Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.867
Filter
1.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839876

ABSTRACT

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neurofibrillary Tangles , Temporal Lobe , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/metabolism , Temporal Lobe/pathology , tau Proteins/metabolism , Male , Female , Aged , Magnetic Resonance Imaging/methods , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Aged, 80 and over , Autopsy , Neuroimaging/methods , Middle Aged , Postmortem Imaging
2.
Alzheimers Res Ther ; 16(1): 112, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762725

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß (Aß) plaques, neurofibrillary tau tangles, and neurodegeneration in the brain parenchyma. Here, we aimed to (i) assess differences in blood and imaging biomarkers used to evaluate neurodegeneration among cognitively unimpaired APOE ε4 homozygotes, heterozygotes, and non-carriers with varying risk for sporadic AD, and (ii) to determine how different cerebral pathologies (i.e., Aß deposition, medial temporal atrophy, and cerebrovascular pathology) contribute to blood biomarker concentrations in this sample. METHODS: Sixty APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) ranging from 60 to 75 years, were recruited in collaboration with Auria biobank (Turku, Finland). Participants underwent Aß-PET ([11C]PiB), structural brain MRI including T1-weighted and T2-FLAIR sequences, and blood sampling for measuring serum neurofilament light chain (NfL), plasma total tau (t-tau), plasma N-terminal tau fragments (NTA-tau) and plasma glial fibrillary acidic protein (GFAP). [11C]PiB standardized uptake value ratio was calculated for regions typical for Aß accumulation in AD. MRI images were analysed for regional volumes, atrophy scores, and volumes of white matter hyperintensities. Differences in biomarker levels and associations between blood and imaging biomarkers were tested using uni- and multivariable linear models (unadjusted and adjusted for age and sex). RESULTS: Serum NfL concentration was increased in APOE ε4 homozygotes compared with non-carriers (mean 21.4 pg/ml (SD 9.5) vs. 15.5 pg/ml (3.8), p = 0.013), whereas other blood biomarkers did not differ between the groups (p > 0.077 for all). From imaging biomarkers, hippocampal volume was significantly decreased in APOE ε4 homozygotes compared with non-carriers (6.71 ml (0.86) vs. 7.2 ml (0.7), p = 0.029). In the whole sample, blood biomarker levels were differently predicted by the three measured cerebral pathologies; serum NfL concentration was associated with cerebrovascular pathology and medial temporal atrophy, while plasma NTA-tau associated with medial temporal atrophy. Plasma GFAP showed significant association with both medial temporal atrophy and Aß pathology. Plasma t-tau concentration did not associate with any of the measured pathologies. CONCLUSIONS: Only increased serum NfL concentrations and decreased hippocampal volume was observed in cognitively unimpaired APOEε4 homozygotes compared to non-carriers. In the whole population the concentrations of blood biomarkers were affected in distinct ways by different pathologies.


Subject(s)
Amyloid beta-Peptides , Apolipoprotein E4 , Atrophy , Biomarkers , Positron-Emission Tomography , tau Proteins , Humans , Female , Male , Aged , Biomarkers/blood , Atrophy/pathology , Middle Aged , Apolipoprotein E4/genetics , tau Proteins/blood , Amyloid beta-Peptides/blood , Magnetic Resonance Imaging/methods , Neurofilament Proteins/blood , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Alzheimer Disease/blood , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Heterozygote , Glial Fibrillary Acidic Protein/blood , Aniline Compounds , Thiazoles
3.
Hum Brain Mapp ; 45(5): e26562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590154

ABSTRACT

The goal of this study was to examine what happens to established associations between attention deficit hyperactivity disorder (ADHD) symptoms and cortical surface and thickness regions once we apply inverse probability of censoring weighting (IPCW) to address potential selection bias. Moreover, we illustrate how different factors that predict participation contribute to potential selection bias. Participants were 9- to 11-year-old children from the Generation R study (N = 2707). Cortical area and thickness were measured with magnetic resonance imaging (MRI) and ADHD symptoms with the Child Behavior Checklist. We examined how associations between ADHD symptoms and brain morphology change when we weight our sample back to either follow-up (ages 9-11), baseline (cohort at birth), or eligible (population of Rotterdam at time of recruitment). Weights were derived using IPCW or raking and missing predictors of participation used to estimate weights were imputed. Weighting analyses to baseline and eligible increased beta coefficients for the middle temporal gyrus surface area, as well as fusiform gyrus cortical thickness. Alternatively, the beta coefficient for the rostral anterior cingulate decreased. Removing one group of variables used for estimating weights resulted in the weighted regression coefficient moving closer to the unweighted regression coefficient. In addition, we found considerably different beta coefficients for most surface area regions and all thickness measures when we did not impute missing covariate data. Our findings highlight the importance of using inverse probability weighting (IPW) in the neuroimaging field, especially in the context of mental health-related research. We found that including all variables related to exposure-outcome in the IPW model and combining IPW with multiple imputations can help reduce bias. We encourage future psychiatric neuroimaging studies to define their target population, collect information on eligible but not included participants and use inverse probability of censoring weighting (IPCW) to reduce selection bias.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Infant, Newborn , Humans , Selection Bias , Attention Deficit Disorder with Hyperactivity/pathology , Probability , Bias , Temporal Lobe/pathology
4.
Nat Aging ; 4(5): 625-637, 2024 May.
Article in English | MEDLINE | ID: mdl-38664576

ABSTRACT

Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.


Subject(s)
Alzheimer Disease , Cognition , Locus Coeruleus , Positron-Emission Tomography , tau Proteins , Locus Coeruleus/metabolism , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Humans , tau Proteins/metabolism , tau Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Cognition/physiology , Male , Female , Aged , Magnetic Resonance Imaging , Aged, 80 and over , Temporal Lobe/metabolism , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology
5.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38521993

ABSTRACT

Alzheimer's disease (AD) and mild cognitive impairment (MCI) both show abnormal resting-state functional connectivity (rsFC) of default mode network (DMN), but it is unclear to what extent these abnormalities are shared. Therefore, we performed a comprehensive meta-analysis, including 31 MCI studies and 20 AD studies. MCI patients, compared to controls, showed decreased within-DMN rsFC in bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), precuneus/posterior cingulate cortex (PCC), right temporal lobes, and left angular gyrus and increased rsFC between DMN and left inferior temporal gyrus. AD patients, compared to controls, showed decreased rsFC within DMN in bilateral mPFC/ACC and precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC between DMN and right dorsolateral prefrontal cortex. Conjunction analysis showed shared decreased rsFC in mPFC/ACC and precuneus/PCC. Compared to MCI, AD had decreased rsFC in left precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC in right temporal lobes. MCI and AD share a decreased within-DMN rsFC likely underpinning episodic memory deficits and neuropsychiatric symptoms, but differ in DMN rsFC alterations likely related to impairments in other cognitive domains such as language, vision, and execution. This may throw light on neuropathological mechanisms in these two stages of dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Default Mode Network , Cognitive Dysfunction/pathology , Gyrus Cinguli , Temporal Lobe/pathology , Magnetic Resonance Imaging , Brain , Brain Mapping
6.
Epilepsia Open ; 9(3): 1076-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38475905

ABSTRACT

Mild mesial temporal lobe epilepsy (MTLE) patients may remain untreated for a considerable time after disease onset or achieve seizure control with a single anti-seizures medication (ASM). Thus, they represent an optimal population to investigate whether ASMs might have influence on brain structure. We consecutively enrolled 56 mild MTLE patients (22/56 untreated, 34/56 on-monotherapy) and 58 healthy controls, matched for age and gender. All subjects underwent 3T-brain MRI, using FreeSurfer for automated morphometry. Differences in gray matter were assessed using one-way Analysis of Covariance (ANCOVA), adjusting for age, disease duration and intracranial volume. No significant change was observed between treated and untreated patients. We observed a significant reduction in cortical thickness of left inferior parietal, inferior temporal, middle temporal gyri, and right inferior parietal gyrus, temporal pole in monotherapy patients compared to healthy controls, as well as an increase in left isthmus of cingulate gyrus in untreated MTLE subjects compared to controls. Surface and subcortical volumes analysis revealed no differences among groups. Our study demonstrated no substantial morphological abnormalities between untreated mild MTLE patients and those undergoing monotherapy. Although exploratory, these results may reassure about safety of commonly used drugs and their marginal role in influencing neuroimaging results. PLAIN LANGUAGE SUMMARY: This study investigated the following question: can medications against epileptic seizures have an effect on brain structure in mild mesial temporal lobe? Preliminary results from our analyses suggest not, as we did not find any difference in brain gray matter between untreated patients and those treated with a single anti-seizures medication. On the other hand, epilepsy patients presented cortical thinning compared to healthy controls in several regions of the temporal and parietal lobes, in line with previous studies investigating the disease.


Subject(s)
Anticonvulsants , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , Humans , Epilepsy, Temporal Lobe/drug therapy , Female , Male , Anticonvulsants/therapeutic use , Adult , Prospective Studies , Middle Aged , Brain/diagnostic imaging , Brain/drug effects , Young Adult , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/drug effects , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Temporal Lobe/drug effects
7.
CNS Neurosci Ther ; 30(3): e14680, 2024 03.
Article in English | MEDLINE | ID: mdl-38529533

ABSTRACT

BACKGROUND: Differences in cortical morphology have been reported in individuals with Parkinson's disease (PD). However, the pathophysiological mechanism of transcriptomic vulnerability in local brain regions remains unclear. OBJECTIVE: This study aimed to characterize the morphometric changes of brain regions in early drug-naive PD patients and uncover the brain-wide gene expression correlates. METHODS: The morphometric similarity (MS) network analysis was used to quantify the interregional structural similarity from multiple magnetic resonance imaging anatomical indices measured in each brain region of 170 early drug-naive PD patients and 123 controls. Then, we applied partial least squares regression to determine the relationship between regional changes in MS and spatial transcriptional signatures from the Allen Human Brain Atlas dataset, and identified the specific genes related to MS differences in PD. We further investigated the biological processes by which the PD-related genes were enriched and the cellular characterization of these genes. RESULTS: Our results showed that MS was mainly decreased in cingulate, frontal, and temporal cortical areas and increased in parietal and occipital cortical areas in early drug-naive PD patients. In addition, genes whose expression patterns were associated with regional MS changes in PD were involved in astrocytes, excitatory, and inhibitory neurons and were functionally enriched in neuron-specific biological processes related to trans-synaptic signaling and nervous system development. CONCLUSIONS: These findings advance our understanding of the microscale genetic and cellular mechanisms driving macroscale morphological abnormalities in early drug-naive PD patients and provide potential targets for future therapeutic trials.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/complications , Brain/pathology , Magnetic Resonance Imaging/methods , Temporal Lobe/pathology , Gene Expression Profiling
8.
Radiother Oncol ; 195: 110258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537680

ABSTRACT

This systematic review examines the role of dosimetric parameters in predicting temporal lobe necrosis (TLN) risk in nasopharyngeal carcinoma (NPC) patients treated with three-dimensional conformal RT (3D-CRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). TLN is a serious late complication that can adversely affect the quality of life of NPC patients. Understanding the relationship between dosimetric parameters and TLN can guide treatment planning and minimize radiation-related complications. A comprehensive search identified relevant studies published up to July 2023. Studies reporting on dosimetric parameters and TLN in NPC patients undergoing 3D-CRT, IMRT, and VMAT were included. TLN incidence, follow-up duration, and correlation with dosimetric parameters of the temporal lobe were analyzed. The review included 30 studies with median follow-up durations ranging from 28 to 110 months. The crude incidence of TLN varied from 2.3 % to 47.3 % and the average crude incidence of TLN is approximately 14 %. Dmax and D1cc emerged as potential predictors of TLN in 3D-CRT and IMRT-treated NPC patients. Threshold values of >72 Gy for Dmax and >62 Gy for D1cc were associated with increased TLN risk. However, other factors should also be considered, including host characteristics, tumor-specific features and therapeutic factors. In conclusion, this systematic review highlights the significance of dosimetric parameters, particularly Dmax and D1cc, in predicting TLN risk in NPC patients undergoing 3D-CRT, IMRT, and VMAT. The findings provide valuable insights that can help in developing optimal treatment planning strategies and contribute to the development of clinical guidelines in this field.


Subject(s)
Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Necrosis , Radiation Injuries , Radiotherapy, Intensity-Modulated , Temporal Lobe , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/pathology , Temporal Lobe/radiation effects , Temporal Lobe/pathology , Necrosis/etiology , Radiation Injuries/etiology , Radiation Injuries/pathology , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/pathology , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy, Conformal/adverse effects , Radiotherapy, Conformal/methods
9.
J Alzheimers Dis ; 98(4): 1467-1482, 2024.
Article in English | MEDLINE | ID: mdl-38552116

ABSTRACT

Background: Histopathologic studies of Alzheimer's disease (AD) suggest that extracellular amyloid-ß (Aß) plaques promote the spread of neurofibrillary tau tangles. However, these two proteinopathies initiate in spatially distinct brain regions, so how they interact during AD progression is unclear. Objective: In this study, we utilized Aß and tau positron emission tomography (PET) scans from 572 older subjects (476 healthy controls (HC), 14 with mild cognitive impairment (MCI), 82 with mild AD), at varying stages of the disease, to investigate to what degree tau is associated with cortical Aß deposition. Methods: Using multiple linear regression models and a pseudo-longitudinal ordering technique, we investigated remote tau-Aß associations in four pathologic phases of AD progression based on tau spread: 1) no-tau, 2) pre-acceleration, 3) acceleration, and 4) post-acceleration. Results: No significant tau-Aß association was detected in the no-tau phase. In the pre-acceleration phase, the earliest stage of tau deposition, associations emerged between regional tau in medial temporal lobe (MTL) (i.e., entorhinal cortex, parahippocampal gyrus) and cortical Aß in lateral temporal lobe regions. The strongest tau-Aß associations were found in the acceleration phase, in which tau in MTL regions was strongly associated with cortical Aß (i.e., temporal and frontal lobes regions). Strikingly, in the post-acceleration phase, including 96% of symptomatic subjects, tau-Aß associations were no longer significant. Conclusions: The results indicate that associations between tau and Aß are stage-dependent, which could have important implications for understanding the interplay between these two proteinopathies during the progressive stages of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Proteostasis Deficiencies , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Temporal Lobe/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Positron-Emission Tomography/methods
10.
Neuroscience ; 546: 75-87, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38552733

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate. Thus, expressional changes in disease can have implications for aberrant neuronal activity, raising the possibility of a therapeutic target. There is no information regarding the expression of VGLUTs in the human medial temporal lobe in AD, one of the earliest and most severely affected brain regions. This study aimed to quantify and compare the layer-specific expression of VGLUT1 and VGLUT2 between control and AD cases in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Free-floating fluorescent immunohistochemistry was used to label VGLUT1 and VGLUT2 in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Sections were imaged using laser-scanning confocal microscopy and transporter densitometric analysis was performed. VGLUT1 density was not significantly different in AD tissue, except lower staining density observed in the dentate gyrus stratum moleculare (p = 0.0051). VGLUT2 expression was not altered in the hippocampus and entorhinal cortex of AD cases but was significantly lower in the subiculum (p = 0.015) and superior temporal gyrus (p = 0.0023). This study indicates a regionally specific vulnerability of VGLUT1 and VGLUT2 expression in the medial temporal lobe and superior temporal gyrus in AD. However, the causes and functional consequences of these disturbances need to be further explored to assess VGLUT1 and VGLUT2 as viable therapeutic targets.


Subject(s)
Alzheimer Disease , Temporal Lobe , Vesicular Glutamate Transport Protein 1 , Vesicular Glutamate Transport Protein 2 , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Temporal Lobe/metabolism , Temporal Lobe/pathology , Male , Vesicular Glutamate Transport Protein 1/metabolism , Aged , Female , Vesicular Glutamate Transport Protein 2/metabolism , Aged, 80 and over , Middle Aged , Immunohistochemistry
11.
Brain Behav ; 14(3): e3420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494763

ABSTRACT

OBJECTIVE: Communication skills can deteriorate in neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD); however, their clinical assessment and treatment in patient care can be challenging. In the present study, we aimed to quantify the distinctive communication resources and barriers reported by patients and their relatives in AD and FTD and associated these communicative characteristics with clinical parameters, such as the degree of cognitive impairment and atrophy in language-associated brain areas. METHODS: We assessed self-reported communication barriers and resources in 33 individuals with AD and FTD through an interview on daily-life communication, using the Aachener KOMPASS questionnaire. We correlated reported communication barriers and resources with atrophy from high-resolution 3T brain magnetic resonance imaging, neuropsychological assessment, and neurodegenerative markers from cerebrospinal fluid. RESULTS: Communicative impairment was higher in FTD compared to AD. Increased reported communication barriers in our whole sample were associated with the atrophy rate in the left middle temporal lobe, a critical site within the neuronal language network, and with depressive symptoms as well as the semantic word fluency from neuropsychological assessment. The best model for prediction of communicative impairment included the diagnosis (AD or FTD), semantic word fluency, and depressive symptoms. CONCLUSIONS: Our study demonstrates that communication barriers and resources can be successfully assessed via a structured interview based on self-report and report of patients' relatives in practice and are reflected in neuroimaging specific for AD and FTD as well as in further clinical parameters specific for these neurodegenerative diseases. This can potentially open new treatment options for clinical practice and patient care.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/diagnosis , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Neuropsychological Tests , Magnetic Resonance Imaging , Atrophy/pathology
12.
Epilepsia ; 65(4): 1092-1106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345348

ABSTRACT

OBJECTIVE: Epilepsy patients are often grouped together by clinical variables. Quantitative neuroimaging metrics can provide a data-driven alternative for grouping of patients. In this work, we leverage ultra-high-field 7-T structural magnetic resonance imaging (MRI) to characterize volumetric atrophy patterns across hippocampal subfields and thalamic nuclei in drug-resistant focal epilepsy. METHODS: Forty-two drug-resistant epilepsy patients and 13 controls with 7-T structural neuroimaging were included in this study. We measured hippocampal subfield and thalamic nuclei volumetry, and applied an unsupervised machine learning algorithm, Latent Dirichlet Allocation (LDA), to estimate atrophy patterns across the hippocampal subfields and thalamic nuclei of patients. We studied the association between predefined clinical groups and the estimated atrophy patterns. Additionally, we used hierarchical clustering on the LDA factors to group patients in a data-driven approach. RESULTS: In patients with mesial temporal sclerosis (MTS), we found a significant decrease in volume across all ipsilateral hippocampal subfields (false discovery rate-corrected p [pFDR] < .01) as well as in some ipsilateral (pFDR < .05) and contralateral (pFDR < .01) thalamic nuclei. In left temporal lobe epilepsy (L-TLE) we saw ipsilateral hippocampal and some bilateral thalamic atrophy (pFDR < .05), whereas in right temporal lobe epilepsy (R-TLE) extensive bilateral hippocampal and thalamic atrophy was observed (pFDR < .05). Atrophy factors demonstrated that our MTS cohort had two atrophy phenotypes: one that affected the ipsilateral hippocampus and one that affected the ipsilateral hippocampus and bilateral anterior thalamus. Atrophy factors demonstrated posterior thalamic atrophy in R-TLE, whereas an anterior thalamic atrophy pattern was more common in L-TLE. Finally, hierarchical clustering of atrophy patterns recapitulated clusters with homogeneous clinical properties. SIGNIFICANCE: Leveraging 7-T MRI, we demonstrate widespread hippocampal and thalamic atrophy in epilepsy. Through unsupervised machine learning, we demonstrate patterns of volumetric atrophy that vary depending on disease subtype. Incorporating these atrophy patterns into clinical practice could help better stratify patients to surgical treatments and specific device implantation strategies.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Hippocampus/pathology , Temporal Lobe/pathology , Atrophy/pathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/pathology , Sclerosis/pathology
13.
Hippocampus ; 34(5): 241-260, 2024 May.
Article in English | MEDLINE | ID: mdl-38415962

ABSTRACT

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Subject(s)
Temporal Lobe , Humans , Temporal Lobe/pathology , Neuroanatomy/methods , Male , Parahippocampal Gyrus/pathology , Parahippocampal Gyrus/diagnostic imaging , Female , Aged , Entorhinal Cortex/pathology , Entorhinal Cortex/anatomy & histology , Laboratories , Aged, 80 and over
14.
Cortex ; 173: 96-119, 2024 04.
Article in English | MEDLINE | ID: mdl-38387377

ABSTRACT

Word deafness is a rare neurological disorder often observed following bilateral damage to superior temporal cortex and canonically defined as an auditory modality-specific deficit in word comprehension. The extent to which word deafness is dissociable from aphasia remains unclear given its heterogeneous presentation, and some have consequently posited that word deafness instead represents a stage in recovery from aphasia, where auditory and linguistic processing are affected to varying degrees and improve at differing rates. Here, we report a case of an individual (Mr. C) with bilateral temporal lobe lesions whose presentation evolved from a severe aphasia to an atypical form of word deafness, where auditory linguistic processing was impaired at the sentence level and beyond. We first reconstructed in detail Mr. C's stroke recovery through medical record review and supplemental interviewing. Then, using behavioral testing and multimodal neuroimaging, we documented a predominant auditory linguistic deficit in sentence and narrative comprehension-with markedly reduced behavioral performance and absent brain activation in the language network in the spoken modality exclusively. In contrast, Mr. C displayed near-unimpaired behavioral performance and robust brain activations in the language network for the linguistic processing of words, irrespective of modality. We argue that these findings not only support the view of word deafness as a stage in aphasia recovery but also further instantiate the important role of left superior temporal cortex in auditory linguistic processing.


Subject(s)
Aphasia , Deafness , Language Development Disorders , Stroke , Humans , Neuropsychological Tests , Aphasia/etiology , Stroke/complications , Temporal Lobe/pathology , Auditory Perception
15.
Arch Sex Behav ; 53(5): 1873-1884, 2024 May.
Article in English | MEDLINE | ID: mdl-38388763

ABSTRACT

Gender dysphoria and autism spectrum disorder (ASD) co-occur at high rates. Yet, it is unknown whether gender dysphoria and ASD are associated with common or distinct neurobiological correlates or how they relate to experiences of gender-related body incongruence. Using the Social Responsiveness Scale, we assessed autistic traits in 99 transgender and 99 cisgender individuals and investigated their associations with gender-related body incongruence, measured via a visually based "Body Morph" test, and with cortical thickness in the brain. Autistic traits were significantly higher among transgender individuals, and those with higher autistic traits had higher body incongruence scoring. Among transgender individuals, higher autistic traits were linked with a thinner cortex bilaterally in the temporal pole and the superior and inferior temporal gyri. Autistic traits were only partly associated with cortical morphology patterns previously reported in transgender individuals; instead, they were primarily linked to temporal lobe areas mediating social cognition. While replicating the previous literature on the increased prevalence of autistic traits among transgender individuals, this study reports specific regions in the brains of transgender individuals where cortical thickness is associated with autistic traits.


Subject(s)
Autism Spectrum Disorder , Gender Dysphoria , Transgender Persons , Humans , Female , Male , Adult , Autism Spectrum Disorder/psychology , Gender Dysphoria/psychology , Transgender Persons/psychology , Magnetic Resonance Imaging , Young Adult , Brain/diagnostic imaging , Body Image/psychology , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Adolescent , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Transsexualism/psychology , Autistic Disorder/psychology
16.
Neurochem Int ; 174: 105699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382810

ABSTRACT

Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/drug therapy , Hippocampus/pathology , Sclerosis/pathology , Temporal Lobe/pathology
17.
Transl Psychiatry ; 14(1): 84, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331939

ABSTRACT

Pregnancy and the postpartum period are characterized by an increased neuroplasticity in the maternal brain. To explore the dynamics of postpartum changes in gray matter volume (GMV), magnetic resonance imaging was performed on 20 healthy postpartum women immediately after childbirth and at 3-week intervals for 12 postpartum weeks. The control group comprised 20 age-matched nulliparous women. The first 6 postpartum weeks (constituting the subacute postpartum period) are associated with decreasing progesterone levels and a massive restructuring in GMV, affecting the amygdala/hippocampus, the prefrontal/subgenual cortex, and the insula, which approach their sizes in nulliparous women only around weeks 3-6 postpartum. Based on the amygdala volume shortly after delivery, the maternal brain can be reliably distinguished from the nulliparous brain. Even 12 weeks after childbirth, the GMV in the dorsomedial prefrontal cortex, and the cortical thickness of the subgenual and lateral prefrontal cortices do not reach the pre-pregnancy levels. During this period, a volume decrease is seen in the cerebellum, the thalamus, and the dorsal striatum. A less hostile behavior toward the child at 6-12 weeks postpartum is predicted by the GMV change in the amygdala, the temporal pole, the olfactory gyrus, the anterior cingulate, the thalamus and the cerebellum in the same period. In summary, the restructuring of the maternal brain follows time-dependent trajectories. The fact that the volume changes persist at 12 weeks postpartum indicates that the maternal brain does not fully revert to pre-pregnancy physiology. Postpartum neuroplasticity suggests that these changes may be particularly significant in the regions important for parenting.


Subject(s)
Brain , Gray Matter , Pregnancy , Humans , Female , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Prefrontal Cortex/pathology , Temporal Lobe/pathology , Magnetic Resonance Imaging , Mother-Child Relations
18.
Brain Res Bull ; 207: 110869, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184151

ABSTRACT

In temporal lobe epilepsy (TLE), the epileptogenic zones, such as the temporal lobe structure, could generate pathological high-frequency oscillations (pHFOs, 250-500 Hz) before the ictal period. These pHFOs have also been observed during the process of seizures in both TLE patients and animals, exhibiting a critical role as promising biomarkers for TLE seizures. TLE seizures could be modulated via regulating the neural excitability in epileptogenic zones, for that TLE is primarily associated with the excitation-inhibition imbalance. However, whether these kinds of modulations could also impact the pHFOs characteristics during TLE seizures is still unclear. For this purpose, we pharmaco-genetically inhibited the principal cells (PCs) in the mouse CA3 region and tracked the difference in the behavioral and electrophysiological features during LiCl-pilocarpine-induced TLE seizure between the hM4Di+CNO (experimental) mice and mCherry+CNO (control) mice. Delayed latency, decreased averaged duration, and reduced counts of the generalized seizure were observed in the experimental mice. Besides, the electrophysiological characteristics, such as the firing rate of PCs and the count of pHFO, exhibited significant decline in the CA3 and CA1 regions. During TLE seizure, there existed strong phase-coupling between pHFO and PCs spike timing in the control mice, while it was abolished in the experimental mice. In addition, we also found that the counts of pHFO were significantly associated with the behavioral features, indicating the close relationships within them. Collectively, our findings suggested that alterations in pHFO and the retardation of seizures may be attributed to disruptions in neuronal excitability, and the variations of electrophysiological features were related to seizure severity during TLE seizures. These results provide valuable insights into the role of pHFOs in TLE and shed light on the underlying mechanisms involved.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Mice , Animals , Epilepsy, Temporal Lobe/pathology , Seizures , Temporal Lobe/pathology , Pilocarpine/adverse effects , Electroencephalography/methods
19.
Radiat Oncol ; 19(1): 9, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243277

ABSTRACT

BACKGROUND: Previous studies have demonstrated conflicting findings regarding the initial MRI patterns of radiotherapy-induced temporal lobe injury (RTLI) and the evolution of different RTLI patterns. The aim of this study was to evaluate the initial MRI pattern and evolution of RTLI in patients with nasopharyngeal carcinoma (NPC) by means of a large cohort study. METHODS: Data of patients with RTLI were retrospectively collected from two hospitals between January 2011 and December 2021. The injured lobes were categorized into three patterns based on initial MRI patterns: isolated white matter lesions (WMLs), isolated contrast-enhanced lesions (CELs), and combined WMLs and CELs. The latency period, MRI appearances, and temporal changes in WMLs and CELs were evaluated. RESULTS: A total of 913 RTLI patients with 1092 injured lobes were included in this study. The numbers of isolated WMLs, isolated CELs, and combined WMLs and CELs identified at the first MRI detection were 7 (0.6%), 172 (15.8%), and 913 (83.6%), respectively. The evolution of bilateral RTLI was different in the same patient, and that of unilateral RTLI combined with WMLs and CELs also may occur asynchronously. The time intervals from the initial MRI detection of isolated WMLs, isolated CELs, combined WMLs and CELs to the last negative MRI scan were 8.6, 8.9 and 11.0 months, respectively. A significant difference was observed in the time intervals between the three patterns (H = 14.287, P = 0.001). And the time interval was identified as an independent factor influencing the initial MRI pattern of RTLI after Poisson regression (P = 0.002). CONCLUSION: Both WMLs and CELs could be the initial and only MRI abnormalities in patients with RTLI. This study is of great significance in accurately diagnosing RTLI early and providing timely treatment options. Additionally, it provides clinical evidence for guidelines on NPC, emphasizing the importance of regular follow-up of NPC patients.


Subject(s)
Nasopharyngeal Neoplasms , Radiation Injuries , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/pathology , Retrospective Studies , Cohort Studies , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/pathology , Temporal Lobe/pathology , Magnetic Resonance Imaging , Radiation Injuries/pathology
20.
Ann Clin Transl Neurol ; 11(2): 520-524, 2024 02.
Article in English | MEDLINE | ID: mdl-38234234

ABSTRACT

Topographical disorientation refers to the selective inability to orient oneself in familiar surroundings. However, to date its neural correlates remain poorly understood. Here we use quantitative lesion analysis and a lesion network mapping approach in order to investigate seven patients with topographical disorientation. Our findings link not only the posterior parahippocampal gyrus (PHG) and retrosplenial cortex but also the lingual gyrus, the precuneus and the fusiform gyrus to topographical disorientation. We propose that topographical disorientation is due to the inability to integrate familiar landmarks within a framework of allocentric and egocentric orientation, supported by a neural network including the posterior PHG, the retrosplenial and the lingual cortex.


Subject(s)
Cerebral Cortex , Confusion , Humans , Confusion/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Parietal Lobe/pathology , Gyrus Cinguli/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...