1 , Telomeric Repeat Binding Protein 2 , Animals , DNA/chemistry , Glutamates , Humans , Mice , RNA, Long Noncoding/genetics , Telomere/genetics , Telomere/metabolism , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/genetics
12.
Reprod Biomed Online ; 44(6): 1090-1100, 2022 06.
Article in English | MEDLINE | ID: mdl-35397997

ABSTRACT

RESEARCH QUESTION: How do age and normo- or oligoasthenozoospermia affect telomere length dynamics in spermatozoa and blood? DESIGN: Sperm and blood samples were collected from a cohort of 37 men aged 25 and under and 40 men aged 40 and over, with either normozoospermia (NZ) or oligoasthenozoospermia (OAZ). Telomere length was evaluated using quantitative fluorescence in-situ hybridization. Telomerase mRNA (TERC and TERT) and shelterin (TRF1) gene expression were analysed using quantitative real-time polymerase chain reaction. TRF1 protein immunoreactivity was also evaluated using immunofluorescence. RESULTS: Mean sperm telomere length (STL) increased with age in the NZ group; older NZ men accumulated the longest telomeres (P < 0.001). In peripheral blood mononuclear cells (PBMC), mean telomere length decreased with age in NZ groups, although not reaching statistical significance. Interestingly, the younger OAZ group had the shortest mean telomere length (versus young NZ, P = 0.0081; versus old NZ, P = 0.0116; versus old OAZ, P = 0.0009) and accumulated the highest percentage of short telomeres compared with the other groups (overall P = 0.0017). Analysis of TERC and TERT mRNA expression in spermatozoa and PBMC did not show significant differences among groups. Statistically significant positive correlations were found between STL and seminal parameters in younger NZ men (P = 0.009 for sperm count and P = 0.007 for total progressive motility). Protein immunoreactivity of TRF1 in blood was not significantly different in all groups analysed. CONCLUSIONS: The OAZ group did not show the increase of STL with age that is seen in NZ individuals, suggesting that telomere length elongation mechanisms fail in OAZ patients. In PBMC, younger OAZ individuals showed significantly shorter mean telomere length, suggesting that this parameter could be a good biomarker of OAZ in younger OAZ patients. Telomerase gene and TRF1 mRNA expression and TRF1 protein immunoreactivity did not differ significantly between groups, and so these factors cannot be used as OAZ biomarkers.


Subject(s)
Telomerase , Telomeric Repeat Binding Protein 1 , Adult , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , RNA, Messenger/genetics , Spermatozoa/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
13.
J Biomol Struct Dyn ; 40(19): 9053-9066, 2022.
Article in English | MEDLINE | ID: mdl-33982644

ABSTRACT

Telomeric repeat binding factor 1 (TRF1) is one of the major components of the shelterin complex. It directly binds to the telomere and controls its function by regulating the telomerase acting on it. Several variations are reported in the TRF1 gene; some are associated with variety of diseases. Here, we have studied the structural and functional significance of these variations in the TRFH domain of TRF1. We have used cutting-edge computational methods such as SIFT, PolyPhen-2, PROVEAN, Mutation Assessor, mCSM, SDM, STRUM, MAESTRO, and DUET to predict the effects of 124 mutations in the TRFH domain of TRF1. Out of 124 mutations, we have identified 12 deleterious mutations with high confidence based on their prediction. To see the impact of the finally selected mutations on the structure and stability of TRF1, all-atom molecular dynamics (MD) simulations on TRF1-Wild type (WT), L79R and P150R mutants for 200 ns were carried out. A significant conformational change in the structure of the P150R mutant was observed. Our integrated computational study provides a comprehensive understanding of structural changes in TRF1 incurred due to the mutations and subsequent function, leading to the progression of many diseases.Communicated by Ramaswamy H. Sarma.


Subject(s)
Telomeric Repeat Binding Protein 1 , Telomeric Repeat Binding Protein 2 , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/metabolism , Telomere/genetics , Telomere/metabolism , Molecular Dynamics Simulation , Mutation
14.
Front Immunol ; 12: 696486, 2021.
Article in English | MEDLINE | ID: mdl-34745087

ABSTRACT

Oxidative stress, a well-known cause of stress-induced premature senescence (SIPS), is increased in patients with calcium oxalate (CaOx) kidney stones (KS). Oxalate and calcium oxalate monohydrate (COM) induce oxidative stress in renal tubular cells, but to our knowledge, their effect on SIPS has not yet been examined. Here, we examined whether oxalate, COM, or urine from patients with CaOx KS could induce SIPS and telomere shortening in human kidney (HK)-2 cells, a proximal tubular renal cell line. Urine from age- and sex-matched individuals without stones was used as a control. In sublethal amounts, H2O2, oxalate, COM, and urine from those with KS evoked oxidative stress in HK-2 cells, indicated by increased protein carbonyl content and decreased total antioxidant capacity, but urine from those without stones did not. The proportion of senescent HK-2 cells, as indicated by SA-ßgal staining, increased after treatment with H2O2, oxalate, COM, and urine from those with KS. Expression of p16 was higher in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS than it was in cells treated with urine from those without stones and untreated controls. p16 was upregulated in the SA-ßgal positive cells. Relative telomere length was shorter in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS than that in cells treated with urine from those without stones and untreated controls. Transcript expression of shelterin components (TRF1, TRF2 and POT1) was decreased in HK-2 cells treated with H2O2, oxalate, COM, and urine from those with KS, in which case the expression was highest. Urine from those without KS did not significantly alter TRF1, TRF2, and POT1 mRNA expression in HK-2 cells relative to untreated controls. In conclusion, oxalate, COM, and urine from patients with CaOx KS induced SIPS and telomere shortening in renal tubular cells. SIPS induced by a lithogenic milieu may result from upregulation of p16 and downregulation of shelterin components, specifically POT1, and might contribute, at least in part, to the development of CaOx KS.


Subject(s)
Aging, Premature/etiology , Calcium Oxalate/pharmacology , Nephrolithiasis/urine , Oxalates/pharmacology , Oxidative Stress/drug effects , Telomere Shortening , Aged , Cell Line , Cyclin-Dependent Kinase Inhibitor p16/analysis , DNA Damage , Female , Humans , Hydrogen Peroxide/pharmacology , Male , Middle Aged , Nephrolithiasis/etiology , Telomeric Repeat Binding Protein 1/genetics
15.
Biochimie ; 190: 12-19, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34214617

ABSTRACT

Zebrafish is broadly used as a model organism in gene loss-of-function studies in vivo, but its employment in vitro is greatly limited by the lack of efficient gene knockdown approaches in zebrafish cell lines such as ZF4. In this article, we attempted to induce silencing of telomere associated genes in ZF4 by applying the frequently-used siRNA transfection technology and a novel moiety-linked morpholino (vivo-MO). By proceeding with integrated optimization of siRNAs transfection and vivo-MOs treatment, we compared five transfection reagents and vivo-MOs simultaneously to evaluate the efficiency of terfa silencing in ZF4. 48 h after siRNAs transfection, Lipofectamine™ 3000 and X-tremeGENE™ HP leaded to knockdown in 35% and 43% of terfa transcription, respectively, while vivo-MO-terfa modulated 58% down-expression of zfTRF2 in contrast to vivo-MO-ctrl 72 h after treatment. Further siRNAs transfection targeting telomere associated genes by X-tremeGENE™ HP showed silencing in 40-68% of these genes without significant cytotoxicity and off-target effect. Our results confirmed the feasibility of gene loss-of-function studies in a zebrafish cell line, offered a systematic optimizing strategy to employ gene silencing experiments, and presented Lipofectamine™ 3000, X-tremeGENE™ HP and vivo-morpholinos as candidate gene silencing approaches for zebrafish in vitro gene loss-of-function studies. Successfully knockdown of shelterin genes further opened a new field for telomeric study in zebrafish.


Subject(s)
Gene Knockdown Techniques/methods , Telomere/genetics , Telomere/metabolism , Animals , Cell Line , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Silencing/drug effects , Monomeric GTP-Binding Proteins/genetics , Morpholinos/pharmacology , Shelterin Complex/genetics , Telomere-Binding Proteins/genetics , Telomeric Repeat Binding Protein 1/genetics , Transfection/methods , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
16.
Mol Med Rep ; 24(2)2021 Aug.
Article in English | MEDLINE | ID: mdl-34184077

ABSTRACT

Uterine leiomyoma is a benign smooth muscle tumor of the uterus that can exhibit histopathological traits that mimic malignancy. Telomere shortening is an early event in tumorigenesis and telomerase activation facilitates tumor progression later in the course of carcinogenesis. Telomeric repeat­binding factor (TRF)1 and TRF2 protect telomeres, and their gene expression levels are dysregulated in various cancer types. However, the roles of telomeres and telomere protection proteins in uterine leiomyoma remain largely unknown. In this study, telomere length and the mRNA levels of various telomere­related genes in normal tissues and leiomyoma were determined, and their relationships were evaluated. Uterine leiomyoma and normal myometrium were surgically obtained from 18 and 13 patients, respectively. Telomere length and gene expression were determined by Southern blot analysis and reverse transcription­quantitative PCR, respectively. In matched samples, telomeres were consistently shorter in leiomyoma tissue than in adjacent normal tissue. TRF1, TRF2, PIN2­interacting telomerase inhibitor 1 (PINX1), and telomerase RNA component were expressed at comparable levels in both leiomyoma and normal tissues. None of these genes were associated with telomere length in leiomyoma. All tested tissues were negative for telomerase reverse transcriptase, which encodes the catalytic component of telomerase, indicating that cells in uterine leiomyoma were not immortalized. In summary, telomere erosion, which reflects active proliferation during tumor evolution, was evident in uterine leiomyoma. Steady­state expression of TRF1, TRF2 and PINX1 may be important for maintenance of telomere integrity in leiomyoma, where telomere length is shortened.


Subject(s)
Leiomyoma/genetics , Leiomyoma/metabolism , Telomere Shortening/genetics , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism , Adult , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Correlation of Data , Female , Humans , Middle Aged , Myometrium/metabolism , Telomere/chemistry , Telomere/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
17.
Am J Med Genet B Neuropsychiatr Genet ; 186(8): 508-520, 2021 12.
Article in English | MEDLINE | ID: mdl-34042246

ABSTRACT

Identification of genetic factors leading to increased risk of suicide death is critical to combat rising suicide rates, however, only a fraction of the genetic variation influencing risk has been accounted for. To address this limitation, we conducted the first comprehensive analysis of rare genetic variation in suicide death leveraging the largest suicide death biobank, the Utah Suicide Genetic Risk Study (USGRS). We conducted a single-variant association analysis of rare (minor allele frequency <1%) putatively functional single-nucleotide polymorphisms (SNPs) present on the Illumina PsychArray genotyping array in 2,672 USGRS suicide deaths of non-Finnish European (NFE) ancestry and 51,583 NFE controls from the Genome Aggregation Database. Secondary analyses used an independent control sample of 21,324 NFE controls from the Psychiatric Genomics Consortium. Five novel, high-impact, rare SNPs were identified with significant associations with suicide death (SNAPC1, rs75418419; TNKS1BP1, rs143883793; ADGRF5, rs149197213; PER1, rs145053802; and ESS2, rs62223875). 119 suicide decedents carried these high-impact SNPs. Both PER1 and SNAPC1 have other supporting gene-level evidence of suicide risk, and psychiatric associations exist for PER1 (bipolar disorder, schizophrenia), and for TNKS1BP1 and ESS2 (schizophrenia). Three of the genes (PER1, TNKS1BP1, and ADGRF5), together with additional genes implicated by genome-wide association studies on suicidal behavior, showed significant enrichment in immune system, homeostatic and signal transduction processes. No specific diagnostic phenotypes were associated with the subset of suicide deaths with the identified rare variants. These findings suggest an important role for rare variants in suicide risk and implicate genes and gene pathways for targeted replication.


Subject(s)
Genetic Predisposition to Disease , Suicide , Genome-Wide Association Study , Humans , Nuclear Proteins/genetics , Period Circadian Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , Telomeric Repeat Binding Protein 1/genetics , Transcription Factors/genetics
18.
PLoS Genet ; 17(3): e1009410, 2021 03.
Article in English | MEDLINE | ID: mdl-33690611

ABSTRACT

The telomere-bound shelterin complex is essential for chromosome-end protection and genomic stability. Little is known on the regulation of shelterin components by extracellular signals including developmental and environmental cues. Here, we show that human TRF1 is subjected to AKT-dependent regulation. To study the importance of this modification in vivo, we generate knock-in human cell lines carrying non-phosphorylatable mutants of the AKT-dependent TRF1 phosphorylation sites by CRISPR-Cas9. We find that TRF1 mutant cells show decreased TRF1 binding to telomeres and increased global and telomeric DNA damage. Human cells carrying non-phosphorylatable mutant TRF1 alleles show accelerated telomere shortening, demonstrating that AKT-dependent TRF1 phosphorylation regulates telomere maintenance in vivo. TRF1 mutant cells show an impaired response to proliferative extracellular signals as well as a decreased tumorigenesis potential. These findings indicate that telomere protection and telomere length can be regulated by extracellular signals upstream of PI3K/AKT activation, such as growth factors, nutrients or immune regulators, and this has an impact on tumorigenesis potential.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Telomere/genetics , Telomere/metabolism , Animals , DNA Damage , Genomic Instability , Humans , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Telomere Shortening , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
19.
Ophthalmic Genet ; 42(2): 189-194, 2021 04.
Article in English | MEDLINE | ID: mdl-33565341

ABSTRACT

Background: In an experimental model, telomere shortening inhibits neovascularization. It is thus possible that telomere shortening might have a role in the pathogenesis of geographic atrophy in case of age-related macular degeneration (AMD). This is why we aimed to find any associated differences of telomere length and genetic variants in telomere-related genes (TERT, TERT-CLPTM1, TRF1, TNKS2, and TRF2) in patients with atrophic AMD compared to healthy controls.Methods: The study enrolled patients with atrophic AMD (n = 56) and healthy (n = 73) controls. Samples of DNA from peripheral blood leukocytes were extracted by DNA salting-out method. The genotyping of TERT rs2736098, rs401681 in TERT-CLPTM1 locus, TRF1 rs1545827, rs10107605, TNKS2 rs10509637, rs10509639, and TRF2 rs251796 and relative leukocyte telomere length (T/S) measurement were carried out using a real-time polymerase chain reaction method. The results were assessed using the statistical analysis method of "IBM SPSS Statistics 20.0".Results: We found statistically significantly higher T/S in atrophic AMD patients than in healthy controls (T/S, median (IQR): 1.638 (1.110) vs. 0.764 (0.801), p < .001). Also, statistically significant differences were found in TRF1 rs10107605 allele (A and C) distributions between the atrophic AMD and control groups (88.36% and 11.64% vs. 95.54% and 4.46%, respectively, p = .041), as well as between the short telomere and long telomere groups (86.92% and 13.08% vs. 96.09% and 3.91%, respectively, p = .008).Conclusions: Our research revealed the leukocyte telomere length having a role in atrophic AMD development, also the association between TRF1 rs10107605 and the telomere length.


Subject(s)
Geographic Atrophy/pathology , Leukocytes/physiology , Macular Degeneration/pathology , Polymorphism, Single Nucleotide , Telomere-Binding Proteins/genetics , Telomere , Aged , Case-Control Studies , Female , Geographic Atrophy/genetics , Humans , Leukocytes/metabolism , Macular Degeneration/genetics , Male , Membrane Proteins/genetics , Middle Aged , Prognosis , Tankyrases/genetics , Telomerase/genetics , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 2/genetics
20.
Bioorg Chem ; 104: 104301, 2020 11.
Article in English | MEDLINE | ID: mdl-33011533

ABSTRACT

Increasing evidence shows that long non-coding RNAs (lncRNAs) are closely associated with the development of cancers, including triple-negative breast cancer (TNBC). LncRNA FAM201A has been identified as a key regulator in some cancers. However, its role has not been explored in TNBC. In this work, we investigated the biological role and regulatory mechanism of FAM201A in TNBC. The expression pattern of FAM201A was determined by RT-qPCR analysis. The biological effect of FAM201A on cellular process of TNBC was tested using colony formation, EdU, caspase-3 activity detection, flow cytometry, wound healing, and Transwell assays. ChIP and luciferase reporter assays were performed to verify the interaction between transcription factor 3 (TCF3) and FAM201A. The interaction among FAM201A, microRNA-186-5p (miR-186-5p), and tankyrase 1 binding protein 1 (TNKS1BP1) was evaluated by luciferase reporter and RIP assays. The results showed that FAM201A expression was significantly upregulated in TNBC tissues and cells. Functionally, FAM201A knockdown inhibited TNBC cell proliferation, migration and invasion, and accelerated cell apoptosis. In mechanism, it was confirmed that FAM201A was transcriptionally activated by TCF3 and served as a sponge for miR-186-5p to upregulate TNKS1BP1 expression in TNBC cells. Collectively, our study revealed that TCF3-activated FAM201A promoted aggressive phenotypes of TNBC cells by upregulating TNKS1BP1 expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Telomeric Repeat Binding Protein 1/metabolism , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Proliferation , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Telomeric Repeat Binding Protein 1/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...