Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(6): 2582-8, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24520856

ABSTRACT

Several 2'-fluorinated tetrahydrouridine derivatives were synthesized as inhibitors of cytidine deaminase (CDA). (4R)-2'-Deoxy-2',2'-difluoro-3,4,5,6-tetrahydrouridine (7a) showed enhanced acid stability over tetrahydrouridine (THU) 5 at its N-glycosyl bond. As a result, compound 7a showed an improved oral pharmacokinetic profile with a higher and more reproducible plasma exposure in rhesus monkeys compared to 5. Co-administration of 7a with decitabine, a CDA substrate, boosted the plasma levels of decitabine in rhesus monkeys. These results demonstrate that compound 7a can serve as an acid-stable alternative to 5 as a pharmacoenhancer of drugs subject to CDA-mediated metabolism.


Subject(s)
Cytidine Deaminase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Tetrahydrouridine/analogs & derivatives , Tetrahydrouridine/chemical synthesis , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Biological Availability , Decitabine , Drug Design , Drug Stability , Enzyme Inhibitors/pharmacokinetics , Excitatory Postsynaptic Potentials , Fluorine , Gastric Juice/chemistry , Macaca mulatta , Models, Molecular , Molecular Conformation , Structure-Activity Relationship , Tetrahydrouridine/pharmacology
2.
Cancer Chemother Pharmacol ; 67(2): 421-30, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20443002

ABSTRACT

PURPOSE: Cytidine drugs, such as gemcitabine, undergo rapid catabolism and inactivation by cytidine deaminase (CD). 3,4,5,6-tetrahydrouridine (THU), a potent CD inhibitor, has been applied preclinically and clinically as a modulator of cytidine analogue metabolism. However, THU is only 20% orally bioavailable, which limits its preclinical evaluation and clinical use. Therefore, we characterized THU pharmacokinetics after the administration to mice of the more lipophilic pro-drug triacetyl-THU (taTHU). METHODS: Mice were dosed with 150 mg/kg taTHU i.v. or p.o. Plasma and urine THU concentrations were quantitated with a validated LC-MS/MS assay. Plasma and urine pharmacokinetic parameters were calculated non-compartmentally and compartmentally. RESULTS: taTHU did not inhibit CD. THU, after 150 mg/kg taTHU i.v., had a 235-min terminal half-life and produced plasma THU concentrations >1 µg/mL, the concentration shown to inhibit CD, for 10 h. Renal excretion accounted for 40-55% of the i.v. taTHU dose, 6-12% of the p.o. taTHU dose. A two-compartment model of taTHU generating THU fitted the i.v. taTHU data best. taTHU, at 150 mg/kg p.o., produced a concentration versus time profile with a plateau of approximately 10 µg/mL from 0.5-2 h, followed by a decline with a 122-min half-life. Approximately 68% of i.v. taTHU is converted to THU. Approximately 30% of p.o. taTHU reaches the systemic circulation as THU. CONCLUSIONS: The availability of THU after p.o. taTHU is 30%, when compared to the 20% achieved with p.o. THU. These data will support the clinical studies of taTHU.


Subject(s)
Prodrugs/pharmacokinetics , Tetrahydrouridine/analogs & derivatives , Tetrahydrouridine/pharmacokinetics , Administration, Oral , Animals , Antimetabolites, Antineoplastic/blood , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/urine , Area Under Curve , Biocatalysis/drug effects , Biological Availability , Blood/metabolism , Cytidine Deaminase/antagonists & inhibitors , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/metabolism , Humans , Injections, Intravenous , Male , Mice , Mice, Inbred Strains , Models, Biological , Prodrugs/metabolism , Prodrugs/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Specific Pathogen-Free Organisms , Tetrahydrouridine/blood , Tetrahydrouridine/metabolism , Tetrahydrouridine/pharmacology , Tetrahydrouridine/urine , Urine/chemistry , Gemcitabine
3.
J Org Chem ; 74(5): 2221-3, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19191709

ABSTRACT

The alpha-hydroxyamido functionality of 2'-deoxytetrahydrouridine (dTHU) makes this seemingly simple and generally useful compound difficult to obtain. Reported synthetic strategies produce extremely poor yields and multiple products, and full characterization data is not available. Described herein is a two-step approach for synthesizing dTHU in increased yields and purity; stability concerns are also addressed. Catalytic reduction (5% Rh/alumina) of 2'-deoxyuridine, followed by reduction with sodium borohydride as a limiting reagent, produces dTHU and limits formation of side products. Evidence was obtained for formation of a methoxy-substituted analogue during purification. By this strategy, dTHU of >95% purity can be obtained in 40% yield on a 150 mg scale.


Subject(s)
Tetrahydrouridine/analogs & derivatives , Molecular Structure , Stereoisomerism , Tetrahydrouridine/chemical synthesis , Tetrahydrouridine/chemistry
4.
Mol Microbiol ; 50(3): 771-80, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14617140

ABSTRACT

Ureaplasma urealyticum (U. urealyticum), belonging to the class Mollicutes, is a human pathogen colonizing the urogenital tract and causes among other things respiratory diseases in premature infants. We have studied the salvage of pyrimidine deoxynucleosides in U. urealyticum and cloned a key salvage enzyme, thymidine kinase (TK) from U. urealyticum. Recombinant Uu-TK was expressed in E. coli, purified and characterized with regards to substrate specificity and feedback inhibition. Uu-TK efficiently phosphorylated thymidine (dThd) and deoxyuridine (dUrd) as well as a number of pyrimidine nucleoside analogues. All natural ribonucleoside/deoxyribonucleoside triphosphates, except dTTP, served as phosphate donors, while dTTP was a feedback inhibitor. The level of Uu-TK activity in U. urealyticum extracts increased upon addition of dUrd to the growth medium. Fluoropyrimidine nucleosides inhibited U. urealyticum and M. pneumoniae growth and this inhibitory effect could be reversed by addition of dThd, dUrd or deoxytetrahydrouridine to the growth medium. Thus, the mechanism of inhibition was most likely the depletion of dTTP, either via a blocked thymidine kinase reaction and/or thymidylate synthesis step and these metabolic reactions should be suitable targets for antimycoplasma chemotherapy.


Subject(s)
Mycoplasma pneumoniae/drug effects , Nucleosides/pharmacology , Tetrahydrouridine/analogs & derivatives , Thymidine Kinase/metabolism , Ureaplasma urealyticum/enzymology , Amino Acid Sequence , Cell Division/drug effects , Cloning, Molecular , Deoxyuridine/metabolism , Deoxyuridine/pharmacology , Escherichia coli/genetics , Feedback, Physiological , Molecular Sequence Data , Molecular Weight , Mycoplasma pneumoniae/growth & development , Nucleosides/metabolism , Phosphates/metabolism , Pyrimidine Nucleosides/metabolism , Pyrimidine Nucleosides/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Stavudine/metabolism , Substrate Specificity , Tetrahydrouridine/pharmacology , Thymidine/metabolism , Thymidine Kinase/genetics , Thymine Nucleotides/metabolism , Thymine Nucleotides/pharmacology , Ureaplasma urealyticum/drug effects , Ureaplasma urealyticum/genetics , Zidovudine/metabolism
5.
Biochem Cell Biol ; 69(5-6): 409-14, 1991.
Article in English | MEDLINE | ID: mdl-1654943

ABSTRACT

The effect of 5-methoxymethyl-2'-deoxycytidine (MMdCyd), in combination with tetrahydrodeoxyuridine (H4dUrd) and 5-methoxymethyl-2'-deoxyuridine (MMdUrd) on deoxyribonucleoside triphosphate pools was assessed. The dNTP pool content was almost 5 times as high in herpes simplex virus (HSV) infected VERO cells compared with mock-infected cells. Significant differences in dNTP pool sizes were observed with the different treatments. Treatment of HSV-infected cells with MMdCyd and MMdUrd resulted in a massive expansion of the dTTP pool, whereas pools of dCTP and dGTP were not affected substantially. MMdUrd and MMdCyd produced dATP pools that were 4 and 2.5 times that of the controls, respectively. Treatment with H4dUrd resulted in the dCTP pool increasing 12 times and barely detectable levels of dTTP. MMdCyd in combination with H4dUrd resulted in a marked reduction of the total deoxyribonucleoside triphosphate level. These results indicate that during viral replication the bulk of the thymidine nucleotides are derived from the dCyd/dCMP deaminase de novo pathway.


Subject(s)
Deoxycytidine/analogs & derivatives , Deoxyribonucleotides/metabolism , Deoxyuridine/analogs & derivatives , Simplexvirus/physiology , Tetrahydrouridine/analogs & derivatives , Animals , Binding Sites , Cytidine Deaminase , Deamination , Deoxycytidine/pharmacology , Deoxycytosine Nucleotides/metabolism , Deoxyuridine/pharmacology , Drug Interactions , Nucleoside Deaminases/metabolism , Simplexvirus/drug effects , Tetrahydrouridine/pharmacology , Thymine Nucleotides/metabolism , Vero Cells
6.
Antiviral Res ; 15(4): 301-13, 1991 May.
Article in English | MEDLINE | ID: mdl-1659312

ABSTRACT

The effect of purine and pyrimidine deoxyribonucleosides on the activity of 5-methoxymethyl-2'-deoxycytidine (MMdCyd) against herpes simplex virus type 1 (HSV-1) was investigated. The antiviral activity of MMdCyd was decreased by deoxythymidine, deoxyuridine and deoxycytidine. Deoxyadenosine had no effect at concentrations up to 500 microM. In contrast, deoxyguanosine (dGuo) potentiated MMdCyd activity. The mean ED50 (1.5 microM) for the combination (MMdCyd plus 100 microM dGuo) was approximately 20-fold lower than that of MMdCyd (ED50 26 microM). When tetrahydrodeoxyuridine (H4dUrd, 540 microM) was added along with MMdCyd and dGuo, anti-HSV-1 activity of MMdCyd was further potentiated by 25-fold (ED50 0.06 microM). The inhibition of virus replication, as determined by the plaque reduction assay, was further confirmed by virus yield studies and by parallel observations on virus-induced cytopathogenicity. The order of decreasing effectiveness for reducing the production of infectious virus particles (virus yield) by different treatments was: MMdCyd + dGuo + H4dUrd greater than MMdCyd + DGuo greater than MMdCyd + H4dUrd greater than MMdCyd greater than dGuo + H4dUrd greater than dGuo greater than H4dUrd. The effect of dGuo and dGuo in combination with H4dUrd on deoxyribonucleoside triphosphate (dNTP) pools was determined in Vero cells infected with multiplicity of infection of 5 PFU/cell. In the presence of 100 microM dGuo, there was approximately a 3-fold, 2-fold and 12-fold increase in dCTP, dTTP and dGTP pool sizes respectively, as compared to control (untreated) cells. Treatment with H4dUrd (1.06 mM) in combination with dGuo (100 microM), resulted in an increase of the dCTP pool and a marked fall in the dTTP and dGTP pool. The possible mechanisms for potentiation of MMdCyd activity by dGuo and H4dUrd are discussed.


Subject(s)
Antiviral Agents/pharmacology , DCMP Deaminase/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Deoxyguanosine/pharmacology , Deoxyribonucleosides/pharmacology , Simplexvirus/drug effects , Tetrahydrouridine/analogs & derivatives , Animals , Antiviral Agents/toxicity , Deoxycytidine/metabolism , Deoxyguanosine/toxicity , Simplexvirus/growth & development , Simplexvirus/metabolism , Tetrahydrouridine/pharmacology , Vero Cells
7.
Leuk Res ; 15(4): 205-13, 1991.
Article in English | MEDLINE | ID: mdl-2030601

ABSTRACT

The interaction between 2'-deoxycytidine (dCyd) and 1-beta-D-arabinofuranosylcytosine (ara-C), administered at pharmacologically achievable concentrations, was examined in four continuously cultured human leukemia cell lines, HL-60, KG-1, K-562, and CCRF-CEM. In three of the cell lines (HL-60, K-562, and CCRF-CEM), co-administration of 20 or 50 microM dCyd with 10 microM ara-C reduced ara-CTP formation by at least 90% and incorporation of ara-C into DNA by at least 80%. In contrast, KG-1 cells exhibited substantially smaller reductions in both ara-CTP formation and incorporation of ara-C into DNA under identical conditions. KG-1 cells were distinguished by the highest activity of the enzyme cytidine deaminase of the four lines assayed, and exhibited the smallest increments in the intracellular accumulation of both dCyd and deoxycytidine triphosphate (dCTP) in response to exogenous dCyd. Co-administration of 1 mM tetrahydrouridine (THU) or 0.5 mM deoxy-tetrahydrouridine (dTHU) had little effect on the ability of dCyd to antagonize ara-C metabolism in HL-60, KG-1 and K-562 cells. In contrast, these deaminase inhibitors substantially increased the intracellular accumulation of dCTP as well as the ability of dCyd to antagonize ara-CTP formation and incorporation of ara-C into DNA in KG-1 cells. THU and dTHU also permitted dCyd to antagonize ara-C growth inhibitory effects in KG-1 cells to the extent observed in the other leukemic cell lines. These studies suggest that the intracellular deamination of exogenous deoxycytidine may influence the degree to which this nucleoside antagonizes ara-C metabolism and toxicity in some leukemic cells. They also raise the possibility that deaminase inhibitors may be employed to modulate, and perhaps to improve, the therapeutic selectivity of pharmacologically relevant concentrations of ara-C and dCyd in the treatment of acute leukemia in man.


Subject(s)
Cytarabine/antagonists & inhibitors , Deoxycytidine/pharmacology , Leukemia/pathology , Tetrahydrouridine/analogs & derivatives , Tetrahydrouridine/pharmacology , Arabinofuranosylcytosine Triphosphate/metabolism , Cell Division/drug effects , Cytarabine/metabolism , Cytidine Deaminase/antagonists & inhibitors , Cytidine Deaminase/metabolism , DCMP Deaminase/antagonists & inhibitors , DCMP Deaminase/metabolism , DNA, Neoplasm/metabolism , Deamination , Deoxycytidine/metabolism , Deoxycytosine Nucleotides/metabolism , Humans , Leukemia/metabolism , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , Tumor Cells, Cultured/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...