Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.352
Filter
1.
Sci Rep ; 14(1): 12028, 2024 05 26.
Article in English | MEDLINE | ID: mdl-38797735

ABSTRACT

Obesity is a risk factor for pancreatic cancer development, partly due to the tissue environment of metabolic disorder-related inflammation. We aimed to detect a tissue environment marker triggered by obesity-related metabolic disorders related to pancreatic cancer progression. In murine experiments, Bl6/j mice fed a normal diet (ND) or a high-fat diet (HFD) were orthotopically injected with mPKC1, a murine-derived pancreatic cancer cell line. We used stocked sera from 140 pancreatic cancer patients for analysis and 14 colon polyp patients as a disease control. Compared with ND-fed mice, HFD-fed mice exhibited obesity, larger tumors, and worse prognoses. RNA sequencing of tumors identified tenascin C (TNC) as a candidate obesity-related serum tissue environment marker with elevated expression in tumors of HFD-fed mice. Serum TNC levels were greater in HFD-fed mice than in ND-fed mice. In pancreatic cancer patients, serum TNC levels were greater than those in controls. The TNC-high group had more metabolic disorders and greater CA19-9 levels than did the TNC-low group. There was no relationship between serum TNC levels and disease stage. Among 77 metastatic patients treated with chemotherapy, a high serum TNC concentration was an independent poor prognostic factor. Pancreatic cancer patients with high serum TNC levels experienced progression more rapidly.


Subject(s)
Biomarkers, Tumor , Diet, High-Fat , Inflammation , Pancreatic Neoplasms , Tenascin , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Tenascin/blood , Animals , Humans , Prognosis , Mice , Male , Inflammation/blood , Diet, High-Fat/adverse effects , Female , Middle Aged , Biomarkers, Tumor/blood , Obesity/blood , Obesity/complications , Aged , Cell Line, Tumor , Metabolic Diseases/blood , Mice, Inbred C57BL
2.
PLoS Biol ; 22(5): e3002599, 2024 May.
Article in English | MEDLINE | ID: mdl-38713721

ABSTRACT

Synaptic adhesion molecules (SAMs) are evolutionarily conserved proteins that play an important role in the form and function of neuronal synapses. Teneurins (Tenms) and latrophilins (Lphns) are well-known cell adhesion molecules that form a transsynaptic complex. Recent studies suggest that Tenm3 and Lphn2 (gene symbol Adgrl2) are involved in hippocampal circuit assembly via their topographical expression. However, it is not known whether other teneurins and latrophilins display similar topographically restricted expression patterns during embryonic and postnatal development. Here, we reveal the cartography of all teneurin (Tenm1-4) and latrophilin (Lphn1-3 [Adgrl1-3]) paralog expression in the mouse hippocampus across prenatal and postnatal development as monitored by large-scale single-molecule RNA in situ hybridization mapping. Our results identify a striking heterogeneity in teneurin and latrophilin expression along the spatiotemporal axis of the hippocampus. Tenm2 and Tenm4 expression levels peak at the neonatal stage when compared to Tenm1 and Tenm3, while Tenm1 expression is restricted to the postnatal pyramidal cell layer. Tenm4 expression in the dentate gyrus (DG) exhibits an opposing topographical expression pattern in the embryonic and neonatal hippocampus. Our findings were validated by analyses of multiple RNA-seq datasets at bulk, single-cell, and spatial levels. Thus, our study presents a comprehensive spatiotemporal map of Tenm and Lphn expression in the hippocampus, showcasing their diverse expression patterns across developmental stages in distinct spatial axes.


Subject(s)
Gene Expression Regulation, Developmental , Hippocampus , Nerve Tissue Proteins , Receptors, Peptide , Animals , Hippocampus/metabolism , Hippocampus/embryology , Mice , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , Female , Mice, Inbred C57BL , Male , Tenascin , Receptors, G-Protein-Coupled
3.
BMC Cancer ; 24(1): 561, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711034

ABSTRACT

Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.


Subject(s)
Carcinoma, Squamous Cell , DNA Damage , Lung Neoplasms , Tenascin , Humans , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tenascin/genetics , Tenascin/metabolism , DNA Damage/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic , Prognosis , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism
4.
Elife ; 132024 May 31.
Article in English | MEDLINE | ID: mdl-38819423

ABSTRACT

Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.


Subject(s)
Apoptosis , Chondrocytes , DNA Methylation , Hemophilia A , Proto-Oncogene Proteins c-akt , Signal Transduction , Tenascin , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Humans , Mice , Hemophilia A/metabolism , Hemophilia A/genetics , Hemophilia A/complications , Tenascin/metabolism , Tenascin/genetics , Extracellular Matrix/metabolism , Male , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/pathology
5.
Nature ; 629(8014): 1082-1090, 2024 May.
Article in English | MEDLINE | ID: mdl-38750354

ABSTRACT

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Subject(s)
Adrenal Glands , Biological Evolution , Paternal Behavior , Peromyscus , Animals , Female , Male , 20-alpha-Dihydroprogesterone/metabolism , Adrenal Glands/cytology , Adrenal Glands/enzymology , Adrenal Glands/metabolism , Estradiol Dehydrogenases/genetics , Estradiol Dehydrogenases/metabolism , GADD45 Proteins/genetics , Genetic Variation , Hybridization, Genetic , Peromyscus/classification , Peromyscus/genetics , Peromyscus/physiology , Progesterone/metabolism , Quantitative Trait Loci , Social Behavior , Tenascin/genetics
6.
Mol Biol Rep ; 51(1): 506, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622341

ABSTRACT

BACKGROUND: Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS: The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS: The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.


Subject(s)
Atrial Fibrillation , Atrial Natriuretic Factor , Rats , Animals , Rats, Sprague-Dawley , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Tenascin , Atrial Fibrillation/drug therapy , Angiotensin II/pharmacology , Inflammation/drug therapy , Collagen , Fibrosis
7.
PLoS One ; 19(4): e0301416, 2024.
Article in English | MEDLINE | ID: mdl-38603681

ABSTRACT

INTRODUCTION: Portal hypertension (PH) drives the progression of liver cirrhosis to decompensation and death. Hepatic venous pressure gradient (HVPG) measurement is the standard of PH quantification, and HVPG≥10 mmHg defines clinically significant PH (CSPH). We performed proteomics-based serum profiling to search for a proteomic signature of CSPH in patients with compensated advanced chronic liver disease (cACLD). MATERIALS AND METHODS: Consecutive patients with histologically confirmed cACLD and results of HVPG measurements were prospectively included. Serum samples were pooled according to the presence/absence of CSPH and analysed by liquid chromatography-mass spectrometry. Gene set enrichment analysis was performed, followed by comprehensive literature review for proteins identified with the most striking difference between the groups. RESULTS: We included 48 patients (30 with, and 18 without CSPH). Protein CD44, involved in the inflammatory response, vascular endothelial growth factor C (VEGF-C) and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), both involved in lymphangiogenesis were found solely in the CSPH group. Although identified in both groups, proteins involved in neutrophil extracellular traps (NET) formation, as well as tenascin C, autotaxin and nephronectin which mediate vascular contractility and lymphangiogenesis were more abundant in CSPH. DISCUSSION AND CONCLUSION: We propose that altered inflammatory response, including NET formation, vascular contractility and formation of new lymph vessels are key steps in PH development. Proteins such as CD44, VEGF-C, LYVE-1, tenascin C, Plasminogen activator inhibitor 1, Nephronectin, Bactericidal permeability-increasing protein, Autotaxin, Myeloperoxidase and a disintegrin and metalloproteinase with thrombospondin motifs-like protein 4 might be considered for further validation as potential therapeutic targets and candidate biomarkers of CSPH in cACLD.


Subject(s)
Elasticity Imaging Techniques , Hypertension, Portal , Humans , Vascular Endothelial Growth Factor C , Tenascin , Proteomics , Liver , Liver Cirrhosis , Portal Pressure
8.
Medicine (Baltimore) ; 103(16): e37702, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640279

ABSTRACT

RATIONALE: Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS: This includes a young deaf couple and their 2-year-old baby. DIAGNOSES: Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS: Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES: Regular follow-up of family members is ongoing. LESSONS: The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Tenascin , Child, Preschool , Humans , China , Deafness/genetics , GTPase-Activating Proteins/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Tenascin/genetics
9.
Mol Med Rep ; 29(6)2024 06.
Article in English | MEDLINE | ID: mdl-38666538

ABSTRACT

Polycystic ovary syndrome (PCOS) is a globally prevalent gynecological disorder among women of childbearing age. The present study aimed to investigate the role of tenascin C (TNC) in PCOS and its potential mechanisms. Fasting blood glucose and serum insulin, the homeostasis model assessment of insulin resistance and the serum hormone levels were determined in PCOS rats. In addition, H&E staining was used for assessing pathology. In addition, the effects of TNC on oxidative stress and inflammation response in PCOS rat and cell models was assessed. Furthermore, the roles of TNC on KGN cell proliferation and apoptosis were determined employing EdU assay and flow cytometry. TLR4/NF­κB pathway­related proteins were measured using western blotting, immunofluorescence and immunohistochemistry. It was found that the mRNA and protein expression was upregulated in PCOS rats and in KGN cells induced by dihydrotestosterone (DHT). Knockdown of TNC relieved the pathological characteristics and the endocrine abnormalities of PCOS rats. Knockdown of TNC inhibited ovarian cell apoptosis, oxidative stress and inflammation in PCOS rats. Knockdown of TNC reversed the DHT­induced reduction in cell proliferation and increase in apoptosis in KGN cells. Furthermore, knockdown of TNC alleviated oxidative stress and inflammatory responses induced by DHT in KGN cells. Additionally, knockdown of TNC inhibited the toll­like receptor 4 (TLR4)/NF­κB signaling pathway in PCOS rats and DHT­treated KGN cells. In conclusion, knockdown of TNC could ameliorate PCOS in both rats and a cell model by inhibiting cell apoptosis, oxidative stress and inflammation via the suppression of the TLR4/NF­κB signaling pathway.


Subject(s)
Apoptosis , Cell Proliferation , NF-kappa B , Oxidative Stress , Polycystic Ovary Syndrome , Signal Transduction , Tenascin , Toll-Like Receptor 4 , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/genetics , Female , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Rats , Tenascin/metabolism , Tenascin/genetics , Disease Models, Animal , Rats, Sprague-Dawley , Insulin Resistance , Humans , Cell Line
10.
Biomolecules ; 14(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672524

ABSTRACT

Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.


Subject(s)
Extracellular Matrix , Hippocampus , Neuronal Plasticity , Synapses , Tenascin , Animals , Tenascin/metabolism , Tenascin/genetics , Male , Mice , Hippocampus/metabolism , Extracellular Matrix/metabolism , Synapses/metabolism , Mice, Knockout , Neurons/metabolism , Mice, Inbred C57BL , Dentate Gyrus/metabolism
11.
Invest Ophthalmol Vis Sci ; 65(4): 38, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38656280

ABSTRACT

Purpose: Fuchs endothelial corneal dystrophy (FECD) is characterized by Descemet's membrane (DM) abnormalities, namely an increased thickness and a progressive appearance of guttae and fibrillar membranes. The goal of this study was to identify abnormal extracellular matrix (ECM) proteins expressed in FECD DMs and to evaluate their impact on cell adhesion and migration. Methods: Gene expression profiles from in vitro (GSE112039) and ex vivo (GSE74123) healthy and FECD corneal endothelial cells were analyzed to identify deregulated matrisome genes. Healthy and end-stage FECD DMs were fixed and analyzed for guttae size and height. Immunostaining of fibronectin, tenascin-C, osteopontin, and type XIV collagen was performed on ex vivo specimens, as well as on tissue-engineered corneal endothelium reconstructed using healthy and FECD cells. An analysis of ECM protein expression according to guttae and fibrillar membrane was performed using immunofluorescent staining and phase contrast microscopy. Finally, cell adhesion was evaluated on fibronectin, tenascin-C, and osteopontin, and cell migration was studied on fibronectin and tenascin-C. Results: SPP1 (osteopontin), FN1 (fibronectin), and TNC (tenascin-C) genes were upregulated in FECD ex vivo cells, and SSP1 was upregulated in both in vitro and ex vivo FECD conditions. Osteopontin, fibronectin, tenascin-C, and type XIV collagen were expressed in FECD specimens, with differences in their location. Corneal endothelial cell adhesion was not significantly affected by fibronectin or tenascin-C but was decreased by osteopontin. The combination of fibronectin and tenascin-C significantly increased cell migration. Conclusions: This study highlights new abnormal ECM components in FECD, suggests a certain chronology in their deposition, and demonstrates their impact on cell behavior.


Subject(s)
Cell Movement , Endothelium, Corneal , Fibronectins , Fuchs' Endothelial Dystrophy , Osteopontin , Tenascin , Humans , Tenascin/metabolism , Tenascin/genetics , Fibronectins/metabolism , Fibronectins/genetics , Osteopontin/metabolism , Osteopontin/genetics , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/metabolism , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Aged , Cell Adhesion , Cells, Cultured , Female , Male , Gene Expression Regulation , Middle Aged , Descemet Membrane/metabolism , Descemet Membrane/pathology
12.
Int Immunopharmacol ; 133: 112029, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38640715

ABSTRACT

Corneal wound healing requires epithelial reorganization and stromal extracellular matrix (ECM) remodeling, with ECM proteins such as Tenascin C (TnC) regulating and maintaining corneal homeostasis. The N-terminal globular domain and C-terminal fibrinogen-related domains of TnC are separated by epidermal growth factor (EGF)-like repeats, and upto fifteen fibronectin type III domains (Tn fn). Overexpression of Tn fn 1-5 and its splice variants occurs in varied pathologies. We have previously used Tn64 (a single chain variable fragment antibody cognate to Tn fn 1-5) to establish roles of Tn fn 1-5 in fibrotic pathologies such as rheumatoid arthritis and posterior capsular opacification. Here, we show that Tn64 binds to Tn fn repeats 3-5 (which constitute the major site for binding of soluble fibronectin within TnC). Unlike other Tn fn domains, Tn fn 3-5 displays no inhibition of fibronectin matrix assembly. Rather, the Tn fn 3-5 construct is pro-fibrotic and elicits increased expression of fibronectin. We examined corneal epithelial as well as stromal wound healing through Tn64 binding to Tn fn 3-5, using a human corneal epithelial cell (HCEC) line, primary cultures of human corneal fibroblasts (HCFs), and an ex-vivo corneal organ culture model. Tn64 enhanced proliferation and adhesion of corneal epithelial cells, while inhibiting the migration of corneal fibroblasts and myofibroblasts. Tn64 appears to attenuate inflammation through downregulation of TNF-α, prevent corneal fibrosis by limiting fibronectin polymerization, and promote regeneration of corneal epithelia and stroma, suggesting that it could be developed as a therapeutic agent for effective anti-fibrotic corneal wound healing.


Subject(s)
Fibroblasts , Fibrosis , Single-Chain Antibodies , Tenascin , Wound Healing , Humans , Wound Healing/drug effects , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/genetics , Tenascin/metabolism , Tenascin/genetics , Tenascin/immunology , Fibronectins/metabolism , Fibronectins/genetics , Animals , Cornea/pathology , Cornea/metabolism , Cells, Cultured , Fibronectin Type III Domain , Cell Line
13.
Cell Stem Cell ; 31(5): 772-787.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38565140

ABSTRACT

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.


Subject(s)
Carrier Proteins , Cytokines , Extracellular Matrix , Organoids , Spinal Cord Injuries , Spinal Cord , Animals , Organoids/metabolism , Organoids/cytology , Spinal Cord/metabolism , Extracellular Matrix/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Rabbits , Cell Differentiation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Tenascin/metabolism , Cell Proliferation , Animals, Newborn , Nerve Regeneration/physiology
14.
Matrix Biol ; 130: 1-19, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642843

ABSTRACT

Tenascin-C (TNC) is a matricellular and multimodular glycoprotein highly expressed under pathological conditions, especially in cancer and chronic inflammatory diseases. Since a long time TNC is considered as a promising target for diagnostic and therapeutic approaches in anti-cancer treatments and was already extensively targeted in clinical trials on cancer patients. This review provides an overview of the current most advanced strategies used for TNC detection and anti-TNC theranostic approaches including some advanced clinical strategies. We also discuss novel treatment protocols, where targeting immune modulating functions of TNC could be center stage.


Subject(s)
Neoplasms , Tenascin , Tenascin/metabolism , Tenascin/genetics , Humans , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/immunology , Animals , Molecular Targeted Therapy , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
15.
Biomed Res ; 45(2): 67-76, 2024.
Article in English | MEDLINE | ID: mdl-38556264

ABSTRACT

We previously reported that tenascin-X (Tnxb) aggravates hepatic fibrosis in mice fed a high-fat and high-cholesterol diet with high levels of phosphorus and calcium (HFCD). In this study, we investigated Tnxb expression in livers with fibrosis caused by administration of a methionine-chorine-deficient (MCD) diet in mice. Whole transcriptome analysis showed that Tnxb was one of the genes with increased expression in livers of MCD diet-fed mice compared with that in livers of normal diet (ND)-fed mice. In microarray and subsequent microRNA (miRNA) network analyses, miR-378a-5p and miR-486-5p were identified in livers of MCD diet-fed mice as downregulated miRNAs, which have their predicted target sites in the 3' untranslated region of Tnxb mRNA and might suppress the translation of Tnxb mRNA. RT-qPCR analyses of livers of MCD diet-fed mice compared with livers of ND-fed mice verified the upregulation of Tnxb and fibrosis-triggering genes and conversely the downregulation of miR-378a-5p and miR-486-5p. Overexpression of miR-378a-5p and miR-486-5p resulted in decreased level not only of the FLAG-tagged fibrinogen-like domain of Tnxb protein (FLAG-mTNX-FG) but also of endogenous Tnxb protein in murine cultured cells. These results indicate that expression of Tnxb is regulated by miR-378a-5p and miR-486-5p in hepatic fibrosis following MCD diet feeding.


Subject(s)
Methionine , MicroRNAs , Tenascin , Mice , Animals , Choline , Liver Cirrhosis/genetics , MicroRNAs/genetics , Diet/adverse effects , Fibrosis , Racemethionine , RNA, Messenger , Mice, Inbred C57BL
16.
Genet Test Mol Biomarkers ; 28(3): 114-122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471098

ABSTRACT

Background: The extracellular matrix (ECM) glycoprotein changes are associated with the pathogenesis and complications of atherosclerosis, leading to acute coronary syndrome (ACS). Tenascin-C (TNC), an ECM protein, has been implemented in the pathogenesis, diagnosis, and prognosis of patients with cardiovascular disease. Aim: The study aimed to compare the genetic variants of the TNC gene (rs13321, rs2104772, and rs12347433) between South Indians with ACS and healthy participants. Materials and Methods: This case-control study recruited 150 ACS patients as cases and 150 healthy participants as controls. TNC genotyping was performed using TaqMan 5'-exonuclease allele discrimination assay. Serum TNC levels were measured by enzyme-linked immunosorbent assay. Results: Serum TNC levels were significantly higher in cases compared with controls. No significant difference was observed in allele and genotype frequencies of rs13321, rs2104772, and rs12347433 between cases and controls, which was confirmed by dominant, recessive, codominant, and homozygotic genetic models. The patients with heterozygous genotypes of rs13321, rs2104772, and rs12347433 had significantly lower serum TNC levels than patients with respective homozygous genotypes. Haplotype analyses revealed that the C-T-A haplotype in the block of rs13321-rs12347433-rs2104772 was associated with lower ACS risk (OR = 0.33, 95% CI: 0.15 - 0.75; p = 0.005). Also, the C-T-T and G-T-A haplotypes of the TNC gene were associated with higher and lower serum TNC levels, respectively. Conclusion: Our study demonstrated no genetic association between single nucleotide polymorphisms of the TNC gene and ACS risk; however, the C-T-A haplotype of the TNC gene might be associated with reduced ACS risk in South Indians.


Subject(s)
Acute Coronary Syndrome , Tenascin , Humans , Acute Coronary Syndrome/genetics , Case-Control Studies , Genetic Association Studies , Polymorphism, Single Nucleotide/genetics , Tenascin/genetics , South Asian People/genetics
17.
Proc Natl Acad Sci U S A ; 121(13): e2314588121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502691

ABSTRACT

During development, motor axons are guided toward muscle target by various extrinsic cues including extracellular matrix (ECM) proteins whose identities and cellular source remain poorly characterized. Here, using single-cell RNAseq of sorted GFP+ cells from smyhc1:gfp-injected zebrafish embryos, we unravel the slow muscle progenitors (SMP) pseudotemporal trajectory at the single-cell level and show that differentiating SMPs are a major source of ECM proteins. The SMP core-matrisome was characterized and computationally predicted to form a basement membrane-like structure tailored for motor axon guidance, including basement membrane-associated ECM proteins, as collagen XV-B, one of the earliest core-matrisome gene transcribed in differentiating SMPs and the glycoprotein Tenascin C. To investigate how contact-mediated guidance cues are organized along the motor path to exert their function in vivo, we used microscopy-based methods to analyze and quantify motor axon navigation in tnc and col15a1b knock-out fish. We show that motor axon shape and growth rely on the timely expression of the attractive cue Collagen XV-B that locally provides axons with a permissive soft microenvironment and separately organizes the repulsive cue Tenascin C into a unique functional dual topology. Importantly, bioprinted micropatterns that mimic this in vivo ECM topology were sufficient to drive directional motor axon growth. Our study offers evidence that not only the composition of ECM cues but their topology critically influences motor axon navigation in vertebrates with potential applications in regenerative medicine for peripheral nerve injury as regenerating nerves follow their original path.


Subject(s)
Tenascin , Zebrafish , Animals , Tenascin/genetics , Zebrafish/genetics , Zebrafish/metabolism , Axons/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism
18.
Biochem Biophys Res Commun ; 703: 149650, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38377941

ABSTRACT

Tenascin-C is an extracellular matrix glycoprotein strongly expressed in coronary atherosclerotic plaque. Aptamers are single-stranded oligonucleotides that bind to specific target molecules with high affinity. This study hypothesized that tenascin-C expression at atherosclerotic plaque in vivo could be detected by tenascin-C specific aptamers using positron emission tomography (PET). This paper reports the radiosynthesis of a fluorine-18 (18F)-labeled tenascin-C aptamer for the biodistribution and PET imaging of the tenascin-C expression in apolipoprotein E-deficient (ApoE-/-) mice. The aortas ApoE-/- mice showed significantly increased positive areas of Oil red O staining than control C57BL/6 mice, and tenascin-C expression was detected in foam cells accumulated in the subendothelial lesions of ApoE-/- mice. The ex vivo biodistribution of the 18F-labeled tenascin-C aptamer showed significantly increased uptake at the aorta of ApoE-/- mice, and ex vivo autoradiography of aorta revealed the high accumulation of the 18F-labeled tenascin-C aptamer in the atherosclerotic lesions of ApoE-/- mice, which was consistent with the location of the atherosclerotic plaques detected by Oil red O staining. PET imaging of the 18F-labeled tenascin-C aptamer revealed a significantly higher mean standardized uptake in the aorta of the ApoE-/- mice than the control C57BL/6 mice. These data highlight the potential use of tenascin-C aptamer to diagnose atherosclerotic lesions in vivo.


Subject(s)
Atherosclerosis , Azo Compounds , Fluorine Radioisotopes , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/pathology , Tenascin/metabolism , Tissue Distribution , Mice, Inbred C57BL , Atherosclerosis/metabolism , Positron-Emission Tomography/methods , Extracellular Matrix/metabolism , Oligonucleotides/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Mice, Knockout
19.
J Pak Med Assoc ; 74(1 (Supple-2)): S25-S28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38385467

ABSTRACT

Objectives: To explore the relationship, if any, of gestational diabetes mellitus with maternal age, body mass index, serum tenascin-C and homeostatic model assessment for insulin resistance, and to see if these could act as predictive markers for gestational diabetes mellitus. METHODS: The case-control study was conducted from February to August 2022 at the outpatient department of gynaecology and obstetrics at the Civil Hospital, Karachi, and comprised pregnant females aged 18-40 years having gestational age 20-34 weeks. After noting down baseline characteristics and anthropometric measurements, the participants were subjected to oral glucose tolerance test on the basis of which they were divided into three groups; pregnant healthy controls in group 1, those with gestational diabetes mellitus on diet control in group 2, and those with gestational diabetes mellitus taking medicines for the condition in group 3. Fasting serum samples were used for further analysis using enzyme-linked immunosorbent assay kits. Data was analysed using SPSS 21. RESULTS: Of the 90 subjects, 30(33.3%) were in group 1 with mean age 26.0±4.9 years, 30(33.3%) were in group 2 with mean age 30.7±5.6 years, and 30(33.3%) were in group 3 with mean age 29.1±5.5 years. Age, gestational age, body mass index and homeostatic model assessment for insulin resistance values were significantly higher in groups 2 and 3 compared to group 1 (p<0.05), while serum Tenascin-C values were not significantly different (p>0.05). CONCLUSIONS: HOMA-IR values and BMI were more reliable in diagnosing GDM before its onset, and should be included in the screening test for GDM in early pregnancy.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Pregnancy , Female , Humans , Young Adult , Adult , Diabetes, Gestational/diagnosis , Maternal Age , Tenascin , Body Mass Index , Insulin , Blood Glucose/analysis , Case-Control Studies
20.
Clin Chim Acta ; 555: 117820, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38307397

ABSTRACT

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders predominantly characterized by impaired corticosteroid synthesis. Clinical phenotypes include hypoadrenocorticism, electrolyte disturbances, abnormal gonadal development, and short stature, of which severe hyponadrenocorticism and salt wasting can be life-threatening. Genetic analysis can help in the clinical diagnosis of CAH. However, the 21-OHD-causing gene CYP21A2 is arranged in tandem with the highly homologous CYP21A1P pseudogene, making it difficult to determine the exact genotypes using the traditional method of multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing or next-generation sequencing (NGS). We applied a long-read sequencing-based approach termed comprehensive analysis of CAH (CACAH) to 48 newborns with CAH that were diagnosed by clinical features and the traditional MLPA plus Sanger sequencing method for retrospective analysis, to evaluate its efficacy in the clinical diagnosis of neonatal CAH. Compared with the MLPA plus Sanger sequencing method, CACAH showed 100 % consistency in detecting SNV/indel variants located in exons and exon-intron boundary regions of CAH-related genes. It can directly determine the cis-trans relationship without the need to analyze parental genotypes, which reduces the time to diagnosis. Moreover, CACAH was able to distinguish different CYP21A1P/CYP21A2 and TNXA/TNXB chimeras, and detect additional variants (CYP21A2 variants c.-121C > T, c.*13G > A, c.*52C > T, c.*440C > T, c.*443 T > C, and TNXB variants c.12463 + 2 T > C, c.12204 + 5G > A). We also identified the TNXB variant c.11435_11524 + 30del alone instead of as a part of the TNXA/TNXB-CH-1 chimera in two newborns, which might be introduced by gene conversion. All of these characteristics enabled clinicians to better explain the phenotype of subjects and manage them more effectively. CACAH has a great advantage over the traditional MLPA and Sanger sequencing methods, showing substantial potential in the genetic diagnosis and screening of neonatal CAH.


Subject(s)
Adrenal Hyperplasia, Congenital , Dwarfism , Infant, Newborn , Humans , Hyperplasia , Retrospective Studies , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , High-Throughput Nucleotide Sequencing , Tenascin , Steroid 21-Hydroxylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...