Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Clin Genet ; 105(6): 683-685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511226

ABSTRACT

A case of a newborn with tetralogy of Fallot, corpus callosum hypoplasia, and phenotypic features similar to DiGeorge syndrome. Chromosomal microarray analysis did not reveal any alterations. Whole exome sequencing and Sanger sequencing identified a de novo variant in the HIRA gene resulting in the loss of the start codon.


Subject(s)
Cell Cycle Proteins , DiGeorge Syndrome , Histone Chaperones , Female , Humans , Infant, Newborn , Male , Agenesis of Corpus Callosum/genetics , Cell Cycle Proteins/genetics , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Exome Sequencing , Histone Chaperones/genetics , Phenotype , Tetralogy of Fallot/genetics , Transcription Factors/genetics , Adult , Pedigree
2.
Birth Defects Res ; 116(1): e2279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38277413

ABSTRACT

BACKGROUND: Tetralogy of Fallot (ToF) is a cyanotic congenital heart disease, composed of four malformations: persistent communication between the right and the left ventricle, pulmonary stenosis, overriding aorta, and right ventricle hypertrophy. The etiology of this disease is not entirely known as yet, but it has been proposed that the pathology has genetic components. During embryonic development, the fetus is exposed to a physiological hypoxia to facilitate the formation of blood vessels and blood cells through de novo processes. METHODS: After researching scientific databases on the implications of oxygen on the normal and abnormal development of organs, especially the heart, we were able to propose that oxygen deprivation may be the cause of the disease. RESULTS: During this period, the hypoxia-inducible factor is activated and triggers transcriptional responses that enable adaptation to the hypoxic environment through angiogenic activation. High levels of this protein can alter certain physiological pathways, such as those related to the vascular endothelial growth factor. Research has shown that prolonged oxygen deprivation during embryological development can lead to the occurrence of congenital heart diseases, such as ToF. CONCLUSIONS: Studies using animal models have demonstrated that the deficiency or disruption of a protein called "CITED2," which plays an important role in cardiac morphogenesis and its loss, results in the alteration of pluripotent, cardiac, and neural lineage differentiation, thereby disrupting the normal development of the heart and other tissues.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Animals , Tetralogy of Fallot/genetics , Vascular Endothelial Growth Factor A/genetics , Heart Defects, Congenital/genetics , Hypoxia , Oxygen
3.
Birth Defects Res ; 116(1): e2293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146097

ABSTRACT

OBJECTIVES: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect in the United States. We aimed to identify genetic variations associated with TOF using meta-analysis of publicly available digital samples to spotlight targets for prevention, screening, and treatment strategies. METHODS: We used the Search Tag Analyze Resource for Gene Expression Omnibus (STARGEO) platform to identify 39 TOF and 19 non-TOF right ventricle tissue samples from microarray data and identified upregulated and downregulated genes. Associated gene expression data were analyzed using ingenuity pathway analysis and restricted to genes with a statistically significant (p < .05) difference and an absolute experimental log ratio >0.1 between disease and control samples. RESULTS: Our analysis identified 220 genes whose expression profiles were significantly altered in TOF vs. non-TOF samples. The most striking differences identified in gene expression included genes FBXO32, PTGES, MYL12a, and NR2F2. Some top associated canonical pathways included adrenergic signaling, estrogen receptor signaling, and the role of NFAT in cardiac hypertrophy. In general, genes involved in adaptive, defensive, and reparative cardiovascular responses showed altered expression in TOF vs. non-TOF samples. CONCLUSIONS: We introduced the interpretation of open "big data" using the STARGEO platform to define robust genomic signatures of congenital heart disease pathology of TOF. Overall, our meta-analysis results indicated increased metabolism, inflammation, and altered gene expression in TOF patients. Estrogen receptor signaling and the role of NFAT in cardiac hypertrophy represent unique pathways upregulated in TOF patients and are potential targets for future pharmacologic treatments.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Humans , United States , Tetralogy of Fallot/genetics , Cardiomegaly , Receptors, Estrogen/genetics , Gene Expression
4.
Int J Med Sci ; 20(11): 1377-1385, 2023.
Article in English | MEDLINE | ID: mdl-37790845

ABSTRACT

Background: 22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome exhibiting significant clinical phenotype variability. This study aimed to investigate the clinical features, immune profiles, and cognitive abilities of 22q11.2DS patients receiving treatment at MacKay Memorial Hospital in Taipei, Taiwan. Methods: This is a cross-sectional analysis between January 2001 and December 2022. We recruited 27 patients with 22q11.2DS using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). Our evaluation included patient history, physical examination, laboratory analysis, and cardiac and cognitive assessment. Results: We included 27 patients with 22q11.2DS, 7 (25.9%) of whom were female. The median age of the patients was 17.9 yr. Ninety-three percent of the patients exhibited the characteristic facial features associated with the syndrome. A family history of 22q11.2DS was found in 11.1% of the patients. Furthermore, 74.1% of the patients had a congenital heart defect, the most common of which was tetralogy of Fallot (40.7%). Hypocalcemia was observed in 40.7% of the patients. A low T-cell count was observed in 66.7% of the patients, whereas 18.5% had low immunoglobulin levels. Cognitive assessments revealed that four out of six evaluated patients (66.7%) had an intellectual disability, as evidenced by intellectual quotient scores less than 70. The remaining two patients (33.3%) had a borderline intellectual function. Conclusion: Tetralogy of Fallot, hypocalcemia, immunologic defects, and cognitive impairment were common among our patients. To address the potential multisystem involvement, we recommend that all affected individuals undergo a comprehensive evaluation by a multidisciplinary care team.


Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , Hypocalcemia , Tetralogy of Fallot , Humans , Female , Male , DiGeorge Syndrome/genetics , DiGeorge Syndrome/diagnosis , Tetralogy of Fallot/genetics , Hypocalcemia/genetics , In Situ Hybridization, Fluorescence , Taiwan/epidemiology , Cross-Sectional Studies , Comparative Genomic Hybridization , Heart Defects, Congenital/genetics , Immune System , Chromosome Deletion
5.
J Cell Mol Med ; 27(22): 3539-3552, 2023 11.
Article in English | MEDLINE | ID: mdl-37749917

ABSTRACT

Tetralogy of Fallot (TOF) is the highly conventional appearance of cyanotic congenital heart disease. Our study aimed to assess the involvement of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in TOF and elucidate the specific mechanism. Upon investigation of human tissue samples, we observed a decrease in ROR2 expression in TOF patients compared to healthy control individuals. Transcriptome analysis revealed diminished ROR2 expression in TOF pathological samples relative to normal tissues. Of the 2246 genes that exhibited altered expression, 886 were upregulated, while 1360 were down-regulated. KEGG analysis and GO analysis of the differentially expressed genes indicated that these genes were significantly enriched in the Wnt signalling pathway, apoptosis and cardiac development function. Importantly, ROR2 was the only gene shared among the three pathways. Furthermore, interference with ROR2 promotes apoptosis and curtails cell proliferation in vitro. The knockdown of the ROR2 gene in AC16 cells resulted in a significant decrease in Edu-positive cells. Flow cytometry studies indicated an increase in the percentage of cells in the S phase. In contrast, the G2/M cell cycle transition was blocked in the ROR2-knockdown group, leading to a significant increase in apoptosis. Moreover, the CCK-8 cell viability assay demonstrated a reduced proliferation in the ROR2-knockdown group. Furthermore, both in vivo and in vitro data indicated that the expression of HSPA6 (Recombinant Heat Shock 70 kDa Protein6), an essential gene enriched in cardiac tissue and associated with apoptosis, was down-regulated following ROR2 knockdown mediated by the ß-catenin/SOX3 signalling pathway. In conclusion, low expression of ROR2 plays a crucial role in the occurrence and development of TOF, which may be related to the downregulation of HSPA6 through the ß-catenin/SOX3 signalling pathway.


Subject(s)
Receptor Tyrosine Kinase-like Orphan Receptors , Tetralogy of Fallot , Humans , beta Catenin/genetics , beta Catenin/metabolism , Down-Regulation/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , SOXB1 Transcription Factors/metabolism , Tetralogy of Fallot/genetics , Wnt Signaling Pathway/genetics
6.
Am J Cardiol ; 203: 368-375, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37523935

ABSTRACT

Congenital heart defects are common and complex birth-defect malformations in developed and developing countries. It is a multifactorial disease that involves the interaction of either gene-gene or gene-environment. This comparative study was the first report on the genotypic-phenotypic correlation in the Pakistani population. The single nucleotide polymorphisms (SNPs) were further tested for association with maternal diabetes mellitus or hypertension. In addition, the cumulative genetic risk score (GRS) for low to moderately-associated SNPs was calculated for each study subject, which can ultimately guide us for better therapeutic options and prevention strategies. According to the predefined selection criteria, 376 subjects were recruited. The multiplex mini-sequencing genotyping technique opted for the cost-effective genotyping of selected loci. The association of variants with the disease was examined using logistic regression analysis. The statistical and graphical analysis was conducted using SPSS, Haploview, SNPStats, and GraphPad Prism. The results for all SNPs analysis suggested a nonsignificant association with overall congenital heart defect risk except rs3809923. However, interestingly on stratified analysis variants, rs3809923 and rs3809922 showed an association only with tetralogy of Fallot. The remaining risk factor analysis for maternal hypertension and diabetes mellitus association with SNPs were nonsignificant. The GRS was the first time constructed for this low to moderately-associated variants. Interestingly, the cumulative GRS was significantly different from the control group revealing the cumulative effect of these polymorphisms panel in patients. In conclusion, the use of GRS in the clinical setting can predict better risk association and patient outcomes.


Subject(s)
Diabetes Mellitus , Heart Defects, Congenital , Heart Septal Defects, Ventricular , Hypertension , Tetralogy of Fallot , Humans , Tetralogy of Fallot/epidemiology , Tetralogy of Fallot/genetics , Tetralogy of Fallot/surgery , Case-Control Studies , Pakistan/epidemiology , Heart Septal Defects, Ventricular/surgery , Heart Defects, Congenital/epidemiology , Polymorphism, Single Nucleotide , Risk Factors , Genetic Predisposition to Disease , Vascular Endothelial Growth Factor A , Smad7 Protein/genetics
7.
Open Heart ; 10(1)2023 04.
Article in English | MEDLINE | ID: mdl-37024245

ABSTRACT

OBJECTIVE: Cardiac surgery may cause temporarily impaired ventricular performance and myocardial injury. We aim to characterise the response to perioperative injury for patients undergoing repair or pulmonary valve replacement (PVR) for tetralogy of Fallot (ToF). METHODS: We enrolled children undergoing ToF repair or PVR from four tertiary centres in a prospective observational study. Assessment-including blood sampling and speckle tracking echocardiography-occurred before surgery (T1), at the first follow-up (T2) and 1 year after the procedures (T3). Ninety-two serum biomarkers were expressed as principal components to reduce multiple statistical testing. RNA Sequencing was performed on right ventricular (RV) outflow tract samples. RESULTS: We included 45 patients with ToF repair aged 4.3 (3.4 - 6.5) months and 16 patients with PVR aged 10.4 (7.8 - 12.7) years. Ventricular function following ToF repair showed a fall-and-rise pattern for left ventricular global longitudinal strain (GLS) (-18±4 to -13±4 to -20±2, p < 0.001 for each comparison) and RV GLS (-19±5 to -14±4 to 20±4, p < 0.002 for each comparison). This pattern was not seen for patients undergoing PVR. Serum biomarkers were expressed as three principal components. These phenotypes are related to: (1) surgery type, (2) uncorrected ToF and (3) early postoperative status. Principal component 3 scores were increased at T2. This increase was higher for ToF repair than PVR. The transcriptomes of RV outflow tract tissue are related to patients' sex, rather than ToF-related phenotypes in a subset of the study population. CONCLUSIONS: The response to perioperative injury following ToF repair and PVR is characterised by specific functional and immunological responses. However, we did not identify factors relating to (dis)advantageous recovery from perioperative injury. TRIAL REGISTRATION NUMBER: Netherlands Trial Register: NL5129.


Subject(s)
Cardiac Surgical Procedures , Heart Valve Prosthesis Implantation , Pulmonary Valve Insufficiency , Pulmonary Valve , Tetralogy of Fallot , Humans , Tetralogy of Fallot/genetics , Tetralogy of Fallot/surgery , Tetralogy of Fallot/complications , Pulmonary Valve/diagnostic imaging , Pulmonary Valve/surgery , Pulmonary Valve Insufficiency/diagnostic imaging , Pulmonary Valve Insufficiency/etiology , Pulmonary Valve Insufficiency/surgery , Heart Valve Prosthesis Implantation/adverse effects , Ventricular Function, Right/physiology , Cardiac Surgical Procedures/adverse effects , Cardiac Surgical Procedures/methods , Ventricular Function , Biomarkers
8.
Biomolecules ; 13(2)2023 02 13.
Article in English | MEDLINE | ID: mdl-36830727

ABSTRACT

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in newborns. ISL1 is a master transcription factor in second heart field development, whereas the roles of ISL1 gene promoter variants in TOF patients have not been genetically investigated. Total DNA extraction from 601 human subjects, including 308 TOF patients and 293 healthy controls, and Sanger sequencing were performed. Four variants (including one novel heterozygous variant) within the ISL1 gene promoter were only found in TOF patients. Functional analysis of DNA sequence variants was performed by using the dual-luciferase reporter assay and demonstrated that three of the four variants significantly decreased the transcriptional activity of ISL1 gene promoter in HL-1 cells (p < 0.05). Further, the online JASPAR database and electrophoretic mobility shift assay showed that the three variants affected the binding of transcription factors and altered ISL1 expression levels. In conclusion, the current study for the first time demonstrated that the variants identified from the ISL1 gene promoter region are likely involved in the development of TOF by affecting the transcriptional activity and altering the ISL1 expression level. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of TOF.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Infant, Newborn , Humans , Tetralogy of Fallot/genetics , Transcription Factors/genetics , Heart Defects, Congenital/genetics , Promoter Regions, Genetic , Heterozygote
9.
Comb Chem High Throughput Screen ; 26(2): 373-382, 2023.
Article in English | MEDLINE | ID: mdl-35593364

ABSTRACT

BACKGROUND: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in clinical practice. It is mainly due to cardiovascular hypoplasia during embryonic development. The study aimed to find the etiology of TOF. METHODS: Through the mRNA expression profile analysis of the GSE35776 dataset, differentially expressed genes (DEGs) were found, and the functional analysis and protein-protein interaction (PPI) network analysis were then performed on DEGs. Likewise, the hub genes and functional clusters of DEGs were analyzed using the PPI network. Differentially expressed miRNAs were analyzed from the GSE35490 dataset, followed by miRNet predicted transcription factors (TFs) and target genes. The key TF-miRNA-gene interaction mechanism was explored through the found significant difference between genes and target genes. RESULTS: A total of 191 differentially expressed genes and 57 differentially expressed miRNAs were identified. The main mechanisms involved in TOF were mitochondria-related and energy metabolism- related molecules and pathways in GO and KEGG analysis. This discovery was identical in TFs and target genes. The key miRNAs, hsa-mir-16 and hsa-mir-124, were discovered by the Venn diagram. A co-expression network with the mechanism of action centered on two miRNAs was made. CONCLUSION: Hsa-mir-16 and hsa-mir-124 are the key miRNAs of TOF, which mainly regulate the expression of NT5DC1, ECHDC1, HSDL2, FCHO2, and ACAA2 involved in the conversion of ATP in the mitochondria and the metabolic rate of fatty acids (FA). Our research provides key molecules and pathways into the etiology of TOF, which can be used as therapeutic targets.


Subject(s)
MicroRNAs , Tetralogy of Fallot , Humans , Tetralogy of Fallot/genetics , Gene Expression Profiling , Computational Biology , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Hydroxysteroid Dehydrogenases/genetics
10.
Mol Genet Genomics ; 298(1): 243-251, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36396788

ABSTRACT

Congenital heart disease (CHD) is a worldwide problem with high morbidity and mortality. Early diagnosis of congenital heart disease is still a challenge in clinical work. In recent years, few studies indicated that placental methylation may be predictors of CHD. More studies are needed to confirm the association between placental methylation and CHD. The aim of this study was to investigate the association between prenatal placental DNA methylation and CHD. Placental tissues were obtained from four fetuses during the second trimester with isolated, non-syndromic congenital heart disease, including three cases with double outlet right ventricle (DORV) and one case with tetralogy of Fallot (TOF), and four unaffected fetuses as controls. The Illumina Infinium Human Methylation 850K BeadChip assay was employed to identify differential methylation sites (DMSs) and differential methylation regions (DMRs). Differential methylation was evaluated by comparing the ß-values for individual CpG loci in cases vs. controls. In addition, the function of genes was assessed through KEGG enrichment analysis, Gene Ontology (GO) analysis and KEGG pathway analysis. Compared with the control group, we identified 9625 differential methylation genes on 26,202 DMSs (p < 0.05), of which 6997 were hyper-methylation and 2628 were hypo-methylation. The top 30 terms of GO biological process and KEGG enrichment analysis of DMSs were connected with multiple important pathways of heart development and disease. Ten differentially methylated regions and the genes related to DMRs, such as TLL1, CRABP1, FDFT1, and PCK2, were identified. The deformity caused by the loss of function of these genes is remarkably consistent with the clinical phenotype of our cases. The DNA methylation level of placental tissue is closely associated with fetal congenital heart disease.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Female , Humans , Pregnancy , DNA Methylation/genetics , Placenta , Heart Defects, Congenital/genetics , Tetralogy of Fallot/genetics , Fetus , Epigenesis, Genetic , Tolloid-Like Metalloproteinases/genetics
12.
Gene ; 851: 146909, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36162527

ABSTRACT

BACKGROUND: Tetralogy of Fallot (TOF) is a rare, complex congenital heart defect caused by genetic and environmental interactions that results in abnormal heart development during the early stages of pregnancy. Genetic basis of TOF in Saudi populations is not yet studied. Therefore, the objective of this study is to screen for the molecular defects causing TOF in Saudi patients. METHODS: A family with non-syndromic TOF was recruited from the Western region of Saudi Arabia. Whole exome sequencing (WES) was performed on the proband and her parents. The identified candidate variant was verified by sanger sequencing. Also, different computational biology tools were used to figure out how candidate variants affect the structure and function of candidate protein involved in TOF. RESULTS: A novel heterozygous de novo mutation in LRP1 (p. G3311D) gene was identified in the index case. Also, this variant was absent in the in-house exome sequencing data of 80 healthy Saudi individuals. This variant was predicted to be likely pathogenic, as it negatively affects the biophysical chemical properties and stability of the protein. Furthermore, functional biology data from knock out mouse models confirms that molecular defects in LRP1 gene leads to cardiac defects and lethality. This variant was not previously reported in both Arab and global population genetic databases. CONCLUSION: The findings in this study postulate that the LRP1 variant has a role in TOF pathogenesis and facilitate accurate diagnosis as well as the understanding of underlying molecular mechanisms and pathophysiology of the disease.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-1 , Tetralogy of Fallot , Animals , Female , Mice , Exome/genetics , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mutation , Pedigree , Saudi Arabia , Tetralogy of Fallot/genetics , Tetralogy of Fallot/pathology , Humans
13.
BMC Pregnancy Childbirth ; 22(1): 853, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402964

ABSTRACT

Tetralogy of fallot (TOF) in the fetus is a typical congential heart disease that occurs during the early embryonic period, being characterized by the abnormal development of conus arteriosus. The early diagnosis and prevention of fetal TOF is very important and there is a great need for exploring the pathogenesis of it in clinic. In this study, there were three cases being detected with TOF by fetal echocardiogram and confirmed by autopsy. We characterize the difference of expression of lncRNAs and mRNAs through sequencing analysis of 3 pairs of myocardial tissues of fetal TOF and those of age-matched controls. Compared with normal group, there were 94 differentially expressed lncRNAs and 83 mRNA transcripts in TOF (P < 0.05). Correlation analysis between lncRNA and mRNA further showed that differentially expressed lncRNA can be linked to mRNAs, suggesting the potential regulator role of lncRNA in mRNA expression. Our data serve as a fundamental resource for understanding the disease etiology of TOF.


Subject(s)
RNA, Long Noncoding , Tetralogy of Fallot , Pregnancy , Female , Humans , RNA, Messenger/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tetralogy of Fallot/diagnosis , Tetralogy of Fallot/genetics , Fetus , Prenatal Diagnosis
14.
Biomolecules ; 12(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36358994

ABSTRACT

Tetralogy of Fallot (TOF) is a common congenital heart malformation. Genetic variants in the CITED2 coding region are known to be significantly associated with cardiac malformation, but the role of variants in the CITED2 promoter region in the development of TOF remains unclear. In this study, we investigated CITED2 promoter variants in the DNA of 605 subjects, including 312 TOF patients and 293 unrelated healthy controls, by Sanger sequencing. We identified nine CITED2 gene promoter variants (including one novel heterozygous variant). Six were found only in patients with TOF and none in the control group. The transcriptional activity of the CITED2 gene promoter in mouse cardiomyocyte (HL-1) cells was significantly altered by the six variants (p < 0.05). The results of the electrophoretic mobility change assay and JASPAR database analysis showed that these variants generated or destroyed a series of possible transcription factor binding sites, resulting in changes in the CITED2 protein expression. We conclude that CITED2 promoter variants in TOF patients affect transcriptional activity and may be involved in the occurrence and progression of TOF. These findings may provide new insights into molecular pathogenesis and potential therapeutic insights in patients with TOF.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Mice , Animals , Tetralogy of Fallot/genetics , Heart Defects, Congenital/genetics , Promoter Regions, Genetic , Repressor Proteins/genetics , Trans-Activators/genetics
15.
Birth Defects Res ; 114(17): 1101-1111, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36114760

ABSTRACT

BACKGROUND: Environmental factors may influence the development of tetralogy of Fallot (TOF), and DNA methylation patterns may reveal specific chemical signatures of perturbations during cardiac development. We investigated whether blood and buccal cells could be viable surrogates for myocardium. METHODS: We measured epigenome-wide DNA methylation at 866,895 5'-cytosine-phosphate-guanine-3' (CpG) sites in blood (n=3), buccal cells (n=3), and right ventricular myocardium (n=4) collected from infants with TOF and compared the percent of differentially methylated CpG sites across tissue types. Gene-specific DNA methylation profiles were also analyzed for ten representative genes associated with heart development. Welch's ANOVAs compared general methylation between tissue types. RESULTS: Comparison of DNA methylation profiles across blood, buccal, and myocardium suggested myocardium and buccal samples were most similar, differing in DNA methylation at only 1.3% (11,386) of CpG sites whereas myocardium and blood were most dissimilar, having 146,857 statistically dissimilar methylated CpG sites (~17% dissimilarity; adjusted p < 0.01 for each site). Buccal swabs were significantly more variable (p < .001) than either blood or myocardial samples. In gene-specific analyses, SCO2, GATA4, NOTCH4, WNT7A, and DKK2 showed conserved DNA methylation profiles across tissue types, while HAND1, JAG1, NKX2-5, TBX5 and TBX20 showed more distinctive tissue-specific patterns of DNA methylation. CONCLUSIONS: Compared with blood, buccal tissue more closely mirrors the myocardial methylome, with >10-fold similarity. Nevertheless, both buccal and blood tissue capture highly conserved DNA methylation patterns at specific genetic loci related to cardiac development. Buccal cheek swabs may be a useful surrogate tissue type for future investigations of TOF-specific epigenetic profiles.


Subject(s)
DNA Methylation , Tetralogy of Fallot , Cytosine , DNA Methylation/genetics , Guanine , Humans , Infant , Mouth Mucosa , Phosphates , Tetralogy of Fallot/genetics
16.
Medicine (Baltimore) ; 101(33): e30123, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35984151

ABSTRACT

Congenital heart disease (CHD) is the most serious congenital defect in newborns with higher mortality. Alternative splicing (AS) plays an essential role in numerous heart diseases. However, our understanding of the link between mRNA splicing and CHD in humans is limited. Here, we try to investigate the genome-wide AS events in CHD using bioinformatics methods. We collected available RNA-seq datasets of CHD-induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) (including single ventricle disease [SVD] and tetralogy of Fallot [TOF]) and non-CHD from the Gene Expression Omnibus database. Then, we unprecedentedly performed AS profiles in CHD-iPSC-CMs and non-CHD-iPSC-CMs. The rMAPS was used to generate RNA-maps for the analysis of RNA-binding proteins' (RBPs) binding sites. We used StringTie to identify and quantify the transcripts from aligned RNA-Seq reads. A quantification matrix was generated with respect to different groups by extracting the transcripts per million values from StringTie outputs. Then, this matrix was used for correlation analysis between the expression level of RBP and AS level. Finally, we validated our AS results using RNA-seq data from CHD and non-CHD patient tissue samples. We identified CHD-related AS events using CHD-iPSC-CMs and CHD samples from patients. The results showed that functional enrichment of abnormal AS in SVD and TOF was transcription factor-related. Using rMAPS, RNA-binding proteins which regulated these AS were also determined, and RBP-AS regulatory network was constructed. Overall, we identified abnormal AS in CHD-iPSC-CMs and CHD samples from patients. We predicted AS regulators in SVD and TOF, respectively. At last, we concluded that AS played a key role in the pathogenesis of CHD.


Subject(s)
Heart Defects, Congenital , Induced Pluripotent Stem Cells , Tetralogy of Fallot , Alternative Splicing , Cell Differentiation , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Humans , Infant, Newborn , Myocytes, Cardiac/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Tetralogy of Fallot/genetics
17.
J Bioinform Comput Biol ; 20(4): 2240004, 2022 08.
Article in English | MEDLINE | ID: mdl-35918793

ABSTRACT

Tetralogy of Fallot (TOF) is a cyanotic congenital condition contributed by genetic, epigenetic as well as environmental factors. We applied sparse machine learning algorithms to RNAseq and sRNAseq data to select the prospective biomarker candidates. Furthermore, we applied filtering techniques to identify a subset of biomarker pairs in TOF. Differential expression analysis disclosed 2757 genes and 214 miRNAs, which are dysregulated. Weighted gene co-expression network analysis on the differentially expressed genes extracted five significant modules that are enriched in GO terms, extracellular matrix, signaling and calcium ion binding. Also, voomNSC selected two genes and five miRNAs and transformed PLDA-predicted 72 genes and 38 miRNAs as prognostic biomarkers. Out of the selected biomarkers, miRNA target analysis revealed 14 miRNA-gene interactions. Also, 10 out of 14 pairs were oppositely expressed and four out of 10 oppositely expressed biomarker pairs shared common pathways of focal adhesion and P13K-Akt signaling. In conclusion, our study demonstrated the concept of biomarker pairs, which may be considered for clinical validation due to the high literature as well as experimental support.


Subject(s)
MicroRNAs , Tetralogy of Fallot , Biomarkers , Gene Expression Profiling/methods , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Tetralogy of Fallot/genetics , Tetralogy of Fallot/metabolism , Tetralogy of Fallot/surgery , Transcriptome
18.
Clin Genet ; 102(5): 391-403, 2022 11.
Article in English | MEDLINE | ID: mdl-35882632

ABSTRACT

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Highly penetrant copy number variants (CNVs) and genes related to the etiology of TOF likely exist with differences among populations. We aimed to identify CNV contributions to sporadic TOF cases in Han Chinese. Genomic DNA was extracted from peripheral blood in 605 subjects (303 sporadic TOF and 302 unaffected Han Chinese [Control] from cardiac centers in China) and analyzed by genome-wide association study (GWAS). The GWAS results were compared with existing Database of Genetic Variants. These CNVs were further validated by qPCR. Bioinformatics analyses were performed with protein-protein interaction (PPI) network and KEGG pathway enrichment. Across all chromosomes 119 novel "TOF-specific CNVs" were identified with prevalence of CNVs of 21.5% in chromosomes 1-20 and 37.0% including Chr21/22. In chromosomes 1-20, CNVs on 11q25 (encompasses genes ACAD8, B3GAT1, GLB1L2, GLB1L3, IGSF9B, JAM3, LOC100128239, LOC283177, MIR4697, MIR4697HG, NCAPD3, OPCML, SPATA19, THYN1, and VPS26B) and 14q32.33 (encompasses genes THYN1, OPCML, and NCAPD3) encompass genes most likely to be associated with TOF. Specific CNVs found on the chromosome 21 (6.3%) and 22(11.9%) were also identified in details. PPI network analysis identified the genes covering the specific CNVs related to TOF and the signaling pathways. This study for first time identified novel TOF-specific CNVs in the Han Chinese with higher frequency than in Caucasians and with 11q25 and 14q32.33 not reported in TOF of Caucasians. These novel CNVs identify new candidate genes for TOF and provide new insights into genetic basis of TOF.


Subject(s)
DNA Copy Number Variations , Tetralogy of Fallot , Asian People/genetics , Cell Adhesion Molecules/genetics , DNA , DNA Copy Number Variations/genetics , GPI-Linked Proteins/genetics , Genome-Wide Association Study , Humans , Tetralogy of Fallot/genetics
19.
Clin Transl Med ; 12(7): e941, 2022 07.
Article in English | MEDLINE | ID: mdl-35808830

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. METHODS: A total of 1320 unrelated CHD patients were enrolled in our study. Exome-wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat-containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR-targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA-seq and co-immunoprecipitation. RESULTS: Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non-coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle-regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. CONCLUSIONS: WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.


Subject(s)
Cell Cycle Proteins , Heart Defects, Congenital , Heart Septal Defects, Ventricular , Myocytes, Cardiac , Tetralogy of Fallot , Animals , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division , Exome , Heart Defects, Congenital/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Tetralogy of Fallot/genetics , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...