Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829379

ABSTRACT

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Tephritidae , Wasps , Animals , Tephritidae/microbiology , Tephritidae/parasitology , Wasps/microbiology , Wasps/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Larva/microbiology , Larva/parasitology , Larva/growth & development , RNA, Ribosomal, 16S/genetics , Fungi/genetics , Fungi/physiology , Host-Parasite Interactions , Microbiota , Dysbiosis/microbiology , Dysbiosis/parasitology
2.
Parasit Vectors ; 17(1): 217, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734668

ABSTRACT

BACKGROUND: Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS: In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS: A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS: The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Behavior, Animal , Feeding Behavior , Tephritidae/microbiology , Tephritidae/physiology
3.
PLoS One ; 19(4): e0300875, 2024.
Article in English | MEDLINE | ID: mdl-38568989

ABSTRACT

Gut microbial communities are critical in determining the evolutive success of fruit fly phytophagous pests (Diptera, Tephritidae), facilitating their adaptation to suboptimal environmental conditions and to plant allelochemical defences. An important source of variation for the microbial diversity of fruit flies is represented by the crop on which larvae are feeding. However, a "crop effect" is not always the main driver of microbial patterns, and it is often observed in combination with other and less obvious processes. In this work, we aim at verifying if environmental stress and, by extension, changing environmental conditions, can promote microbial diversity in Zeugodacus cucurbitae (Coquillett), a cosmopolitan pest of cucurbit crops. With this objective, 16S rRNA metabarcoding was used to test differences in the microbial profiles of wild fly populations in a large experimental setup in Eastern Central Tanzania. The analysis of 2,973 unique ASV, which were assigned to 22 bacterial phyla, 221 families and 590 putative genera, show that microbial α diversity (as estimated by Abundance Coverage Estimator, Faith's Phylogenetic Diversity, Shannon-Weiner and the Inverse Simpson indexes) as well as ß microbial diversity (as estimated by Compositional Data analysis of ASVs and of aggregated genera) significantly change as the species gets closer to its altitudinal limits, in farms where pesticides and agrochemicals are used. Most importantly, the multivariate dispersion of microbial patterns is significantly higher in these stressful environmental conditions thus indicating that Anna Karenina effects contribute to the microbial diversity of Z. cucurbitae. The crop effect was comparably weaker and detected as non-consistent changes across the experimental sites. We speculate that the impressive adaptive potential of polyphagous fruit flies is, at least in part, related to the Anna Karenina principle, which promotes stochastic changes in the microbial diversity of fly populations exposed to suboptimal environmental conditions.


Subject(s)
Microbiota , Tephritidae , Humans , Animals , Tephritidae/genetics , Tephritidae/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics , Drosophila/genetics
4.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
5.
BMC Biol ; 20(1): 201, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104720

ABSTRACT

BACKGROUND: Nitrogen is considered the most limiting nutrient element for herbivorous insects. To alleviate nitrogen limitation, insects have evolved various symbiotically mediated strategies that enable them to colonize nitrogen-poor habitats or exploit nitrogen-poor diets. In frugivorous tephritid larvae developing in fruit pulp under nitrogen stress, it remains largely unknown how nitrogen is obtained and larval development is completed. RESULTS: In this study, we used metagenomics and metatranscriptomics sequencing technologies as well as in vitro verification tests to uncover the mechanism underlying the nitrogen exploitation in the larvae of Bactrocera dorsalis. Our results showed that nitrogenous waste recycling (NWR) could be successfully driven by symbiotic bacteria, including Enterobacterales, Lactobacillales, Orbales, Pseudomonadales, Flavobacteriales, and Bacteroidales. In this process, urea hydrolysis in the larval gut was mainly mediated by Morganella morganii and Klebsiella oxytoca. In addition, core bacteria mediated essential amino acid (arginine excluded) biosynthesis by ammonium assimilation and transamination. CONCLUSIONS: Symbiotic bacteria contribute to nitrogen transformation in the larvae of B. dorsalis in fruit pulp. Our findings suggest that the pattern of NWR is more likely to be applied by B. dorsalis, and M. morganii, K. oxytoca, and other urease-positive strains play vital roles in hydrolysing nitrogenous waste and providing metabolizable nitrogen for B. dorsalis.


Subject(s)
Nitrogen , Tephritidae , Animals , Bacteria/genetics , Bacteria/metabolism , Drosophila/metabolism , Larva/metabolism , Nitrogen/metabolism , Symbiosis , Tephritidae/metabolism , Tephritidae/microbiology
6.
ISME J ; 16(7): 1831-1842, 2022 07.
Article in English | MEDLINE | ID: mdl-35418221

ABSTRACT

Penicillium and Bactrocera dorsalis (oriental fruit fly, Hendel) are major pathogens and pests of citrus fruits, as both of them can cause detrimental losses in citrus production. However, their interaction in the cohabitation of citrus fruits remains elusive. In this study, we revealed a mutualistic relationship between Penicillium and B. dorsalis. We found that insect behaviors can facilitate the entry of fungal pathogens into fruits, and fungal pathogens promote the fitness of insects in return. More specifically, Penicillium could take advantage of the openings left by ovipositors of flies, and adult flies contaminated with Penicillium could spread the fungus to new sites. Moreover, the volatile emissions from fungi could attract gravid flies to the infected site for egg laying. The fungus and B. dorsalis were able to establish mutual interaction, as revealed by the presence of Penicillium DNA in intestinal tracts of flies throughout all larval stages. The fungal partner seemed to promote the emergence rate and shorten the emergence duration of the flies by providing pyridoxine, one of the B group vitamins. Different from previously reported scenarios of strong avoidance of Drosophila and attraction of Aedes aegypti toward Penicillium, our findings unveil a hitherto new paradigm of the mutualism between Penicillium and B. dorsalis, by which both insect and fungus earn benefits to facilitate their propagation.


Subject(s)
Oviposition , Tephritidae , Animals , Female , Fungi , Nutrients , Symbiosis , Tephritidae/microbiology
7.
Sci Rep ; 12(1): 477, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013476

ABSTRACT

Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.


Subject(s)
Genome, Insect , Genome, Mitochondrial , Tephritidae/genetics , Tephritidae/microbiology , Wolbachia/physiology , Animals , Australia , Frameshift Mutation , Gene Rearrangement , Insect Proteins/genetics , Sequence Deletion , Tephritidae/classification , Tephritidae/physiology
8.
PLoS One ; 16(9): e0256284, 2021.
Article in English | MEDLINE | ID: mdl-34495983

ABSTRACT

The olive fruit fly, specialized to become monophagous during several life stages, remains the most important olive tree pest with high direct production losses, but also affecting the quality, composition, and inherent properties of the olives. Thought to have originated in Africa is nowadays present wherever olive groves are grown. The olive fruit fly evolved to harbor a vertically transmitted and obligate bacterial symbiont -Candidatus Erwinia dacicola- leading thus to a tight evolutionary history between olive tree, fruit fly and obligate, vertical transmitted symbiotic bacterium. Considering this linkage, the genetic diversity (at a 16S fragment) of this obligate symbiont was added in the understanding of the distribution pattern of the holobiont at nine locations throughout four countries in the Mediterranean Basin. This was complemented with mitochondrial (four mtDNA fragments) and nuclear (ten microsatellites) data of the host. We focused on the previously established Iberian cluster for the B. oleae structure and hypothesised that the Tunisian samples would fall into a differentiated cluster. From the host point of view, we were unable to confirm this hypothesis. Looking at the symbiont, however, two new 16S haplotypes were found exclusively in the populations from Tunisia. This finding is discussed in the frame of host-symbiont specificity and transmission mode. To understand olive fruit fly population diversity and dispersion, the dynamics of the symbiont also needs to be taken into consideration, as it enables the fly to, so efficiently and uniquely, exploit the olive fruit resource.


Subject(s)
Erwinia/physiology , Tephritidae/microbiology , Animals , DNA, Bacterial/genetics , DNA, Mitochondrial/genetics , Haplotypes , Mediterranean Region , Phylogeny , Symbiosis , Tephritidae/physiology
9.
J Insect Physiol ; 134: 104308, 2021 10.
Article in English | MEDLINE | ID: mdl-34474015

ABSTRACT

The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.


Subject(s)
Body Composition , Feeding Behavior/physiology , Sex Factors , Tephritidae , Animals , Carbohydrate Metabolism , Diptera/microbiology , Diptera/physiology , Female , Fertility , Gastrointestinal Microbiome , Host Microbial Interactions , Larva/microbiology , Larva/physiology , Male , Tephritidae/microbiology , Tephritidae/physiology
10.
Environ Microbiol ; 23(9): 5587-5604, 2021 09.
Article in English | MEDLINE | ID: mdl-34390609

ABSTRACT

Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer. Here, we performed whole-genome sequencing of field-caught Wolbachia-positive flies. Unexpectedly, we found complete mitogenomes of an endoparasitic strepsipteran, Dipterophagus daci, suggesting that Wolbachia in the flies are linked to concealed parasitization. We performed the first genetic characterization of D. daci and detected D. daci in Wolbachia-positive flies not visibly parasitized, and most but not all Wolbachia-negative flies were D. daci-negative, presumably reflecting polymorphism for the Wolbachia infections in D. daci. We dissected D. daci from stylopized flies and confirmed that Wolbachia infects D. daci, but also found Wolbachia in stylopized fly tissues, likely somatic, horizontally transferred, non-heritable infections. Furthermore, no Wolbachia cif and wmk genes were detected and very low mitogenomic variation in D. daci across its distribution. Therefore, Wolbachia may influence host fitness without reproductive manipulation. Our study of 13 tephritid species highlights that concealed early stages of strepsipteran parasitization led to the previous incorrect assignment of Wolbachia co-infections to tephritid species, obscuring ecological studies of this common endosymbiont and its horizontal transmission by parasitoids.


Subject(s)
Symbiosis , Tephritidae , Wolbachia , Animals , Australia , Tephritidae/microbiology , Wolbachia/genetics
11.
Bull Entomol Res ; 111(3): 379-384, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33541447

ABSTRACT

The olive fruit fly, Bactrocera oleae, the most serious pest of olives, requires the endosymbiotic bacteria Candidatus Erwinia dacicola in order to complete its development in unripe green olives. Hence a better understanding of the symbiosis of Ca. E. dacicola and its insect host may lead to new strategies for reduction of B. oleae and thus minimize its economic impact on olive production. Studies of this symbiosis are hampered as the bacterium cannot be grown in vitro and the established B. oleae laboratory populations, raised on artificial diets, are devoid of this bacterium. Here, we sought to develop a method to transfer the bacteria from wild samples to laboratory populations. We tested several strategies. Cohabitation of flies from the field with the laboratory line did not result in a stable transfer of bacteria. We provided the bacteria directly to the egg and also in the food of the larvae but neither approach was successful. However, a robust method for transfer of Ca. E. dacicola from wild larvae or adults to uninfected flies by transplantation to females was established. Single female lines were set up and the bacteria were successfully transmitted for at least three generations. These results open up the possibilities to study the interaction between the symbiont and the host under controlled conditions, in view of both understanding the molecular underpinnings of an exciting, unique in nature symbiotic relationship, as well as developing novel, innovative control approaches.


Subject(s)
Erwinia/growth & development , Tephritidae/microbiology , Animals , Crops, Agricultural , Insect Control , Laboratories , Olea , Pest Control , Symbiosis
12.
Insect Sci ; 28(4): 874-884, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32519794

ABSTRACT

Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)-the olive fruit fly-is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae-Ca. E. dacicola, or other B. oleae-microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid-microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.


Subject(s)
Bacteria , Olea , Pest Control, Biological , Tephritidae/microbiology , Animals , Bacteria/genetics , Bacteria/pathogenicity , Crops, Agricultural , Genes, Bacterial , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Symbiosis
13.
Insect Sci ; 28(2): 363-376, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32091660

ABSTRACT

Fruit flies usually harbor diverse communities of bacteria in their digestive systems, which are known to play a significant role in their fitness. However, little information is available on Zeugodacus tau, a polyphagous pest worldwide. This study reports the first extensive analysis of bacterial communities in different life stages and their effect on the development and reproduction of laboratory-reared Z. tau. Cultured bacteria were identified using the conventional method, and all bacteria were identified by high-throughput technologies (16S ribosomal RNA gene sequencing of V3-V4 region). A total of six bacterial phyla were identified in larvae, pupae, and male and female adult flies, which were distributed into 14 classes, 32 orders, 58 families and 96 genera. Proteobacteria was the most represented phylum in all the stages except larvae. Enterobacter, Klebsiella, Providencia, and Pseudomonas were identified by conventional and next-generation sequencing analysis in both male and female adult flies, and Enterobacter was found to be the main genus. After being fed with antibiotics from the first instar larvae, bacterial diversity changed markedly in the adult stage. Untreated flies laid eggs and needed 20 days before oviposition while the treated flies showed ovary development inhibited and were not able to lay eggs, probably due to the alteration of the microbiota. These findings provide the cornerstone for unexplored research on bacterial function in Z. tau, which will help to develop an environmentally friendly management technique for this kind of harmful insect.


Subject(s)
Bacteria/isolation & purification , Microbiota , Tephritidae/microbiology , Tephritidae/physiology , Animals , Bacteria/classification , Female , High-Throughput Nucleotide Sequencing , Larva/growth & development , Larva/microbiology , Male , Ovum/growth & development , Ovum/microbiology , Pupa/growth & development , Pupa/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Reproduction , Tephritidae/growth & development
14.
BMC Genet ; 21(Suppl 2): 138, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339499

ABSTRACT

BACKGROUND: Bactrocera dorsalis is a destructive polyphagous and highly invasive insect pest of tropical and subtropical species of fruit and vegetable crops. The sterile insect technique (SIT) has been used for decades to control insect pests of agricultural, veterinary, and human health importance. Irradiation of pupae in SIT can reduce the ecological fitness of the sterile insects. Our previous study has shown that a gut bacterial strain BD177 that could restore ecological fitness by promoting host food intake and metabolic activities. RESULTS: Using long-read sequence technologies, we assembled the complete genome of K. michiganensis BD177 strain. The complete genome of K. michiganensis BD177 comprises one circular chromosome and four plasmids with a GC content of 55.03%. The pan-genome analysis was performed on 119 genomes (strain BD177 genome and 118 out of 128 published Klebsiella sp. genomes since ten were discarded). The pan-genome includes a total of 49305 gene clusters, a small number of 858 core genes, and a high number of accessory (10566) genes. Pan-genome and average nucleotide identity (ANI) analysis showed that BD177 is more similar to the type strain K. michiganensis DSM2544, while away from the type strain K. oxytoca ATCC13182. Comparative genome analysis with 21 K. oxytoca and 12 K. michiganensis strains, identified 213 unique genes, several of them related to amino acid metabolism, metabolism of cofactors and vitamins, and xenobiotics biodegradation and metabolism in BD177 genome. CONCLUSIONS: Phylogenomics analysis reclassified strain BD177 as a member of the species K. michiganensis. Comparative genome analysis suggested that K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis. The clear classification status of BD177 strain and identification of unique genetic characteristics may contribute to expanding our understanding of the symbiotic relationship of gut microbiota and B. dorsalis.


Subject(s)
Genome, Bacterial , Klebsiella/genetics , Symbiosis , Tephritidae/microbiology , Animals , Comparative Genomic Hybridization , Gastrointestinal Microbiome , Phenotype , Phylogeny , RNA, Ribosomal, 16S/genetics
15.
Sci Rep ; 10(1): 16550, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024226

ABSTRACT

Bactrocera tryoni (Froggatt), the Queensland fruit fly (Qfly), is a highly polyphagous tephritid fly that is widespread in Eastern Australia. Qfly physiology is closely linked with its fungal associates, with particular relationship between Qfly nutrition and yeast or yeast-like fungi. Despite animal-associated fungi typically occurring in multi-species communities, Qfly studies have predominately involved the culture and characterisation of single fungal isolates. Further, only two studies have investigated the fungal communities associated with Qfly, and both have used culture-dependant techniques that overlook non-culturable fungi and hence under-represent, and provide a biased interpretation of, the overall fungal community. In order to explore a potentially hidden fungal diversity and complexity within the Qfly mycobiome, we used culture-independent, high-throughput Illumina sequencing techniques to comprehensively, and holistically characterized the fungal community of Qfly larvae and overcome the culture bias. We collected larvae from a range of fruit hosts along the east coast of Australia, and all had a mycobiome dominated by ascomycetes. The most abundant fungal taxa belonged to the genera Pichia (43%), Candida (20%), Hanseniaspora (10%), Zygosaccharomyces (11%) and Penicillium (7%). We also characterized the fungal communities of fruit hosts, and found a strong degree of overlap between larvae and fruit host communities, suggesting that these communities are intimately inter-connected. Our data suggests that larval fungal communities are acquired from surrounding fruit flesh. It is likely that the physiological benefits of Qfly exposure to fungal communities is primarily due to consumption of these fungi, not through syntrophy/symbiosis between fungi and insect 'host'.


Subject(s)
Fruit/microbiology , Host Microbial Interactions/physiology , Larva/microbiology , Mycobiome/physiology , Symbiosis , Tephritidae/microbiology , Animals , Ascomycota/isolation & purification , Ascomycota/physiology , Australia , Candida/isolation & purification , Candida/physiology , Hanseniaspora/isolation & purification , Hanseniaspora/physiology , Penicillium/isolation & purification , Penicillium/physiology , Pichia/isolation & purification , Pichia/physiology , Zygosaccharomyces/isolation & purification , Zygosaccharomyces/physiology
16.
BMC Microbiol ; 20(1): 321, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087056

ABSTRACT

BACKGROUND: Symbiotic interactions between insects and bacteria have been associated with a vast variety of physiological, ecological and evolutionary consequences for the host. A wide range of bacterial communities have been found in association with the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), an important pest of cultivated fruit in most regions of the world. We evaluated the diversity of gut bacteria in B. dorsalis specimens from several populations in Kenya and investigated the roles of individual bacterial isolates in the development of axenic (germ-free) B. dorsalis fly lines and their responses to the entomopathogenic fungus, Metarhizium anisopliae. RESULTS: We sequenced 16S rRNA to evaluate microbiomes and coupled this with bacterial culturing. Bacterial isolates were mono-associated with axenic B. dorsalis embryos. The shortest embryonic development period was recorded in flies with an intact gut microbiome while the longest period was recorded in axenic fly lines. Similarly, larval development was shortest in flies with an intact gut microbiome, in addition to flies inoculated with Providencia alcalifaciens. Adult B. dorsalis flies emerging from embryos that had been mono-associated with a strain of Lactococcus lactis had decreased survival when challenged with a standard dosage of M. anisopliae ICIPE69 conidia. However, there were no differences in survival between the germ-free lines and flies with an intact microbiome. CONCLUSIONS: These findings will contribute to the selection of probiotics used in artificial diets for B. dorsalis rearing and the development of improved integrated pest management strategies based on entomopathogenic fungi.


Subject(s)
Bacteria/classification , Pest Control, Biological , RNA, Ribosomal, 16S/genetics , Tephritidae/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Gastrointestinal Microbiome , Kenya , Lactococcus lactis/isolation & purification , Metarhizium/genetics , Phylogeny , Providencia/isolation & purification , Symbiosis
17.
BMC Microbiol ; 20(1): 307, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046014

ABSTRACT

BACKGROUND: Olive production is the main agricultural activity in Tunisia. The diversity of fungi was explored in two different olive groves located in two distant geographical zones in Sfax (Tunisia) with different management practices. RESULTS: Fungal isolation was made from soil and the major olive tree pests, namely the Olive fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), and the Olive psyllid, Euphyllura olivina Costa (Homoptera: Psyllidae). A total of 34 fungal isolates were identified according to their phenotypic, genotypic, biochemical and biological activities. Twenty fungal species were identified belonging to six different genera (Alternaria, Aspergillus, Cladosporium, Fusarium, Lecanicillium and Penicillium) by the analysis of their ITS1-5.8S-ITS2 ribosomal DNA region. Different bioassays performed in this work revealed that 25/34 (73.5%) of the identified fungal isolates showed an entomopathogenic and/or antagonistic activity, 9/34 (26.5%) of them displayed phytopathogenic features. CONCLUSIONS: Fungal species that showed entomopathogenic and/or antagonistic potentialities and that are non-phytopathogenic, (17/34; 50%) of our fungal isolates, could be explored for olive protection against fungal diseases and pests, and might have a future application as biocontrol agents.


Subject(s)
Fungi/genetics , Fungi/physiology , Olea/microbiology , Tephritidae/microbiology , Agriculture , Animals , Fungi/classification , Fungi/isolation & purification , Pest Control, Biological , Soil Microbiology , Tunisia
18.
Adv Exp Med Biol ; 1195: 21-32, 2020.
Article in English | MEDLINE | ID: mdl-32468454

ABSTRACT

Pesticides are necessary to fight agricultural pests, yet they are often nonspecific, and their widespread use is a hazard to the environment and human health. The genomic era allows for new approaches to specifically target agricultural pests, based on analysis of their genome and their microbiome. We present such an approach, to combat Bactrocera oleae, a widespread pest whose impact is devastating on olive production. To date, there is no specific pesticide to control it. Herein, we propose a novel strategy to manage this pest via identifying novel pharmacological targets on the genome of its obligate endosymbiotic bacterium Candidatus Erwinia dacicola. Three genes were selected as pharmacological targets. The 3D models of the Helicase, Polymerase, and Protease-C gene products were designed and subsequently optimized by means of molecular dynamics simulations. Successively, a series of structure-based pharmacophore models were elucidated in an effort to pave the way for the efficient high-throughput virtual screening of libraries of low molecular weight compounds and thus the discovery of novel modulating agents. Our methodology provides the means to design, test, and identify highly specific pest control substances that minimize the impact of toxic chemicals on health, economy, and the environment.


Subject(s)
Erwinia/drug effects , Microbiota/drug effects , Pest Control/methods , Symbiosis/drug effects , Tephritidae/drug effects , Tephritidae/microbiology , Animals
19.
PLoS Pathog ; 16(4): e1008441, 2020 04.
Article in English | MEDLINE | ID: mdl-32294136

ABSTRACT

Gut symbiotic bacteria have a substantial impact on host physiology and ecology. However, the contribution of gut microbes to host fitness during long-term low-temperature stress is still unclear. This study examined the role of gut microbiota in host low-temperature stress resistance at molecular and biochemical levels in the oriental fruit fly Bactrocera dorsalis. The results showed that after the gut bacteria of flies were removed via antibiotic treatment, the median survival time was significantly decreased to approximately 68% of that in conventional flies following exposure to a temperature stress of 10°C. Furthermore, we found that Klebsiella michiganensis BD177 is a key symbiotic bacterium, whose recolonization in antibiotic treated (ABX) flies significantly extended the median survival time to 160% of that in the ABX control, and restored their lifespan to the level of conventional flies. Notably, the relative levels of proline and arginine metabolites were significantly downregulated by 34- and 10-fold, respectively, in ABX flies compared with those in the hemolymph of conventional flies after exposure to a temperature stress of 10°C whereas recolonization of ABX flies by K. michiganensis BD177 significantly upregulated the levels of proline and arginine by 13- and 10- fold, respectively, compared with those found in the hemolymph of ABX flies. qPCR analysis also confirmed that K. michiganensis-recolonized flies significantly stimulated the expression of transcripts from the arginine and proline metabolism pathway compared with the ABX controls, and RNAi mediated silencing of two key genes Pro-C and ASS significantly reduced the survival time of conventional flies, postexposure low-temperature stress. We show that microinjection of L-arginine and L-proline into ABX flies significantly increased their survival time following exposure to temperature stress of 10°C. Transmission electron microscopy (TEM) analysis further revealed that low-temperature stress caused severe destruction in cristae structures and thus resulted in abnormal circular shapes of mitochondria in ABX flies gut, while the recolonization of live K. michiganensis helped the ABX flies to maintain mitochondrial functionality to a normal status, which is important for the arginine and proline induction. Our results suggest that gut microbiota plays a vital role in promoting the host resistance to low-temperature stress in B. dorsalis by stimulating its arginine and proline metabolism pathway.


Subject(s)
Arginine/metabolism , Gastrointestinal Microbiome , Proline/metabolism , Tephritidae/microbiology , Animals , Cold Temperature , Klebsiella/genetics , Klebsiella/growth & development , Klebsiella/isolation & purification , Klebsiella/physiology , Male , Stress, Physiological , Symbiosis , Tephritidae/physiology
20.
Curr Microbiol ; 77(7): 1283-1291, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32130504

ABSTRACT

Insects have established close relationships with a wide variety of microorganisms, which play a key role in insect ecology and evolution. Fruit flies in the Tephritidae family have economic importance at the global level, including species such as Anastrepha obliqua, which is an important pest in the neotropical region. Although several studies have been performed on the microbiota associated with fruit flies, there are still large gaps in our knowledge about the bacterial communities on the genus Anastrepha. During this study, we used high-throughput sequencing to characterize the bacterial communities of the polyphagous fly A. obliqua, and we evaluated the effect of the life stage (larvae and adults) and host plant (three plant species) on the structure of these communities. Our results show that the bacterial communities in A. obliqua appears to be structured according to the insect life stage and the host plant. The predominant genera belonging to the phylum Proteobacteria were Wolbachia and Enterobacter in both larvae and adults, and they displayed differences in abundance between them, with Wolbachia sp. being more abundant in larvae and Enterobacter sp. being more abundant in adults. Differences in the structures of the bacterial communities were also observed according to the host plant with higher abundance of Enterobacter and Acetobacter bacteria in mango and plum fruits. Based on our results, it can be hypothesized that the bacterial communities on A. obliqua reorganize according to the needs of these insects during their different life stages and could also play an important role in the establishment of this fly species on different host plants. This study represents the first approach to understanding microorganism-insect interactions in fruit flies in Colombia.


Subject(s)
Larva/microbiology , Magnoliopsida/microbiology , Metagenome/genetics , Microbiota/genetics , Tephritidae/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Fruit/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...