Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 806
Filter
1.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696111

ABSTRACT

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Subject(s)
Antimalarials , Green Chemistry Technology , Metal Nanoparticles , Plant Extracts , Plant Leaves , Plasmodium falciparum , Silver , Terminalia , Silver/chemistry , Silver/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Metal Nanoparticles/chemistry , Terminalia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plasmodium falciparum/drug effects , Molecular Docking Simulation , Humans
2.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2441-2450, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812143

ABSTRACT

This study aims to explore the correlation between intestinal toxicity and composition changes of Euphorbia ebracteolata before and after Terminalia chebula soup(TCS) processing. Intragastric administration was performed on the whole animal model. By using fecal water content, inflammatory causes, and pathological damage of different parts of the intestinal tract of mice as indexes, the differences in intestinal toxicity of dichloromethane extraction of raw E. ebracteolata(REDE), dichloromethane extraction of TCS, and dichloromethane extraction of E. ebracteolata after simulated TCS processing(STREDE) were compared, so as to investigate the effect of TCS processing on the intestinal toxicity of E. ebracteolata. At the same time, the component databases of E. ebracteolata and T. chebula were constructed, and the composition changes of diterpenoids, tannins, and phenolic acids in the three extracted parts were analyzed by HPLC-TOF-MS. HPLC was used to compare the content of four diterpenoids including ent-11α-hydroxyabicta-8(14), 13(15)-dien-16, 12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and jolkinolide E(JNE) in the E. ebracteolata before and after processing and the residue of container wall after processing, so as to investigate the effect of TCS processing on the content and structure of the diterpenoids. The results showed that the REDE group could significantly increase the fecal water content and the release levels of TNF-α and IL-1ß from each intestinal segment, and intestinal tissue damage was accompanied by significant infiltration of inflammatory cells. However, compared with the REDE group, the intestinal tissue damage in the STREDE group was alleviated, and the infiltration of inflammatory cells decreased. The intestinal toxicity significantly decreased. Mass spectrometry analysis showed that there was no significant difference in the content of diterpenoids of REDE before and after simulated TCS processing, but a large number of tannins and phenolic acids were added. The results of HPLC showed that the content of four diterpenoids of E. ebracteo-lata decreased to varying degrees after TCS processing, ranging from-0.35% to-19.74%, and the decreased part mainly remained in the container wall, indicating that the structure of toxic diterpenoids of E. ebracteolata was not changed after TCS processing. The antagonistic effect of tannic and phenolic acids in the TCS may be the main reason for the reduced intestinal toxicity of E. ebracteolata after TCS processing. The TCS processing for E. ebracteolata is scientific.


Subject(s)
Drugs, Chinese Herbal , Euphorbia , Terminalia , Euphorbia/chemistry , Animals , Terminalia/chemistry , Mice , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Male , Intestines/drug effects , Intestines/chemistry , Chromatography, High Pressure Liquid , Humans
3.
Molecules ; 29(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792262

ABSTRACT

Chebulae Fructus (CF) is known as one of the richest sources of hydrolyzable tannins (HTs). In this study, ultra-performance liquid chromatography coupled with a photodiode array detector method was established for simultaneous determination of the 12 common phenolcarboxylic and tannic constituents (PTCs). Using this method, quantitative analysis was accomplished in CF and other four adulterants, including Terminaliae Belliricae Fructus, Phyllanthi Fructus, Chebulae Fructus Immaturus, and Canarii Fructus. Based on a quantitative analysis of the focused compounds, discrimination of CF and other four adulterants was successfully accomplished by hierarchical cluster analysis and principal component analysis. Additionally, the total contents of the 12 compounds that we focused on in this study were unveiled as 148.86 mg/g, 96.14 mg/g, and 18.64 mg/g in exocarp, mesocarp, and endocarp and seed of CF, respectively, and PTCs were witnessed to be the most abundant in the exocarp of CF. Noticeably, the HTs (chebulagic acid, chebulanin acid, chebulinic acid, and punicalagin) were observed to be ultimately degraded to chebulic acid, gallic acid, and ellagic acid during sunlight-drying of the fresh fruits. As a result, our study indicated that CF and its adulterants could be distinguished by the observed 12 PTCs, which were mainly distributed in the exocarp of the fruits. The HTs were prone to degrade into the three simple phenolcarboxylic acids during drying or processing, allowing us to obtain a more comprehensive understanding of the PTCs, with great significance in the improved quality of CF and related products.


Subject(s)
Fruit , Hydrolyzable Tannins , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/analysis , Fruit/chemistry , Chromatography, High Pressure Liquid , Terminalia/chemistry , Tannins/analysis , Tannins/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis
4.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38602234

ABSTRACT

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Subject(s)
Dental Bonding , Terminalia , Humans , Dental Cements/pharmacology , Dental Cements/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Composite Resins/chemistry , Dentin , Tensile Strength , Resin Cements/pharmacology , Resin Cements/chemistry , Water/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing
5.
BMC Complement Med Ther ; 24(1): 137, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566161

ABSTRACT

BACKGROUND: A study carried out by World Health Organization revealed that around 80% of individuals globally depends on herbal forms of medication with 40% of pharmaceutical products being sourced from medicinal plants. The study objective was to evaluate the phytochemicals composition, in vitro antimicrobial and antioxidant properties of the leaves of Terminalia catappa L. aqueous and methanolic extracts. METHODS: Antimicrobial activity was analyzed by disk diffusion, the minimum inhibitory concentration in-vitro assays with ciprofloxacin as the standard for antibacterial assay while nystatin for antifungal assay. Ferric reducing antioxidant power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate assays were used for the evaluation of antioxidant properties of the crude extracts while the groups responsible for this activity identified using Fourier transform infrared spectrophotometer. RESULTS: The study found that the leaves of Terminalia catappa contained alkaloids, tannins, steroids, cardiac glycosides, flavonoids, phenols, saponins, and coumarins, but terpenoids were absent. Presence of functional groups associated with this class of compounds such as OH vibrational frequencies were observed in IR spectrum of the crude extracts. Methanolic extract from Terminalia catappa exhibited greater antibacterial properties against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus, whereas aqueous extract displayed greater antibacterial activity against Bacillus subtilis for all concentrations tested. The amount of the sample that scavenged 50 percent of DPPH (IC50) was found to be 8.723, 13.42 and 13.04 µg/mL for L-ascorbic acid, Terminalia catappa L. methanolic and aqueous extracts respectively. The antimicrobial and antioxidant activities varied with the extract concentration and solvent used in extractions. CONCLUSION: Terminalia catappa L. leaves are prospective for use as a source of therapeutic agents that could lead to the advancement of new antimicrobial and antioxidant products.


Subject(s)
Anti-Infective Agents , Terminalia , Humans , Antioxidants/chemistry , Methanol , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Prospective Studies , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Water
6.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624258

ABSTRACT

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Down-Regulation , Plant Extracts , Plants, Medicinal , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Plants, Medicinal/chemistry , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Terminalia/chemistry , Mucuna/chemistry
7.
Inflammopharmacology ; 32(3): 1839-1853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581641

ABSTRACT

Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1ß, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Cytokines , Dinoprostone , Down-Regulation , NF-kappa B , Plant Extracts , Plant Leaves , Terminalia , Mice , Animals , NF-kappa B/metabolism , RAW 264.7 Cells , Plant Extracts/pharmacology , Dinoprostone/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Terminalia/chemistry , Down-Regulation/drug effects , Cyclooxygenase 2/metabolism , Plant Leaves/chemistry , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Fruit/chemistry
8.
Environ Entomol ; 53(2): 230-236, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38437574

ABSTRACT

Terminalia argentea Mart. (Combretaceae), native to Brazil, is used in habitat restoration programs. Arthropods are bioindicators because their populations reflect changes in the environment. We evaluated the recovery of a degraded area by using ecological indices and analyzing arthropod interactions on T. argentea plants. The richness and diversity of sap-sucking Hemiptera and the abundance of tending ants and Sternorrhyncha predators increased with the number of T. argentea leaves. The correlation of the abundance of tending ants and Sternorrhyncha predators was positive with that of the sap-sucking Hemiptera, and the abundance of Sternorrhyncha predators was negative with that of tending ants and sap-sucking Hemiptera. The positive correlation between the abundance, richness, and diversity of insect groups and numbers of T. argentea leaves is an example of the bottom-up regulation mechanism, with the population dynamics of the lower trophic levels dictating those of higher trophic levels. The contribution of T. argentea, a host plant of many arthropods, to the recovery of ecological relationships between organisms in degraded ecosystems is important.


Subject(s)
Ants , Arthropods , Combretaceae , Hemiptera , Myrtales , Terminalia , Animals , Ecosystem , Trees , Insecta/physiology , Hemiptera/physiology , Ants/physiology , Plants
9.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543020

ABSTRACT

Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity of T. canescens. In this study, T. canescens was screened against a panel of bacterial pathogens, including multi-antibiotic-resistant strains. Solvents with different polarities were used to extract different complements of phytochemicals from T. canescens leaves. Methanolic and aqueous extracts exhibited substantial antimicrobial activity against various pathogens, including those that are multidrug-resistant strains. When combined with some selected clinical antibiotics, some extracts potentiated the antibacterial inhibitory activity. This study identified two synergistic, eleven additive, eleven non-interactive and eight antagonistic interactions. The toxicities of the plant extracts were examined in the Artemia franciscana nauplii assay and were found to be non-toxic, except the aqueous extract, which showed toxicity. Metabolomic liquid chromatography-mass spectrometry (LC-MS) analyses highlighted and identified several flavonoids, including vitexin, quercetin, orientin and kaempferol, as well as the tannins ellagic acid and pyrogallol, which may contribute to the antibacterial activities observed herein. The possible mechanism of action of these extracts was further explored in this study.


Subject(s)
Anti-Bacterial Agents , Terminalia , Anti-Bacterial Agents/pharmacology , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Bacteria , beta-Lactams , Microbial Sensitivity Tests
10.
J Vasc Nurs ; 42(1): 53-59, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38555178

ABSTRACT

INTRODUCTION: Chronic venous insufficiency (CVI) manifests in various clinical presentations ranging from asymptomatic but cosmetic problems to severe symptoms, such as lower limb edema, skin trophic changes, and ulceration. CVI substantially affects the quality of life and work productivity of the patients. Ayurveda, an ancient traditional medicine in India, evaluates the various pathological stages of CVI with a wide range of pathological conditions such as Siragranthi (venous abnormalities), Raktavaritavata (disorders of vata occluded by rakta ∼ blood), ApanaVaigunya (vitiated apanavayu), Arsha (hemorrhoids), VataRakta (rheumatism due to rakta), Kushtha (integumentary disease) and Dushta Vrana (putrefied wound) depending upon the presentations of the patient. Ayurvedic texts mention Terminalia arjuna as a potential herb for treating various conditions related to the circulatory system. The drug is an effective anti-inflammatory, anti-oxidant, and anti-hypertensive and has a definite role in improving cardiovascular hemodynamics and wound healing. These attributes suggest that the potential of Terminalia arjuna needs to be explored as a promising venoactive drug. METHODS: This prospective observational study included 25 patients (31 limbs) with CVI who were treated with Tab Terminalia arjuna (Bark extract of Terminalia arjuna in a dose of 500 mg, given twice a day) and were observed on two visits on day 30 and day 90. Follow-up was carried out for three months to evaluate post-treatment complications or adverse effects. The clinical outcome assessment was done using Venous Clinical Severity Score (VCSS), and clinical grading was performed using clinical classification (C0 - C6) of CEAP (Clinical-Etiology-Anatomy-Pathophysiology) classification. RESULTS: The median VCSS score (of both limbs) during the third visit was comparatively lower than the first, with a statistically significant improvement at 0.05 level. Further, there was a substantial positive improvement in the clinical classification of CEAP among the patients in pre and post treatment phase. CONCLUSION: The prospective observational study shows that Tab Terminalia arjuna is safe and effective in CVI, reducing the symptoms like pain, edema, inflammation, pigmentation, induration and also expediting ulcer healing.


Subject(s)
Terminalia , Venous Insufficiency , Humans , Quality of Life , Venous Insufficiency/drug therapy , Antihypertensive Agents/therapeutic use , Edema/drug therapy
11.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474673

ABSTRACT

1,3,6-Trigalloylglucose is a natural compound that can be extracted from the aqueous extracts of ripe fruit of Terminalia chebula Retz, commonly known as "Haritaki". The potential anti-Helicobacter pylori (HP) activity of this compound has not been extensively studied or confirmed in scientific research. This compound was isolated using a semi-preparative liquid chromatography (LC) system and identified through Ultra-high-performance liquid chromatography-MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR). Its role was evaluated using Minimum inhibitory concentration (MIC) assay and minimum bactericidal concentration (MBC) assay, scanning electron microscope (SEM), inhibiting kinetics curves, urea fast test, Cell Counting Kit-8 (CCK-8) assay, Western blot, and Griess Reagent System. Results showed that this compound effectively inhibits the growth of HP strain ATCC 700392, damages the HP structure, and suppresses the Cytotoxin-associated gene A (Cag A) protein, a crucial factor in HP infection. Importantly, it exhibits selective antimicrobial activity without impacting normal epithelial cells GES-1. In vitro studies have revealed that 1,3,6-Trigalloylglucose acts as an anti-adhesive agent, disrupting the adhesion of HP to host cells, a critical step in HP infection. These findings underscore the potential of 1,3,6-Trigalloylglucose as a targeted therapeutic agent against HP infections.


Subject(s)
Helicobacter pylori , Terminalia , Plant Extracts/chemistry , Terminalia/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Water
12.
Inflammopharmacology ; 32(2): 1439-1460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329710

ABSTRACT

Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), ß-amyloid (Aß) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.


Subject(s)
Diabetes Mellitus, Experimental , Terminalia , Rats , Animals , Diabetes Mellitus, Experimental/drug therapy , Isoenzymes , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Terminalia/chemistry , Brain , Epigenesis, Genetic , Fruit
13.
BMC Plant Biol ; 24(1): 140, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413882

ABSTRACT

BACKGROUND: Drought and heat stress are significant concerns to food security in arid and semi-arid regions, where global warming is predicted to increase both frequency and severity. To cope with these challenges, the use of drought-tolerant plants or technological interventions are essential. In this study, the effects of foliar potassium nitrate (KNO3) application on the stress tolerance and recovery of Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.) were evaluated. These rootstocks are widely recognized for their adaptability and are extensively used in fruit production. To assess their response, the rootstocks were subjected to drought, heat shock, or a combination of both stressors. Additionally, they were treated with 1.0% KNO3 via foliar application. Throughout the stress and recovery periods, various morphological, physiological, and bio-chemical parameters were measured. RESULTS: Based on our results, KNO3 treatment improved LRWC, Chl stability, SC, and key stress markers like proline, MDA, H2O2, along with antioxidant enzymes CAT, SOD, POD during both stress and recovery phases. Moreover, our results emphasized KNO3's critical role in hormone regulation under stress. KNO3 application significantly altered hormone levels, notably increasing ABA during drought and heat shock stress, essential for stress response and adaptation. In contrast, IAA, GA, and cytokinin's significantly increased during the recovery phase in KNO3-treated plants, indicating improved growth regulation and stress recovery. In addition, KNO3 application improved the recovery process of the rootstocks by restoring their physiological and biochemical functions. CONCLUSION: This study suggests that the application of foliar KNO3 is an effective technique for enhancing the drought and heat tolerance as well as the recovery of Myrobalan 29C rootstocks. These results hold significant value for farmers, policymakers, and researchers, as they offer crucial insights into the development of drought-tolerant crops and the management of climate change's adverse effects on agriculture.


Subject(s)
Nitrates , Potassium Compounds , Stress, Physiological , Terminalia , Droughts , Hydrogen Peroxide/pharmacology , Heat-Shock Response , Hormones/pharmacology
14.
Carbohydr Polym ; 329: 121798, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286562

ABSTRACT

Shrimp, a globally consumed perishable food, faces rapid deterioration during storage and marketing, causing nutritional and economic losses. With a rising environmental consciousness regarding conventional plastic packaging, consumers seek sustainable options. Utilizing natural waste resources for packaging films strengthens the food industry. In this context, we aim to create chitosan-based active films by incorporating Terminalia catappa L. leaves extract (TCE) to enhance barrier properties and extend shrimp shelf life under refrigeration. Incorporation of TCE improves mechanical, microstructural, UV, and moisture barrier properties of the chitosan film due to cross-linking interactions, resulting in robust, foldable packaging film. Active TCE film exhibits high antioxidant property due to polyphenols. These films also exhibited low wettability and showed hydrophobicity than neat CH films which is essential for meat packaging. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. TCE-loaded films effectively control spoilage organisms, prevent biochemical spoilage, and maintain shrimp freshness compared to neat CH films during refrigerated condition. The active TCE film retains sensory attributes better than neat chitosan, aligning with consumer preference. The developed edible and active film from waste sources might offer sustainable, alternative packaging material with a lower carbon footprint than petroleum-based sources.


Subject(s)
Chitosan , Terminalia , Food Packaging/methods , Chitosan/chemistry , Meat , Seafood
15.
PLoS One ; 19(1): e0287840, 2024.
Article in English | MEDLINE | ID: mdl-38165984

ABSTRACT

Tropical almond (Terminalia catappa Linn.) is highly distributed within the tropics, but appears rather underutilized in developing countries like Nigeria. Specifically, relevant information regards the nutritional, health benefits, and pharmaceutical potential of roasted T. catappa nuts remains scanty. Comparing both raw and roasted T. catappa nuts should provide additional information especially from product development and potential commercial prospect standpoints. The changes in nutritional, health benefits, and pharmaceutical potentials of raw and roasted T. catappa nuts were, therefore, investigated. Whereas the raw T. catappa nuts obtained significantly (p < 0.05) higher protein, ash, moisture, crude fiber, as well as vitamins C, and B1-3 compared to the roasted ones, some contents like carbohydrates, energy, vitamin A, calcium, manganese, zinc, hydrogen cyanide, as well as oxalate would noticeably change (p < 0.05) after the roasting process. Twenty phytochemicals were identified in both raw and roasted samples with the concentrations of quinine, ribalinidine, sapogenin, flavan-3-ol and tannin significantly reduced, while catechin seemed enhanced upon roasting. Promising drug-likeness, pharmacokinetic properties, and safety profiles could be predicted among the phytochemicals. Overall, roasting T. catappa nuts should enhance the nutritional contents, which could aid both absorption and palatability.


Subject(s)
Nuts , Terminalia , Nigeria , Nuts/chemistry
16.
J Ethnopharmacol ; 322: 117579, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38104882

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic ulcers (DUs) are commonly seen in the lower limbs, especially the feet. Long-term hyperglycaemia in diabetic patients may cause peripheral microvascular damage, which affects local blood flow reconstruction when the skin is ruptured. This results in delayed or even non-healing of skin wounds. Chebulae Fructus Immaturus (CFI) is a traditional Chinese medicine. According to traditional Chinese medicine theory, CFI belongs to the lung channel and large intestine channel. Clinical data confirm a significant clinical effect of CFI in the treatment of skin diseases. CFI can be safely used to treat wounds due to its natural active ingredients. AIM OF THE STUDY: This study utilised HPLC-ESI-QTOF-MS/MS combined with network pharmacology to investigate the mechanism of Chebulae Fructus Immaturus extract (CFIE) in the treatment of DU. Moreover, the efficacy of CFIE on DU was verified in vitro and in vivo by constructing cell models and mouse models. MATERIALS AND METHODS: The main ingredients of CFIE were identified by HPLC-ESI-QTOF-MS/MS. The targets of these ingredients were predicted by database analysis and intersected with the DU targets. Gene ontology (GO) was used for functional enrichment of differential genes, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for enrichment of signalling pathways related to the differential genes. The network pharmacology findings were validated in vivo and in vitro, and the affinity of key targets and active components was assessed using molecular docking. RESULTS: Twenty-nine compounds of CFIE were identified by HPLC-ESI-QTOF-MS/MS, and their potential targets were predicted. Among these, 41 targets were associated with DU. KEGG enrichment analysis showed that the PI3K/AKT and HIF-1α signalling pathways were significantly enriched, which may be related to the promotion of wound angiogenesis. In vitro cell experiments showed that CFIE promoted the proliferation, migration and angiogenesis of HUVECs, and also affected the expression of pathway-related proteins. In vivo experiments showed that CFIE increased the expression of pathway-related proteins in wound tissue and promoted the formation of blood vessels. CONCLUSIONS: In summary, this study systematically demonstrated the possible therapeutic effects and mechanisms of CFIE on DU through network pharmacology analysis and experimental verification. The results revealed that CFIE can accelerate the angiogenesis of diabetic wounds through the PI3K/AKT and HIF-1α signalling pathways, ultimately promoting the healing of diabetic wounds.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Plant Extracts , Terminalia , Animals , Mice , Humans , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Tandem Mass Spectrometry , Wound Healing , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
17.
J Ethnopharmacol ; 322: 117678, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38159820

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperuricemic nephropathy (HN) is a renal injury caused by hyperuricemia and is the main cause of chronic kidney disease and end-stage renal disease. ShiWeiHeZiSan, which is composed mainly of components of Terminalia chebula Retz. And is recorded in the Four Medical Tantras, is a typical traditional Tibetan medicinal formula for renal diseases. Although T. chebula has been reported to improve renal dysfunction and reduce renal cell apoptosis, the specific mechanism of the nephroprotective effects of T. chebula on HN is still unclear. AIM OF THE STUDY: This study was conducted to evaluate the effects and specific mechanism of T. chebula extract on HN through network pharmacology and in vivo and in vitro experiments. MATERIALS AND METHODS: Potassium oxalate (1.5 g/kg) and adenine (50 mg/kg) were combined for oral administration to establish the HN rat model, and the effects of T. chebula extract on rats in the HN model were evaluated by renal function indices and histopathological examinations. UPLC-Q-Exactive Orbitrap/MS analysis was also conducted to investigate the chemical components of T. chebula extract, and the potential therapeutic targets of T. chebula in HN were predicted by network pharmacology analysis. Moreover, the activation of potential pathways and the expression of related mRNAs and proteins were further observed in HN model rats and uric acid-treated HK-2 cells. RESULTS: T. chebula treatment significantly decreased the serum uric acid (SUA), blood urea nitrogen (BUN) and serum creatinine (SCr) levels in HN rats and ameliorated renal pathological injury and fibrosis. A total of 25 chemical components in T. chebula extract were identified by UPLC-Q-Exactive Orbitrap/MS analysis, and network pharmacology analysis indicated that the NF-κB pathway was the potential pathway associated with the therapeutic effects of T. chebula extract on HN. RT‒PCR analysis, immunofluorescence staining and ELISA demonstrated that the mRNA and protein levels of TLR4 and MyD88 were significantly decreased in the renal tissue of HN rats after treatment with T. chebula extract at different concentrations, while the phosphorylation of P65 and the secretion of TNF-α and IL-6 were significantly inhibited. The results of in vitro experiments showed that T. chebula extract significantly decreased the protein levels of TLR4, MyD88, p-IκBα and p-P65 in uric acid-treated HK-2 cells and inhibited the nuclear translocation of p65 in these cells. In addition, the expression of inflammatory factors (IL-1ß, IL-6 and TNF-α) and fibrotic genes (α-SMA and fibronectin) was significantly downregulated by T. chebula extract treatment, while E-cadherin expression was significantly upregulated. CONCLUSION: T. chebula extract exerts nephroprotective effects on HN, such as anti-inflammatory effects and fibrosis improvement, by regulating the TLR4/MyD88/NF-κB axis, which supports the general use of T. chebula in the management of HN and other chronic kidney diseases.


Subject(s)
Hyperuricemia , Terminalia , Rats , Animals , NF-kappa B/metabolism , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Myeloid Differentiation Factor 88/metabolism , Uric Acid/pharmacology , Toll-Like Receptor 4/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Terminalia/metabolism , Fibrosis
18.
Braz J Biol ; 83: e272987, 2023.
Article in English | MEDLINE | ID: mdl-38018523

ABSTRACT

Terminalia argentea native tree to Brazil and used in landscaping, wood and coal production, and civil construction, is adapted to poor and dry soils and cultivated in severely disturbed ecosystems. This plant has insecticidal activity, but arthropods can cause damage to its saplings. This study evaluates the herbivorous insects and of their natural enemies on 48 T. argentea saplings which were divided according to the damage they cause or reduce it on these saplings using the percentage of the Importance Index-Production Unknown (% I.I.-P.U.). The Lamprosoma sp., Epitragus sp., Tropidacris collaris, Cerambycidae, Cratosomus sp., Psiloptera sp., Parasyphraea sp., Trigona spinipes, and Aphis spiraecola showed the highest % I.I.-P.U. on leaves of T. argentea. The Aphirape uncifera, Mantis religiosa, Uspachus sp., Podisus sp., and Araneidae, with the highest % I.I.-P.U. on leaves of T. argentea saplings are possible solutions to reduce damage by these pests. These natural enemies can reduce herbivorous insects on T. argentea saplings. However, their populations should be increased, especially spiders. Nevertheless, the Brachymyrmex sp. associated to A. spiraecola, in future T. argentea commercial plantations, can increase populations of sap-sucking insect and, consequently, their damage.


Subject(s)
Arthropods , Combretaceae , Spiders , Terminalia , Animals , Ecosystem , Insecta
19.
Molecules ; 28(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687194

ABSTRACT

This study presents for the first time an analysis of the content and chemical composition of the cuticular waxes and cutin in the leaves of the widespread and important tropical species Terminalia catappa. The leaves were collected in the equatorial Atlantic islands of São Tomé and Príncipe, in the Gulf of Guinea. The epicuticular and intracuticular waxes were determined via dichloromethane extraction and their chemical composition via GC-MS analysis, and the content and monomeric composition of cutin were determined after depolymerization via methanolysis. The leaves contained an epidermal cuticular coverage of 52.8 µg cm-2 of the cuticular waxes (1.4% of mass) and 63.3 µg cm-2 (1.5% of mass) of cutin. Cuticular waxes include mainly n-alkanols and fatty acids, with a substantial proportion of terpenes in the more easily solubilized fraction, and sterols in the more embedded waxes. Cutin is mostly constituted by C16 fatty acids and dihydroxyacids, also including aromatic monomers, suggesting a largely linear macromolecular arrangement. The high proportion of triacontanol, α-amyrin, ß-amyrin, germanicol, and lupeol in the easily solubilized cuticular fraction may explain the bioactive properties attributed to the T. catappa leaves via the popular medicine, which allows us to consider them as a potential source for the extraction of these compounds.


Subject(s)
Terminalia , Sao Tome and Principe , Plant Leaves , Fatty Acids
20.
Viruses ; 15(8)2023 08 11.
Article in English | MEDLINE | ID: mdl-37632065

ABSTRACT

Prunus necrotic ringspot virus (PNRSV) and cherry virus A (CVA) are two viruses that mainly infect plants of the genus Prunus. Full-length sequences of these two viruses, collected in the Czech Republic from Prunus cerasifera plants, were obtained via HTS sequencing. Phylogenetic analyses based on the NJ method and Splitstree tools showed that the Czech PNRSV isolate (ON088600-ON088602) is a divergent isolate from other molecular groups, sharing less than 97% pairwise nucleotide identity with members of other groups. The Czech CVA isolate (ON088603) belonged to molecular subgroup III-2, clustered with isolates from non-cherry hosts, and shared the highest pairwise nucleotide identity (99.7%) with an isolate of Australian origin.


Subject(s)
Terminalia , Phylogeny , Australia , Nucleotides
SELECTION OF CITATIONS
SEARCH DETAIL
...