Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.181
Filter
1.
J Clin Res Pediatr Endocrinol ; 16(2): 235-242, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38828521

ABSTRACT

A rarely reported phenomenon of rapid-tempo puberty in which the physical changes of puberty and testosterone levels increase very rapidly has not been reported outside apart from in two reviews. The resulting rapid advancement of skeletal age causes early completion of growth with shorter adult stature than expected. This appears to be genetic given its occurrence in the present report in two families, one with three brothers, one with two. We also describe potential treatments and found for the youngest that early initiation of standard therapy preserved or reclaimed adult height (AH) potential. The foreshortened AH in this situation involves rapidly advancing puberty resulting from high circulating testosterone levels leading to rapid advance in skeletal age. This was recognized earlier among younger brothers and treatment with gonadotropin-releasing analogues, growth hormone (GH) and/or aromatase inhibitor therapy (AIT) was tried. Two brothers in family A and family B were treated. Case 5 started treatment early enough so his AH was within target height (mid-parental height) range. Cases 2, 3, 4 were tried on GH and/or AIT with outcomes suggesting benefit. The prevalence and mechanism of rapid-tempo puberty requires further study. Furthermore, as illustrated by two of the current cases, this phenomenon may have a heightened prevalence, or at least may occur, in children previously diagnosed with constitutional delay of growth, underscoring the need to be cautious in assurance of a normal AH outcomes in this population, based on data from a single assessment.


Subject(s)
Body Height , Puberty , Humans , Male , Body Height/drug effects , Child , Puberty/drug effects , Puberty/physiology , Growth Disorders/drug therapy , Adolescent , Female , Human Growth Hormone/therapeutic use , Human Growth Hormone/administration & dosage , Adult , Aromatase Inhibitors/therapeutic use , Puberty, Precocious/drug therapy , Gonadotropin-Releasing Hormone/analogs & derivatives , Testosterone/therapeutic use , Testosterone/blood , Testosterone/administration & dosage
2.
Ter Arkh ; 96(5): 486-493, 2024 Jun 03.
Article in Russian | MEDLINE | ID: mdl-38829810

ABSTRACT

AIM: To study the frequency of hypogonadism (HG) in men with rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) and to evaluate the impact of HG on the course of RA and and concomitant diseases. MATERIALS AND METHODS: A single-stage continuous study included 170 men with RA, 57 men with AS and 85 men with PsA, who were hospitalized at the Nasonova Research Institute of Rheumatology. Patients were assessed for total testosterone (ТS) levels and subsequently divided into subgroups with normal (>12 nmol/l) and reduced levels. An intergroup comparison was carried out on the main indicators used in clinical rheumatological practice to assess the stage, activity and other medical and demographic characteristics of rheumatic disease, as well as on concomitant conditions. The second stage of the study involved a pairwise intergroup comparison among patients with HG with RA, AS and PsA. RESULTS: The incidence of ТS deficiency among patients with RA was 24.1%, among patients with AS - 17.5%, and with PsA - 31.8%. In patients with RA, HG was associated with a significantly higher mean body mass index, higher fasting blood glucose and uric acid, higher erythrocyte sedimentation rate and anemia. Patients with AS with HG had significantly lower hemoglobin levels and more frequent anemia, as well as higher levels of C-reactive protein and erythrocyte sedimentation rate. In PsA, older age was observed in the androgen deficiency group, as well as higher body mass index and fasting glucose levels; obesity was more common. An intergroup comparison of quantitative and qualitative indicators between patients with androgen deficiency in all three rheumatic diseases (RDs) did not reveal significant differences in the average concentrations of ТS, luteinizing hormone, sex hormone binding globulin, experience of RD, laboratory markers of inflammatory activity, as well as glucose and uric acid. A similar incidence of diabetes mellitus, obesity and anemia was noted for all three nosologies. CONCLUSION: ТS levels and the presence of HG were not associated with the stage and activity of RD, but ТS deficiency was accompanied by higher laboratory indicators of inflammatory activity, lower hemoglobin values, and metabolic disorders. Patients with HG, regardless of nosology, had similar levels of sex hormones and indicators reflecting RD and concomitant conditions.


Subject(s)
Arthritis, Psoriatic , Arthritis, Rheumatoid , Hypogonadism , Testosterone , Humans , Male , Hypogonadism/epidemiology , Hypogonadism/blood , Hypogonadism/diagnosis , Middle Aged , Testosterone/blood , Arthritis, Psoriatic/epidemiology , Arthritis, Psoriatic/complications , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/blood , Adult , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Spondylitis, Ankylosing/epidemiology , Spondylitis, Ankylosing/complications , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/blood , Spondylitis, Ankylosing/physiopathology , Russia/epidemiology , Incidence , Blood Sedimentation
3.
FASEB J ; 38(9): e23650, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696238

ABSTRACT

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Subject(s)
Adrenal Cortex , Leydig Cells , Mice, Knockout , Animals , Male , Mice , Leydig Cells/metabolism , Adrenal Cortex/metabolism , Androgens/metabolism , Testosterone/blood , Testosterone/metabolism , Behavior, Animal , Mice, Inbred C57BL
4.
Trop Anim Health Prod ; 56(4): 155, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727965

ABSTRACT

Kangayam cattle are one of the drought breeds in India with distinct attributes. Agricultural transformation has led to a decline in many pure-breed indigenous cattle, including the Kangayam breed. Hence, a study on the reproductive physiology of male Kangayam breed cattle is necessary to disentangle problems in the area of livestock improvement. In this study, we investigated the relationship between serum hormones and bio-constituents and ascertained the potential of saliva as an indicator of the reproductive status of Kangayam cattle (Bos indicus). The present study confirms that cholesterol was higher in intact males and lower in prepubertal and castrated males. Testosterone levels were also higher in intact males than in castrated or prepubertal males. Hence, it can be inferred that high cholesterol levels contribute to active derivatization of testosterone in intact males. In contrast, reduced cholesterol availability leads to decreased testosterone synthesis in castrated and prepubertal males. Furthermore, it is reasonable to speculate that testosterone could have influenced salivary fern patterns in intact males, and thus, fern-like crystallization in the saliva was apparent. The unique salivary compounds identified through GC-MS across various reproductive statuses of Kangayam males may advertise their physiological status to conspecifics. In addition, the presence of odorant-binding protein (OBP) in saliva further supports its role in olfactory communication. This study attested to a posssible interlink between gonadal status and serum biochemical profiles. The salivary fern pattern revealed in this study can be used as a predictive tool, and the presence of putative volatiles and OBP adds evidence to the role of saliva in chemical communication.


Subject(s)
Cholesterol , Saliva , Testosterone , Animals , Male , Cattle/physiology , Saliva/chemistry , Testosterone/blood , Testosterone/analysis , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Reproduction/physiology , India , Gas Chromatography-Mass Spectrometry/veterinary
6.
Reprod Domest Anim ; 59(5): e14569, 2024 May.
Article in English | MEDLINE | ID: mdl-38715435

ABSTRACT

The effects of an aqueous extract of Scabiosa atropurpurea L. (AES) on the reproduction potential of Queue Fine de l'Ouest rams were evaluated over 9 weeks. Eighteen mature (4-6 years old) rams (52.8 ± 2.6 kg) were divided into three groups. The control (C) group was fed oat hay ad libitum with 700 g of concentrate and the other two groups were fed the same diet supplemented with AES at 1 and 2 mg/kg body weight (AES1 and AES2, respectively). Ram sperm was collected with an artificial vagina (2 × 2 days/week) to evaluate sperm production and quality, antioxidant activity, the adenosine triphosphate (ATP) and calcium concentrations. Sexual behaviour and plasma testosterone concentrations were also investigated. The administration of AES improved sexual behaviour (the duration of contact and the number of lateral approaches). The addition of AES also improved individual spermatozoa motility (C: 71.7% ± 6.3%; AES1: 78.3% ± 4.9%; AES2: 83.8% ± 4.4%), the sperm concentration (C: 5.6 ± 0.36; AES1: 6.4 ± 0.81; AES2: 6.7 ± 0.52 × 109 spermatozoa/mL), the ATP ratio (C: 1 ± 0.08; AES1: 2.1 ± 0.08; AES2: 3.3 ± 0.08) and the calcium concentration (C: 5.6 ± 0.24; AES1: 7.7 ± 0.21; AES2: 8.1 ± 0.24 mmol/L). AES treatment decreased the percentage of abnormal sperm (C: 18.5% ± 1.2%; AES1: 16.2% ± 1.1%; AES2: 14.8% ± 0.94%) and DNA damage (C: 62%; AES1: 27%; AES2: 33%) and was associated with elevated seminal fluid antioxidant activity (C: 22 ± 0.27; AES1: 27.1 ± 1.08 and AES2: 27.5 ± 0.36 mmol Trolox equivalents/L) and plasma testosterone (C: 8.3 ± 0.7; AES1: 11.7 ± 0.4; AES2: 15 ± 0.7 ng/L). In conclusion, our study suggests that S. atropurpurea may be potentially useful to enhance libido and sperm production and quality in ram.


Subject(s)
Plant Extracts , Sexual Behavior, Animal , Spermatozoa , Male , Animals , Spermatozoa/drug effects , Sexual Behavior, Animal/drug effects , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Testosterone/blood , Semen Analysis/veterinary , Sperm Motility/drug effects , Dietary Supplements , Antioxidants/pharmacology , Diet/veterinary , Sperm Count , Calcium/analysis , Calcium/blood , Sheep, Domestic , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis
7.
Front Endocrinol (Lausanne) ; 15: 1264410, 2024.
Article in English | MEDLINE | ID: mdl-38737549

ABSTRACT

Low testosterone levels in men have been linked to decreased physical and mental function, as well as a reduced quality of life. Previous prospective observational studies have suggested an association between testosterone and sleep traits, but the causality of this relationship remains unclear. We aimed to explore the potential causal link between genetically determined sleep traits and testosterone levels in men using Mendelian randomization (MR) analysis from the UK Biobank dataset. Our exposures were genetic variants associated with sleep traits (chronotype and sleep duration), whereas our outcomes were traits of sex steroid hormones (total testosterone, TT; bioavailable testosterone, BAT; and sex hormone-binding globulin, SHBG). We employed inverse variance weighted (IVW) and weighted median (WM) methods to assess the causal associations. The IVW method offers a robust estimate of causality, whereas the WM method provides reliable results even when some genetic variants are invalid instruments. Our main analysis involving sex steroid hormones and chronotype identified 155 chronotype-related variants. The primary findings from the analysis, which used chronotype as the exposure and sex steroid hormones as the outcomes, showed that a genetically predicted chronotype score was significantly associated with an increased levels of TT (association coefficient ß, 0.08; 95% confidence interval [CI], 0.02-0.14; P = 0.008) and BAT (ß, 0.08; 95% CI, 0.02-0.14; P = 0.007), whereas there was no significant association with SHBG (ß, 0.01; 95% CI, -0.02-0.03; P = 0.64). Meanwhile, MR analysis of sex steroid hormones and sleep duration was performed, and 69 variants associated with sleep duration were extracted. There were no significant association between sleep duration and sex steroid hormones (TT, P = 0.91; BAT, P = 0.82; and SHBG, P = 0.95). Our data support a causal association between chronotype and circulating testosterone levels in men. These findings underscore a potential causal relationship between chronotype and testosterone levels in men, suggesting that lifestyle adjustments are crucial for men's health. Recognizing factors that influence testosterone is essential. One limitation of this study is the use of one-sample MR, which can introduce potential bias due to non-independence of genetic associations for exposure and outcome. In conclusion, our findings indicate that a morning preference is correlated with circulating testosterone levels, emphasizing the potential impact of lifestyle habits on testosterone levels in men.


Subject(s)
Mendelian Randomization Analysis , Sleep , Testosterone , Humans , Male , Testosterone/blood , Sleep/genetics , Sleep/physiology , Sex Hormone-Binding Globulin/genetics , Sex Hormone-Binding Globulin/metabolism , Middle Aged , Circadian Rhythm/genetics , Polymorphism, Single Nucleotide , Aged , Chronotype
8.
Arch Endocrinol Metab ; 68: e230101, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38739523

ABSTRACT

Objective: Both pulsatile gonadotropin-releasing hormone (GnRH) and combined gonadotropin therapy are effective to induce spermatogenesis in men with congenital hypogonadotropic hypogonadism (CHH). This study aimed to evaluate the effect of pulsatile GnRH therapy on spermatogenesis in male patients with CHH who had poor response to combined gonadotropin therapy. Materials and methods: Patients who had poor response to combined gonadotropin therapy ≥ 6 months were recruited and shifted to pulsatile GnRH therapy. The rate of successful spermatogenesis, the median time to achieve spermatogenesis, serum gonadotropins, testosterone, and testicular volume were used for data analysis. Results: A total of 28 CHH patients who had poor response to combined gonadotropin (HCG/HMG) therapy for 12.5 (6.0, 17.75) months were recruited and switched to pulsatile GnRH therapy for 10.0 (7.25, 16.0) months. Sperm was detected in 17/28 patients (60.7%). The mean time for the appearance of sperm in semen was 12.0 (7.5, 17.5) months. Compared to those who could not achieve spermatogenesis during pulsatile GnRH therapy, the successful group had a higher level of LH60min (4.32 vs. 1.10 IU/L, P = 0.043) and FSH60min (4.28 vs. 1.90 IU/L, P = 0.021). Testicular size increased during pulsatile GnRH therapy, compared to previous HCG/ HMG therapy (P < 0.05). Conclusion: For CHH patients with prior poor response to one year of HCG/ HMG therapy, switching to pulsatile GnRH therapy may induce spermatogenesis.


Subject(s)
Gonadotropin-Releasing Hormone , Hypogonadism , Spermatogenesis , Testosterone , Humans , Male , Spermatogenesis/drug effects , Gonadotropin-Releasing Hormone/administration & dosage , Hypogonadism/drug therapy , Adult , Testosterone/administration & dosage , Testosterone/blood , Testosterone/therapeutic use , Young Adult , Treatment Outcome , Chorionic Gonadotropin/administration & dosage , Chorionic Gonadotropin/therapeutic use , Menotropins/administration & dosage , Menotropins/therapeutic use , Testis/drug effects , Drug Therapy, Combination , Pulse Therapy, Drug , Adolescent
9.
BMJ Open ; 14(5): e073527, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749695

ABSTRACT

OBJECTIVE: To estimate the association between secondhand smoke (SHS) exposure and serum sex hormone concentrations in female adults (never smokers and former smokers). DESIGN: Cross-sectional analysis. SETTING: US National Health and Nutrition Examination Survey, 2013-2016. OUTCOME MEASURES: Serum sex hormone measures included total testosterone (TT) and oestradiol (E2), sex hormone-binding globulin (SHBG), the ratio of TT and E2 and free androgen index (FAI). Isotope dilution-liquid chromatography tandem mass spectrometry was used to measure serum TT and E2. SHBG was measured using immunoassay. The ratio of TT and E2 and FAI were calculated. SHS exposure was defined as serum cotinine concentration of 0.05-10 ng/mL. PARTICIPANTS: A total of 622 female participants aged ≥20 years were included in the analysis. RESULTS: For never smokers, a doubling of serum cotinine concentration was associated with a 2.85% (95% CI 0.29% to 5.47%) increase in TT concentration and a 6.29% (95% CI 0.68% to 12.23%) increase in E2 in fully adjusted models. The never smokers in the highest quartile (Q4) of serum cotinine level exhibited a 10.30% (95% CI 0.78% to 20.72%) increase in TT concentration and a 27.75% (95% CI 5.17% to 55.17%) increase in E2 compared with those in the lowest quartile (Q1). For former smokers, SHBG was reduced by 4.36% (95% CI -8.47% to -0.07%, p for trend=0.049) when the serum cotinine level was doubled, and the SHBG of those in Q4 was reduced by 17.58% (95% CI -31.33% to -1.07%, p for trend=0.018) compared with those in Q1. CONCLUSION: SHS was associated with serum sex hormone concentrations among female adults. In never smokers, SHS was associated with increased levels of TT and E2. In former smokers, SHS was associated with decreased SHBG levels.


Subject(s)
Cotinine , Estradiol , Nutrition Surveys , Sex Hormone-Binding Globulin , Tobacco Smoke Pollution , Humans , Female , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/statistics & numerical data , Cross-Sectional Studies , Adult , Cotinine/blood , United States/epidemiology , Middle Aged , Sex Hormone-Binding Globulin/analysis , Sex Hormone-Binding Globulin/metabolism , Estradiol/blood , Testosterone/blood , Young Adult , Gonadal Steroid Hormones/blood , Tandem Mass Spectrometry
10.
BMC Complement Med Ther ; 24(1): 200, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778296

ABSTRACT

BACKGROUND: This study investigated the effect of curcumin nanomicelle (CUR-n) on the structure of testis tissue, the process of spermatogenesis, LH, FSH, testosterone, and oxidative stress in a model of multiple sclerosis. METHODS: Twenty-four male mice C57BL/6 were randomly allocated into 4 groups of 6 (1: group receiving 2% CPZ diet, 2: group receiving the diet of 2% CPZ + CUR-n with a dose of 50 mg/kg, 3: group receiving the diet of 2% CPZ + CUR-n with a dose of 100 mg/kg). The concentration of hormones (testosterone, LH and FSH), was measured by the special hormone assay ELISA kits. Measuring total antioxidant capacity (TAC) and Malondialdehyde (MDA) levels was done by spectrophotometry and calorimetric methods, respectively. Stereological analysis was done in order to explore the number of spermatogenesis cells, testis and sperm properties. RESULTS: The results indicated that CUR-n (100 mg/kg) significantly enhanced the concentration of LH, FSH, testosterone, and TAC but reduced MDA levels. It also notably increased the quantity of spermatogonia, spermatocyte, round spermatids, long spermatids and LCs, augmented testis weight and volume, and germinal epithelium volume, improved sperm count, morphology, viability, and motility. In addition, a considerable decrease in the amount of wrinkling and disruption of the germinal epithelium was observed after intervention with CUR-n (100 mg/kg). Furthermore, a significant increase in the number of germ cells compared to the group receiving CPZ was detected. CONCLUSION: This study proposes that CUR-n could be a therapeutic agent for decreasing the adverse effects of MS on testis.


Subject(s)
Curcumin , Disease Models, Animal , Mice, Inbred C57BL , Multiple Sclerosis , Testis , Male , Animals , Curcumin/pharmacology , Mice , Testis/drug effects , Multiple Sclerosis/drug therapy , Spermatogenesis/drug effects , Testosterone/blood , Oxidative Stress/drug effects , Micelles
11.
Front Endocrinol (Lausanne) ; 15: 1371148, 2024.
Article in English | MEDLINE | ID: mdl-38779452

ABSTRACT

Background: Accumulating evidence suggests that the autism spectrum disorder (ASD) population exhibits altered hormone levels, including androgens. However, studies on the regulation of androgens, such as testosterone and dehydroepiandrosterone (DHEA), in relation to sex differences in individuals with ASD are limited and inconsistent. We conducted the systematic review with meta-analysis to quantitatively summarise the blood, urine, or saliva androgen data between individuals with ASD and controls. Methods: A systematic search was conducted for eligible studies published before 16 January 2023 in six international and two Chinese databases. We computed summary statistics with a random-effects model. Publication bias was assessed using funnel plots and heterogeneity using I2 statistics. Subgroup analysis was performed by age, sex, sample source, and measurement method to explain the heterogeneity. Results: 17 case-control studies (individuals with ASD, 825; controls, 669) were assessed. Androgen levels were significantly higher in individuals with ASD than that in controls (SMD: 0.27, 95% CI: 0.06-0.48, P=0.01). Subgroup analysis showed significantly elevated levels of urinary total testosterone, urinary DHEA, and free testosterone in individuals with ASD. DHEA level was also significantly elevated in males with ASD. Conclusion: Androgen levels, especially free testosterone, may be elevated in individuals with ASD and DHEA levels may be specifically elevated in males.


Subject(s)
Androgens , Autism Spectrum Disorder , Humans , Male , Androgens/blood , Androgens/urine , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/urine , Autism Spectrum Disorder/metabolism , Case-Control Studies , Dehydroepiandrosterone/blood , Dehydroepiandrosterone/urine , Testosterone/blood , Female
12.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785348

ABSTRACT

Hydroxysteroid (17ß) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Mice, Knockout , Testis , Testosterone , Animals , Male , Testis/metabolism , Testis/embryology , Mice , 17-Hydroxysteroid Dehydrogenases/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/deficiency , Female , Testosterone/blood , Testosterone/metabolism , Fetus/metabolism , Estradiol Dehydrogenases/metabolism , Estradiol Dehydrogenases/genetics
13.
Ecotoxicol Environ Saf ; 278: 116427, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733803

ABSTRACT

BACKGROUND: Neighborhood walkability may influence maternal-fetal exposure to environmental hazards and maternal-fetal health (e.g., fetal growth restriction, reproductive toxicity). However, few studies have explored the association between neighborhood walkability and hormones in pregnant women. METHODS: We included 533 pregnant women from the Hangzhou Birth Cohort Study II (HBCS-II) with testosterone (TTE) and estradiol (E2) measured for analysis. Neighborhood walkability was evaluated by calculating a walkability index based on geo-coded addresses. Placental metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). TTE and E2 levels in umbilical cord blood were measured using chemiluminescence microparticle immunoassay (CMIA). Linear regression model was used to estimate the relationship between the walkability index, placental metals, and sex steroid hormones. Effect modification was also assessed to estimate the effect of placental metals on the associations of neighborhood walkability with TTE and E2. RESULTS: Neighborhood walkability was significantly linked to increased E2 levels (P trend=0.023). Compared with participants at the first quintile (Q1) of walkability index, those at the third quintiles (Q3) had lower chromium (Cr) levels (ß = -0.212, 95% CI = -0.421 to -0.003). Arsenic (As), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), tin (Sn), and vanadium (V) were linked to decreased TTE levels, and cadmium (Cd) was linked to increased TTE levels. No metal was significantly associated with E2 levels in trend analysis. In the analysis of effect modification, the associations of neighborhood walkability with TTE and E2 were significantly modified by Mn (P = 0.005) and Cu (P = 0.049) respectively. CONCLUSION: Neighborhood walkability could be a favorable factor for E2 production during pregnancy, which may be inhibited by maternal exposure to heavy metals.


Subject(s)
Residence Characteristics , Walking , Humans , Female , Pregnancy , Adult , China , Cohort Studies , Estradiol/blood , Estradiol/analysis , Testosterone/blood , Fetal Blood/chemistry , Maternal Exposure/statistics & numerical data , Environmental Pollutants/analysis , Environmental Pollutants/blood , Metals/analysis , Metals/blood , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/analysis , Placenta/chemistry , Placenta/drug effects , Metals, Heavy/analysis , Young Adult
14.
BMC Vet Res ; 20(1): 219, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778406

ABSTRACT

The study aimed to assess the effects of water salinity on the sperm parameters, levels of cortisol, LH, FSH, testosterone and antioxidants as well as the testes' histopathology in Barki rams. Fifteen healthy Barki rams (1-1.5 years) were divided into three equal depending on the type of drinking water for nine months. The rams in the tap water group (TW, water that contained 350 ppm of total dissolved salts (TDS). Males in the high saline water group (HSW) were permitted to consume high saline water with 8,934 ppm TDS, whereas those in the second group were permitted to have moderately saline water (MSW, 4,557 ppm TDS). High salt concentration in drinking water had adverse effect on sperm viability, morphology and sperm cell concertation. Nitric oxide and malondialdehyde concentrations in blood were significantly higher in the MSW and HSW groups than in TW. There was a significant decrease in glutathione concentration as well as superoxide dismutase activity in TDS and HSW. Cortisol was most highly concentrated in the HSW, next in the MSW, and least in TW. The testosterone, LH, and FSH concentrations in the HSW and MSW groups were significantly lower than in TW. As the salt concentration in drinking water increases, damage to testicular tissue. The MSW group demonstrating vacuolation of lining epithelial cells with pyknotic nuclei in the epididymis and necrosis and desquamation of spermatogenic cells in seminiferous tubules while HSW group displaying desquamated necrotic cells and giant cell formation in the epididymis, as well as damage to some of the seminiferous tubules and showed congestion, vacuolation of spermatogenic epithelium of seminiferous tubules, and desquamated necrotic spermatogenic epithelium. In conclusion, the salinity of the water has detrimental impacts on the sperm morphology, viability and concentration, hormones and antioxidant levels in Barki rams.


Subject(s)
Antioxidants , Spermatozoa , Testis , Testosterone , Male , Animals , Testis/drug effects , Testis/pathology , Antioxidants/metabolism , Spermatozoa/drug effects , Sheep , Testosterone/blood , Follicle Stimulating Hormone/blood , Hydrocortisone/blood , Saline Waters , Luteinizing Hormone/blood
15.
PLoS One ; 19(5): e0299695, 2024.
Article in English | MEDLINE | ID: mdl-38781203

ABSTRACT

BACKGROUND: Ramadan Intermittent Fasting (RIF) has the potential to alter hormonal levels in the body. This study investigates the impact of RIF on hormonal levels among healthy individuals during Ramadan. METHODS: A systematic review and meta-analysis of previously published studies were conducted, focusing on healthy non-athlete adults. The intervention examined was Ramadan Intermittent Fasting, and the primary outcomes assessed were changes in endocrine hormonal and biochemical parameters. The pooled effect measure was expressed as odds ratio (OR) and 95% confidence interval (CI) using the random-effects model. RESULTS: A total of 35 original articles were retrieved, with a combined sample size of 1,107 participants eligible for the meta-analysis. No significant relationship was found between pre- and post-Ramadan hormonal levels of T3, T4, TSH, FT3, FT4, Testosterone, LH, FSH, Prolactin, PTH, Calcium, and Phosphorus (P-value<0.05). However, a substantial decrease in morning cortisol levels was observed across the studies (P-value: 0.08, Hedges' g = -2.14, 95% CI: -4.54, 0.27). CONCLUSIONS: Ramadan Intermittent Fasting results in minimal hormonal changes and is a safe practice for healthy individuals. The fasting regimen appears to disrupt the circadian rhythm, leading to a decrease in morning cortisol levels.


Subject(s)
Fasting , Islam , Humans , Fasting/blood , Adult , Hormones/blood , Testosterone/blood , Male , Hydrocortisone/blood
16.
Biomolecules ; 14(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38785972

ABSTRACT

Background: Erectile dysfunction (ED) stands out as one of the most prevalent sexual disorders in men, with its incidence progressively escalating with age. As delineated by the International Consultation Committee for Sexual Medicine on Definitions/Epidemiology/Risk Factors for Sexual Dysfunction, the prevalence of ED among men under 40 years is estimated to be within the range of 1-10%. The aim of this study was to determine the relationship between the concentration of bioelements (Zn, Cu, Fe, Cr, Mg, and Mn) in the serum and bone tissue and the concentration of selected hormones in men with and without erectile dysfunction. Materials and methods: The retrospective cohort study included 152 men who underwent total hip arthroplasty for hip osteoarthritis at the Department of Orthopaedic Traumatology and Musculoskeletal Oncology at the Pomeranian Medical University in Szczecin. Certain exclusion criteria were applied to ensure the integrity of the study. These included individuals with diabetes, a history of cancer, alcohol abuse, liver or kidney failure, New York Heart Association (NYHA) class III or IV heart failure, and those taking medications that affect bone metabolism, such as mineral supplements, neuroleptics, chemotherapeutic agents, immunosuppressants, corticosteroids, or antidepressants. Patients with hypogonadism or infertility were excluded from the study. Results: The study showed an association between bioT concentrations and Cu concentrations in both patients with and without erectile dysfunction. A correlation between bioactive testosterone and Cr concentrations was also observed in both groups. Patients with erectile dysfunction showed a relationship between bioT concentration and Zn concentration, TT concentration and Mn concentration, FT concentration and Zn concentration, and E2 concentration and Cr concentration. An analysis of elemental concentrations in bone tissue showed an association between FT and Mg and Mn concentrations, but only in patients with erectile dysfunction. In patients without erectile dysfunction, a correlation was observed between FT and Cu concentrations. A correlation was also observed between bioT concentrations and Mg, Mn, and Zn concentrations, but only in patients with erectile dysfunction. In patients without erectile dysfunction, a correlation was observed between bioT and Cu concentrations. Conclusions: Studying the relationship between the concentration of bioelements (Zn, Cu, Fe, Cr, Mg, and Mn) in the serum and bone tissue and the concentration of selected hormones in men may be important in explaining the etiology of the problem. The study of the concentration of Zn and Cu in bone tissue and serum showed that these two elements, regardless of the place of accumulation, may be related to the concentration of androgens in men.


Subject(s)
Arthroplasty, Replacement, Hip , Bone and Bones , Copper , Erectile Dysfunction , Zinc , Humans , Male , Erectile Dysfunction/blood , Middle Aged , Aged , Retrospective Studies , Zinc/blood , Bone and Bones/metabolism , Copper/blood , Aging/blood , Chromium/blood , Magnesium/blood , Iron/blood , Iron/metabolism , Manganese/blood , Manganese/analysis , Trace Elements/blood , Testosterone/blood , Adult
17.
Int J Hyg Environ Health ; 259: 114386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703462

ABSTRACT

BACKGROUND: Organophosphate, pyrethroid, and neonicotinoid insecticides have resulted in adrenal and gonadal hormone disruption in animal and in vitro studies; limited epidemiologic evidence exists in humans. We assessed relationships of urinary insecticide metabolite concentrations with adrenal and gonadal hormones in adolescents living in Ecuadorean agricultural communities. METHODS: In 2016, we examined 522 Ecuadorian adolescents (11-17y, 50.7% female, 22% Indigenous; ESPINA study). We measured urinary insecticide metabolites, blood acetylcholinesterase activity (AChE), and salivary testosterone, dehydroepiandrosterone (DHEA), 17ß-estradiol, and cortisol. We used general linear models to assess linear (ß = % hormone difference per 50% increase of metabolite concentration) and curvilinear relationships (ß2 = hormone difference per unit increase in squared ln-metabolite) between ln-metabolite or AChE and ln-hormone concentrations, stratified by sex, adjusting for anthropometric, demographic, and awakening response variables. Bayesian Kernel Machine Regression was used to assess non-linear associations and interactions. RESULTS: The organophosphate metabolite malathion dicarboxylic acid (MDA) had positive associations with testosterone (ßboys = 5.88% [1.21%, 10.78%], ßgirls = 4.10% [-0.02%, 8.39%]), and cortisol (ßboys = 6.06 [-0.23%, 12.75%]. Para-nitrophenol (organophosphate) had negatively-trending curvilinear associations, with testosterone (ß2boys = -0.17 (-0.33, -0.003), p = 0.04) and DHEA (ß2boys = -0.49 (-0.80, -0.19), p = 0.001) in boys. The neonicotinoid summary score (ßboys = 5.60% [0.14%, 11.36%]) and the neonicotinoid acetamiprid-N-desmethyl (ßboys = 3.90% [1.28%, 6.58%]) were positively associated with 17ß-estradiol, measured in boys only. No associations between the pyrethroid 3-phenoxybenzoic acid and hormones were observed. In girls, bivariate response associations identified interactions of MDA, Para-nitrophenol, and 3,5,6-trichloro-2-pyridinol (organophosphates) with testosterone and DHEA concentrations. In boys, we observed an interaction of MDA and Para-nitrophenol with DHEA. No associations were identified for AChE. CONCLUSIONS: We observed evidence of endocrine disruption for specific organophosphate and neonicotinoid metabolite exposures in adolescents. Urinary organophosphate metabolites were associated with testosterone and DHEA concentrations, with stronger associations in boys than girls. Urinary neonicotinoids were positively associated with 17ß-estradiol. Longitudinal repeat-measures analyses would be beneficial for causal inference.


Subject(s)
Biomarkers , Insecticides , Humans , Adolescent , Female , Male , Ecuador , Insecticides/urine , Insecticides/blood , Biomarkers/urine , Biomarkers/blood , Child , Hydrocortisone/urine , Dehydroepiandrosterone/urine , Dehydroepiandrosterone/blood , Estradiol/blood , Estradiol/urine , Agriculture , Acetylcholinesterase/blood , Acetylcholinesterase/metabolism , Testosterone/blood , Testosterone/urine , Saliva/chemistry , Malathion/urine
18.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732553

ABSTRACT

Considering a lack of respective data, the primary objective of this study was to assess whether seasonal variation in vitamin D status (D-status) affects the extent of improvement in physical performance (PP) in conscripts during basic military training (BMT). D-status, PP and several blood parameters were measured repeatedly in conscripts whose 10-week BMT started in July (cohort S-C; n = 96) or in October (cohort A-C; n = 107). D-status during BMT was higher in S-C compared to A-C (overall serum 25(OH)D 61.4 ± 16.1 and 48.5 ± 20.7 nmol/L, respectively; p < 0.0001). Significant (p < 0.05) improvements in both aerobic and muscular endurance occurred in both cohorts during BMT. Pooled data of the two cohorts revealed a highly reliable (p = 0.000) but weak (R2 = 0.038-0.162) positive association between D-status and PP measures both at the beginning and end of BMT. However, further analysis showed that such a relationship occurred only in conscripts with insufficient or deficient D-status, but not in their vitamin D-sufficient companions. Significant (p < 0.05) increases in serum testosterone-to-cortisol ratio and decreases in ferritin levels occurred during BMT. In conclusion, a positive association exists between D-status and PP measures, but seasonal variation in D-status does not influence the extent of improvement in PP in conscripts during BMT.


Subject(s)
Military Personnel , Physical Endurance , Seasons , Vitamin D , Humans , Vitamin D/blood , Vitamin D/analogs & derivatives , Male , Physical Endurance/physiology , Young Adult , Hydrocortisone/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Nutritional Status , Testosterone/blood , Adult , Cohort Studies , Adolescent
19.
Article in English | MEDLINE | ID: mdl-38729293

ABSTRACT

Steroidogenic acute regulatory protein (Star) plays an essential role in the biosynthesis of corticosteroids and sex steroids by mediating the transport of cholesterol from the outer to the inner membrane of mitochondria. Two duplicated Star genes, namely star1 and star2, have been identified in non-mammalian vertebrates. To investigate the roles of star genes in fish steriodogenesis, we generated two mutation lines of star1-/- and star1-/-/star2-/- in Nile tilapia (Oreochromis niloticus). Previous studies revealed that deficiency of star2 gene caused delayed spermatogenesis, sperm apoptosis and sterility in male tilapia. Our present data revealed that mutation of star genes impaired male fertility. Disordered seminiferous lobules and spermatic duct obstruction were found in the testis of both types of mutants. Moreover, significant decline in semen volume, sperm abnormality and impaired fertility were also detected in star1-/- and star1-/-/star2-/- males. In star1-/- male fish, lipid accumulation, up-regulation of steroidogenic enzymes, and significant decline of androgens were found. Additionally, hyperplasic interrenal cells, elevated steroidogenic gene expression level and decline of serum glucocorticoids were detected in star1 mutants. Intriguingly, either 11-KT or cortisol supplementation successfully rescued the impaired fertility of the star1-/- mutants. Taken together, these results further indicate that Star1 might play critical roles in the production of both 11-KT and glucocorticoids, which are indispensable for the maintenance of male fertility in fish.


Subject(s)
Cichlids , Fertility , Glucocorticoids , Mutation , Phosphoproteins , Testosterone , Animals , Male , Cichlids/genetics , Cichlids/metabolism , Testosterone/metabolism , Testosterone/blood , Testosterone/analogs & derivatives , Fertility/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Glucocorticoids/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Testis/metabolism
20.
Chemosphere ; 359: 142373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763395

ABSTRACT

The persistent organic pollutants (POPs) defined by the Stockholm Convention include polychlorinated naphthalenes (PCNs); of these, the most toxic, persistent, abundant, dioxin-like congeners found in human tissues are the hexachloronaphthalenes (HxCNs). Recent research also indicates that PCNs may disrupt hormonal homeostasis. The aim of this study was to evaluate the (anti)androgenic action of HxCN. Immature, castrated male Wistar rats were exposed per os to HxCN in corn oil at daily doses ranging from 0.3 to 3.0 mg kg-1 for 10 days. According to the OECD 441 protocol (Hershberger Bioassay), the anti-androgenic assay groups were co-exposed with testosterone propionate (TP), while the androgenic groups were not. TP was used as the reference androgen (subcutaneous daily doses of 0.4 mg kg-1), and flutamide (FLU) as the reference antiandrogen (per os daily doses of 3.0 mg kg-1). Five assessory sex tissues (ASTs) were weighed: ventral prostate, seminal vesicles, levator ani-bulbocavernosus muscle (LABC), Cowper's glands and glans penis. HxCN + TP significantly decreased the weight of the ventral prostate and seminal vesicle indicating an anti-androgenic action via 5α-reductase inhibition. These weight changes were also accompanied by abnormalities in cell morphology and hormonal disturbances: lowered levels of the testosterone and thyroid hormones thyroxine and triiodothyronine. Disturbances were also noted in the lipid profile, viz. total cholesterol, triglycerides and high-density lipoprotein and non-HDL fraction content. However, the direction of these changes differed depending on the size of the HxCN dose. No dose-effect relationship was noted for most of the obtained results; as such, exposure to even small HxCN doses run the risk of anti-androgenic effects in the general population, especially when encountered in combination with other POPs and endocrine-disrupting chemicals in the environment.


Subject(s)
Androgen Antagonists , Naphthalenes , Rats, Wistar , Male , Animals , Rats , Androgen Antagonists/toxicity , Naphthalenes/toxicity , Environmental Pollutants/toxicity , Endocrine Disruptors/toxicity , Hydrocarbons, Chlorinated/toxicity , Androgens , Testosterone/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...