Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 100(1): 23-30, 1987 May.
Article in English | MEDLINE | ID: mdl-3308398

ABSTRACT

The oral skeleton of Tetrahymena is a precisely arranged assemblage of basal bodies, microtubule bundles and connecting filaments found associated with the feeding structure in this cell type. Tubulin and filament proteins have been isolated but no actin has been recovered. The conditional mutant NP1 of Tetrahymena thermophila forms a normal oral skeleton at the permissive temperature (28 degrees C), but forms an abnormal one at the restrictive temperature (37 degrees C). Antibodies against tubulin and oral filament protein OF1 were used to visualize the abnormal oral skeleton and stages in its development, and ultrastructural comparisons of abnormal and wild-type oral skeletons were made. It was found that the overall pattern of organization was altered in the mutant, whereas the substructure appeared everywhere to be normal. Studies of cells in which the mutant phenotype was coming to expression revealed that normal basal bodies in the oral skeleton failed to move from the disordered state characteristic of early stages of development into the correct pattern of four organized clusters characteristic of later stages. Together, these results suggest that the lesion in NP1 does not affect cytoskeleton assembly per se, but instead affects a discrete mechanism responsible for the positioning of cytoskeletal elements with respect to each other after they have been formed (meta-assembly). Reasons for suspecting the involvement of the membrane skeleton are presented.


Subject(s)
Cytoskeleton/ultrastructure , Tetrahymena/embryology , Animals , Cell Differentiation , Cytoskeletal Proteins/analysis , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique , Microscopy, Electron , Temperature , Tetrahymena/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...