Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.390
Filter
1.
J Med Microbiol ; 73(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38833520

ABSTRACT

Introduction. ListerineÒ is a bactericidal mouthwash widely used to prevent oral health problems such as dental plaque and gingivitis. However, whether it promotes or undermines a healthy oral microbiome is unclear.Hypothesis/Gap Statement. We hypothesized that the daily use of Listerine Cool Mint would have a significant impact on the oropharyngeal microbiome.Aim. We aimed to assess if daily usage of Listerine Cool Mint influenced the composition of the pharyngeal microbiome.Methodology. The current microbiome substudy is part of the Preventing Resistance in Gonorrhoea trial. This was a double-blind single-centre, crossover, randomized controlled trial of antibacterial versus placebo mouthwash to reduce the incidence of gonorrhoea/chlamydia/syphilis in men who have sex with men (MSM) taking HIV pre-exposure prophylaxis (PrEP). Fifty-nine MSM taking HIV PrEP were enrolled. In this crossover trial, participants received 3 months of daily Listerine followed by 3 months of placebo mouthwash or vice versa. Oropharyngeal swabs were taken at baseline and after 3 months use of each mouthwash. DNA was extracted for shotgun metagenomic sequencing (Illumina Inc.). Non-host reads were taxonomically classified with MiniKraken and Bracken. The alpha and beta diversity indices were compared between baseline and after each mouthwash use. Differentially abundant bacterial taxa were identified using ANOVA-like differential expression analysis.Results. Streptococcus was the most abundant genus in most samples (n = 103, 61.7 %) with a median relative abundance of 31.5% (IQR 20.6-44.8), followed by Prevotella [13.5% (IQR 4.8-22.6)] and Veillonella [10.0% (IQR 4.0-16.8)]. Compared to baseline, the composition of the oral microbiome at the genus level (beta diversity) was significantly different after 3 months of Listerine (P = 0.006, pseudo-F = 2.29) or placebo (P = 0.003, pseudo-F = 2.49, permutational multivariate analysis of variance) use. Fusobacterium nucleatum and Streptococcus anginosus were significantly more abundant after Listerine use compared to baseline.Conclusion. Listerine use was associated with an increased abundance of common oral opportunistic bacteria previously reported to be enriched in periodontal diseases, oesophageal and colorectal cancer, and systemic diseases. These findings suggest that the regular use of Listerine mouthwash should be carefully considered.


Subject(s)
Cross-Over Studies , Microbiota , Mouthwashes , Oropharynx , Salicylates , Terpenes , Humans , Mouthwashes/administration & dosage , Mouthwashes/pharmacology , Male , Salicylates/pharmacology , Salicylates/therapeutic use , Salicylates/administration & dosage , Microbiota/drug effects , Double-Blind Method , Adult , Oropharynx/microbiology , Terpenes/administration & dosage , Terpenes/pharmacology , Drug Combinations , Homosexuality, Male , Gonorrhea/microbiology , Gonorrhea/prevention & control , HIV Infections/prevention & control , Pre-Exposure Prophylaxis/methods , Syphilis/prevention & control , Syphilis/microbiology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification
2.
Plant Physiol Biochem ; 212: 108754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824693

ABSTRACT

Ginkgo biloba L. is a relict plant endemic to China that is commonly considered a "living fossil". It contains unique medicinal compounds that play important roles in its response to various stresses and help maintain human health. Ginkgo terpenoids are known to be important active ingredients but have received less attention than flavonoids. Hence, this review focuses on recent progress in research on the pharmacological effects of ginkgo terpenoid and the bioactivities of different terpenoid monomers. Many key structural genes, enzyme-encoding genes, transcription factors, and noncoding RNAs involved in the ginkgo terpenoid pathway were identified. Finally, many external factors (ecological factors, hormones, etc.) that regulate the biosynthesis and metabolism of terpenoids were proposed. All these findings improve the understanding of the biosynthesis, accumulation, and medicinal functions of terpenoids. Finally, this review includes an in-depth discussion regarding the limitations of terpenoid-related studies and potential future research directions.


Subject(s)
Ginkgo biloba , Terpenes , Ginkgo biloba/metabolism , Ginkgo biloba/genetics , Terpenes/metabolism , Gene Expression Regulation, Plant
3.
Yakugaku Zasshi ; 144(6): 675-683, 2024.
Article in Japanese | MEDLINE | ID: mdl-38825476

ABSTRACT

Recently, feeding damage by the olive weevil Pimelocerus (Dyscerus) perforatus Roelofs, which utilizes olive trees (Olea europaea Linne) as a host plant, has become the biggest obstacle to olive cultivation in Japan. We previously identified several volatile plant-derived natural products that exhibit repellent activity against olive weevils. In this study, we conducted a pilot test of repellents in an olive orchard along with the use of insecticide. During three consecutive years from 2021 to 2023, the first year was the observation period, and the second and third years were set aside for a trial period for o-vanillin and geraniol as repellents, respectively. Using o-vanillin, the number of adult olive weevil outbreaks decreased to almost half a year in the experimental area, the use of geraniol then resulted in a drastic reduction of the number of individual olive weevils in the experimental area. In contrast, adults and larvae outbreaks increased in the control area without a repellent, despite the use of insecticide. These results indicate that the volatile repellents drove the olive weevils away and kept them at bay in the field. Based on the observations, we will be able to provide a new approach for the control of olive cultivation, including fruit and leaves used for commercial purposes, following integrated pest management (IPM) practices, such as reducing environmental poisoning from intense insecticides, and returning olive weevils to their original habitat outside of olive orchards.


Subject(s)
Acyclic Monoterpenes , Insect Repellents , Olea , Weevils , Olea/chemistry , Animals , Pilot Projects , Insecticides , Terpenes , Japan
4.
BMC Genomics ; 25(1): 593, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867153

ABSTRACT

BACKGROUND: Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS: We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS: We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.


Subject(s)
Alkyl and Aryl Transferases , Chrysanthemum , Genome, Plant , Multigene Family , Terpenes , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Chrysanthemum/genetics , Chrysanthemum/enzymology , Terpenes/metabolism , Phylogeny , Volatile Organic Compounds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome
5.
Fitoterapia ; 176: 106051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838826

ABSTRACT

Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.


Subject(s)
Terpenes , Terpenes/pharmacology , Terpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Tea Tree Oil/pharmacology , Tea Tree Oil/chemistry , Humans , Antioxidants/pharmacology , Phytochemicals/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Animals , Molecular Structure
6.
Planta ; 260(1): 26, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861179

ABSTRACT

MAIN CONCLUSION: CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed ß-myrcene and ß-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated ß-myrcene and ß-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.


Subject(s)
Acyclic Monoterpenes , Alkyl and Aryl Transferases , Curcuma , Flowers , Sesquiterpenes , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Flowers/genetics , Flowers/enzymology , Flowers/metabolism , Sesquiterpenes/metabolism , Acyclic Monoterpenes/metabolism , Curcuma/genetics , Curcuma/enzymology , Curcuma/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Terpenes/metabolism , Volatile Organic Compounds/metabolism , Phylogeny , Odorants
7.
Ulus Travma Acil Cerrahi Derg ; 30(6): 390-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863289

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is a significant clinical condition that can arise during liver resections, trauma, and shock. Geraniol, an isoterpene molecule commonly found in nature, possesses antioxidant and hepatoprotective properties. This study investigates the impact of geraniol on hepatic damage by inducing experimental liver I/R injury in rats. METHODS: Twenty-eight male Wistar Albino rats weighing 350-400 g were utilized for this study. The rats were divided into four groups: control group, I/R group, 50 mg/kg geraniol+I/R group, and 100 mg/kg geraniol+I/R group. Ischemia times were set at 15 minutes with reperfusion times at 20 minutes. Ischemia commenced 15 minutes after geraniol administration. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactic acid were measured, along with superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity levels in liver tissues. Liver tissues were also examined histopathologically. RESULTS: It was observed that intraperitoneal administration of 50 mg/kg and 100 mg/kg geraniol significantly reduced AST, lactic acid, and tumor necrosis factor-alpha (TNF-α) levels. The serum ALT level decreased significantly in the 50 mg/kg group, whereas no significant decrease was found in the 100 mg/kg group. SOD and GPx enzyme activities were shown to increase significantly in the 100 mg/kg group. Although there was an increase in these enzyme levels in the 50 mg/kg group, it was not statistically significant. Similarly, CAT enzyme activity increased in both the 50 mg/kg and 100 mg/kg groups, but the increase was not significant. The Suzuki score significantly decreased in both the 50 mg/kg and 100 mg/kg groups. CONCLUSION: The study demonstrates that geraniol reduced hepatic damage both biochemically and histopathologically and increased antioxidant defense enzymes. These findings suggest that geraniol could be used to prevent hepatic I/R injury, provided it is corroborated by large-scale and comprehensive studies.


Subject(s)
Acyclic Monoterpenes , Disease Models, Animal , Liver , Rats, Wistar , Reperfusion Injury , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Male , Rats , Terpenes/pharmacology , Terpenes/therapeutic use , Liver/drug effects , Liver/pathology , Liver/blood supply , Antioxidants/pharmacology , Oxidative Stress/drug effects , Aspartate Aminotransferases/blood
8.
Nat Commun ; 15(1): 4925, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858373

ABSTRACT

Terpene synthesis stands at the forefront of modern synthetic chemistry and represents the state-of-the-art in the chemist's toolbox. Notwithstanding, these endeavors are inherently tied to the current availability of natural cyclic building blocks. Addressing this limitation, the stereocontrolled cyclization of abundant unbiased linear terpenes emerges as a valuable tool, which is still difficult to achieve with chemical catalysts. In this study, we showcase the remarkable capabilities of squalene-hopene cyclases (SHCs) in the chemoenzymatic synthesis of head-to-tail-fused terpenes. By combining engineered SHCs and a practical reaction setup, we generate ten chiral scaffolds with >99% ee and de, at up to decagram scale. Our mechanistic insights suggest how cyclodextrin encapsulation of terpenes may influence the performance of the membrane-bound enzyme. Moreover, we transform the chiral templates to valuable (mero)-terpenes using interdisciplinary synthetic methods, including a catalytic ring-contraction of enol-ethers facilitated by cooperative iodine/lipase catalysis.


Subject(s)
Biocatalysis , Terpenes , Cyclization , Terpenes/metabolism , Terpenes/chemistry , Stereoisomerism , Intramolecular Transferases/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/chemistry , Cyclodextrins/chemistry , Cyclodextrins/metabolism
9.
Rapid Commun Mass Spectrom ; 38(16): e9833, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38837482

ABSTRACT

RATIONALE: This study developed a method for the rapid classification and identification of the chemical composition of Qingyan dropping pills (QDP) to provide the theoretical basis and data foundation for further in-depth research on the pharmacological substance basis of the formula and the selection of quality control indexes. METHODS: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and data postprocessing technology were used to analyze the chemical composition of QDP. The fragmentation information on possible characteristic fragments and related neutral losses was summarized based on the literature and was compared with the MS data obtained from the assay, and thus a rapid classification and identification of chemical components in QDP could be achieved. RESULTS: A total of 73 compounds were identified, namely 24 flavonoids, 14 terpenoids, 30 organic acids and their esters, 3 alkaloids, and 2 phenylpropanoids. CONCLUSIONS: In this study, UHPLC-Q-TOF-MS and data postprocessing technology were used to realize the rapid classification and identification of the chemical constituents of QDP, which provided a comprehensive, efficient, and fast qualitative analysis method, a basis for further quality control and safe medication of QDP.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods , Flavonoids/analysis , Flavonoids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Terpenes/analysis , Terpenes/chemistry
10.
Chem Pharm Bull (Tokyo) ; 72(6): 524-528, 2024.
Article in English | MEDLINE | ID: mdl-38825452

ABSTRACT

The biosynthetic pathways of natural products are complicated, and it is difficult to fully elucidate their details using experimental chemistry alone. In recent years, efforts have been made to elucidate the biosynthetic reaction mechanisms by combining computational and experimental methods. In this review, we will discuss the biosynthetic studies using computational chemistry for various terpene compounds such as cyclooctatin, sesterfisherol, quiannulatene, trichobrasilenol, asperterpenol, preasperterpenoid, spiroviolene, and mangicol.


Subject(s)
Biological Products , Terpenes , Biological Products/chemistry , Biological Products/metabolism , Terpenes/chemistry , Terpenes/metabolism , Computational Chemistry , Molecular Structure
11.
BMC Genomics ; 25(1): 578, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858635

ABSTRACT

BACKGROUND: Rose myrtle (Rhodomyrtus tomentosa (Ait.) Hassk), is an evergreen shrub species belonging to the family Myrtaceae, which is enriched with bioactive volatiles (α-pinene and ß-caryophyllene) with medicinal and industrial applications. However, the mechanism underlying the volatile accumulation in the rose myrtle is still unclear. RESULTS: Here, we present a chromosome-level genomic assembly of rose myrtle (genome size = 466 Mb, scaffold N50 = 43.7 Mb) with 35,554 protein-coding genes predicted. Through comparative genomic analysis, we found that gene expansion and duplication had a potential contribution to the accumulation of volatile substances. We proposed that the action of positive selection was significantly involved in volatile accumulation. We identified 43 TPS genes in R. tomentosa. Further transcriptomic and TPS gene family analyses demonstrated that the distinct gene subgroups of TPS may contribute greatly to the biosynthesis and accumulation of different volatiles in the Myrtle family of shrubs and trees. The results suggested that the diversity of TPS-a subgroups led to the accumulation of special sesquiterpenes in different plants of the Myrtaceae family. CONCLUSIONS: The high quality chromosome-level rose myrtle genome and the comparative analysis of TPS gene family open new avenues for obtaining a higher commercial value of essential oils in medical plants.


Subject(s)
Chromosomes, Plant , Evolution, Molecular , Genome, Plant , Genomics , Myrtaceae , Terpenes , Terpenes/metabolism , Genomics/methods , Myrtaceae/genetics , Myrtaceae/metabolism , Chromosomes, Plant/genetics , Phylogeny , Multigene Family
12.
J Chromatogr A ; 1728: 465020, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38805896

ABSTRACT

Qianggan capsule (QGC) is a complex preparation composed of 16 traditional Chinese medicines (TCM) that can clear heat and dampness, fortify the spleen and blood, typify qi and relieve depression. However, the chemical composition of QGC remains incompletely understood, despite its clinical use in treating chronic hepatitis and liver injury. The objective of this study was to explore the quality markers of QGC through qualitative and quantitative analysis of its chemical components. First, the chemical composition of QGC was qualitatively analyzed using UHPLC-Q-TOF-MS/MS. Subsequently, the LC-sMRM method was developed and optimized to accurately quantify various chemical components of 10 batches of QGC. Finally, the variations in chemical components between batches were analyzed via multivariate statistical analysis. UHPLC-Q-TOF-MS/MS analysis revealed 167 chemical constituents in QGC, comprised of 48 flavonoids, 32 terpenoids, 18 phenolic acids, 9 coumarins, 9 phenylpropanoids, and 51 nucleosides, sugars, amino acids, anthraquinones, and other compounds. The LC-sMRM method was established for the quantitative analysis of 42 chemical components in 10 batches of QGC. The ultrasonic-assisted extraction parameters were optimized using RSM. Compared with conventional MRM, sMRM demonstrated superior sensitivity and precision. PCA and OPLS-DA identified eight chemical components with content differences among batches. This study established the chemical composition of QGC, offering useful guidance for assessing its quality.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Flavonoids/chemistry , Coumarins/chemistry , Coumarins/analysis , Terpenes/analysis , Hydroxybenzoates/analysis , Reproducibility of Results , Nucleosides/analysis , Capsules/chemistry
13.
Phytomedicine ; 129: 155638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728916

ABSTRACT

BACKGROUND: Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES: The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN: An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS: Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS: Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION: This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.


Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Terpenes , Humans , Terpenes/pharmacology , Terpenes/therapeutic use , Animals , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Phytotherapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
14.
Int J Biol Macromol ; 269(Pt 2): 132168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729496

ABSTRACT

Ferula spp. are plants that produce oleo-gum-resins (OGRs), which are plant exudates with various colors. These OGRs have various industrial applications in pharmacology, perfumery, and food. The main constituents of these OGRs are terpenoids, a diverse group of organic compounds with different structures and functions. The biosynthesis of OGRs in Ferula spp., particularly galbanum, holds considerable economic and ecological importance. However, the molecular and genetic underpinnings of this biosynthetic pathway remain largely enigmatic. This review provides an overview of the current state of knowledge on the biosynthesis of OGRs in Ferula spp., highlighting the major enzymes, genes, and pathways involved in the synthesis of different terpenoid classes, such as monoterpenes, sesquiterpenes, and triterpenes. It also examines the potential of using omics techniques, such as transcriptomics and metabolomics, and genome editing tools, such as CRISPR/Cas, to increase the yield and quality of Ferula OGRs, as well as to create novel bioactive compounds with enhanced properties. Moreover, this review addresses the current challenges and opportunities of applying gene editing in Ferula spp., and suggests some directions for future research and development.


Subject(s)
Ferula , Ferula/chemistry , Plant Gums/chemistry , Biosynthetic Pathways/genetics , Resins, Plant/chemistry , Terpenes/metabolism , Terpenes/chemistry , Gene Editing
15.
J Chromatogr A ; 1727: 464994, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38759461

ABSTRACT

This research aimed to support police forces in their battle against illicit drug trafficking by means of a multi-technique approach, based on gas chromatography. In detail, this study was focused on the profiling of volatile substances in narcotic Cannabis sativa L. flowering tops. For this purpose, the Scientific Investigation Department, RIS Carabinieri of Messina, provided 25 seized samples of Cannabis sativa L. The content of Δ9-tetrahydrocannabinol (THC), useful to classify cannabis plant as hemp (≤ 0.2 %) or as marijuana (> 0.2 %), was investigated. Essential oils of illicit drug samples were extracted using a microwave-assisted hydro-distillation (MAHD) system; GC-MS and GC-FID analytical techniques were used for the characterization of the terpenes and terpenoids fingerprint. Furthermore, the enantiomeric and carbon isotopic ratios of selected chiral compounds were investigated using a heart-cutting multidimensional GC (MDGC) approach. The latter exploited a combination of an apolar column in the first dimension, and a chiral cyclodextrin-based column in the second one, prior to parallel isotope-ratio mass spectrometry (C-IRMS) and MS detection. Finally, all the data were gathered into a statistical model, to demonstrate the existence of useful parameters to be used for the classification of seized samples.


Subject(s)
Cannabis , Distillation , Flowers , Gas Chromatography-Mass Spectrometry , Microwaves , Oils, Volatile , Cannabis/chemistry , Distillation/methods , Flowers/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/analysis , Oils, Volatile/chemistry , Terpenes/analysis , Dronabinol/analysis , Chromatography, Gas/methods
16.
Neurochem Int ; 177: 105748, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703789

ABSTRACT

Adaptation to psychosocial stress is psychologically distressing, initiating/promoting comorbidity with alcohol use disorders. Emerging evidence moreover showed that ethanol (EtOH) exacerbates social-defeat stress (SDS)-induced behavioral impairments, neurobiological sequelae, and poor therapeutic outcomes. Hence, this study investigated the effects of geraniol, an isoprenoid monoterpenoid alcohol with neuroprotective functions on EtOH escalated SDS-induced behavioral impairments, and neurobiological sequelae in mice. Male mice chronically exposed to SDS for 14 days were repeatedly fed with EtOH (2 g/kg, p. o.) from days 8-14. From days 1-14, SDS-EtOH co-exposed mice were concurrently treated with geraniol (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally. After SDS-EtOH translational interactions, arrays of behavioral tasks were examined, followed by investigations of oxido-inflammatory, neurochemicals levels, monoamine oxidase-B and acetylcholinesterase activities in the striatum, prefrontal-cortex, and hippocampus. The glial fibrillary acid protein (GFAP) expression was also quantified in the prefrontal-cortex immunohistochemically. Adrenal weights, serum glucose and corticosterone concentrations were measured. EtOH exacerbated SDS-induced low-stress resilience, social impairment characterized by anxiety, depression, and memory deficits were attenuated by geraniol (50 and 100 mg/kg) and fluoxetine. In line with this, geraniol increased the levels of dopamine, serotonin, and glutamic-acid decarboxylase enzyme, accompanied by reduced monoamine oxidase-B and acetylcholinesterase activities in the prefrontal-cortex, hippocampus, and striatum. Geraniol inhibited SDS-EtOH-induced adrenal hypertrophy, corticosterone, TNF-α, IL-6 release, malondialdehyde and nitrite levels, with increased antioxidant activities. Immunohistochemical analyses revealed that geraniol enhanced GFAP immunoreactivity in the prefrontal-cortex relative to SDS-EtOH group. We concluded that geraniol ameliorates SDS-EtOH interaction-induced behavioral changes via normalization of neuroimmune-endocrine and neurochemical dysregulations in mice brains.


Subject(s)
Acyclic Monoterpenes , Ethanol , Stress, Psychological , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/therapeutic use , Male , Stress, Psychological/psychology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice , Ethanol/toxicity , Ethanol/pharmacology , Terpenes/pharmacology , Terpenes/therapeutic use , Brain/drug effects , Brain/metabolism , Social Defeat
17.
New Phytol ; 243(1): 299-313, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757546

ABSTRACT

Daphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.


Subject(s)
Alkaloids , Terpenes , Alkaloids/metabolism , Terpenes/metabolism , Terpenes/chemistry , Organ Specificity , Metabolomics , Genotype
18.
BMC Oral Health ; 24(1): 575, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760758

ABSTRACT

BACKGROUND: Translational microbiome research using next-generation DNA sequencing is challenging due to the semi-qualitative nature of relative abundance data. A novel method for quantitative analysis was applied in this 12-week clinical trial to understand the mechanical vs. chemotherapeutic actions of brushing, flossing, and mouthrinsing against the supragingival dental plaque microbiome. Enumeration of viable bacteria using vPCR was also applied on supragingival plaque for validation and on subgingival plaque to evaluate interventional effects below the gingival margin. METHODS: Subjects with gingivitis were enrolled in a single center, examiner-blind, virtually supervised, parallel group controlled clinical trial. Subjects with gingivitis were randomized into brushing only (B); brushing and flossing (BF); brushing and rinsing with Listerine® Cool Mint® Antiseptic (BA); brushing and rinsing with Listerine® Cool Mint® Zero (BZ); or brushing, flossing, and rinsing with Listerine® Cool Mint® Zero (BFZ). All subjects brushed twice daily for 1 min with a sodium monofluorophosphate toothpaste and a soft-bristled toothbrush. Subjects who flossed used unflavored waxed dental floss once daily. Subjects assigned to mouthrinses rinsed twice daily. Plaque specimens were collected at the baseline visit and after 4 and 12 weeks of intervention. Bacterial cell number quantification was achieved by adding reference amounts of DNA controls to plaque samples prior to DNA extraction, followed by shallow shotgun metagenome sequencing. RESULTS: 286 subjects completed the trial. The metagenomic data for supragingival plaque showed significant reductions in Shannon-Weaver diversity, species richness, and total and categorical bacterial abundances (commensal, gingivitis, and malodor) after 4 and 12 weeks for the BA, BZ, and BFZ groups compared to the B group, while no significant differences were observed between the B and BF groups. Supragingival plaque vPCR further validated these results, and subgingival plaque vPCR demonstrated significant efficacy for the BFZ intervention only. CONCLUSIONS: This publication reports on a successful application of a quantitative method of microbiome analysis in a clinical trial demonstrating the sustained and superior efficacy of essential oil mouthrinses at controlling dental plaque compared to mechanical methods. The quantitative microbiological data in this trial also reinforce the safety and mechanism of action of EO mouthrinses against plaque microbial ecology and highlights the importance of elevating EO mouthrinsing as an integral part of an oral hygiene regimen. TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov on 31/10/2022. The registration number is NCT05600231.


Subject(s)
Dental Devices, Home Care , Dental Plaque , Gingivitis , Microbiota , Mouthwashes , Toothbrushing , Humans , Dental Plaque/microbiology , Gingivitis/microbiology , Mouthwashes/therapeutic use , Female , Microbiota/drug effects , Adult , Toothbrushing/methods , Male , Single-Blind Method , Middle Aged , Salicylates/therapeutic use , Drug Combinations , Terpenes/therapeutic use , Terpenes/pharmacology , Bacterial Load/drug effects , Anti-Infective Agents, Local/therapeutic use , Young Adult
19.
Plant Physiol Biochem ; 212: 108741, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772167

ABSTRACT

Wurfbainia villosa and Wurfbainia longiligularis are the two primary plant sources of Fructus Amomi, a traditional Chinese medicine. Both plants are rich in volatile terpenoids, including monoterpenes and sesquiterpenes, which are the primary medicinal components of Fructus Amomi. The trans-isopentenyl diphosphate synthase (TIDS) gene family plays a key part in determining terpenoid diversity and accumulation. However, the TIDS gene family have not been identified in W. villosa and W. longiligularis. This study identified thirteen TIDS genes in W. villosa and eleven TIDS genes in W. longiligularis, which may have expanded through segmental replication events. Based on phylogenetic analysis and expression levels, eight candidate WvTIDSs and five WlTIDSs were selected for cloning. Functional characterization in vitro demonstrated that four homologous geranyl diphosphate synthases (GPPSs) (WvGPPS1, WvGPPS2, WlGPPS1, WlGPPS2) and two geranylgeranyl diphosphate synthases (GGPPSs) (WvGGPPS and WlGGPPS) were responsible for catalyzing the biosynthesis of geranyl diphosphate (GPP), whereas two farnesyl diphosphate synthases (FPPSs) (WvFPPS and WlFPPS) catalysed the biosynthesis of the farnesyl diphosphate (FPP). A comparison of six proteins with identified GPPS functions showed that WvGGPPS and WlGGPPS exhibited the highest activity levels. These findings indicate that homologous GPPS and GGPPS together promote the biosynthesis of GPP in W. villosa and W. longiligularis, thus providing sufficient precursors for the synthesis of monoterpenes and providing key genetic elements for Fructus Amomi variety improvement and molecular breeding.


Subject(s)
Phylogeny , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Asteraceae/genetics , Asteraceae/enzymology , Asteraceae/metabolism , Gene Expression Regulation, Plant , Terpenes/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism
20.
Fitoterapia ; 176: 106031, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768793

ABSTRACT

Five undescribed meroterpenoids, baosglucidnes A - E (1-5), were isolated from the fruiting bodies of Ganoderma lucidum. Among them, baosglucidne B (2) as a racemic mixture was obtained. Chiral HPLC was employed to separate a pair of enantiomers (+)-2 and (-)-2. The structures and stereochemical features of these substances were characterized by utilizing spectroscopic data and ECD calculations. Finally, the results of anti-renal fibrosis activity evaluation showed that baosglucidne E (5) could inhibit the expression of collagen I in TGF-ß1-induced rat kidney proximal tubular cells at 20 µM.


Subject(s)
Reishi , Terpenes , Animals , Reishi/chemistry , Rats , Terpenes/pharmacology , Terpenes/isolation & purification , Molecular Structure , Fruiting Bodies, Fungal/chemistry , Transforming Growth Factor beta1/metabolism , Fibrosis , China , Kidney Diseases/drug therapy , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Collagen Type I/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...