Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.888
Filter
1.
Arch Microbiol ; 206(6): 262, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753198

ABSTRACT

The employment of versatile bacterial strains for the efficient degradation of carcinogenic textile dyes is a sustainable technology of bioremediation for a neat, clean, and evergreen globe. The present study has explored the eco-friendly degradation of complex Reactive Green 12 azo dye to its non-toxic metabolites for safe disposal in an open environment. The bacterial degradation was performed with the variable concentrations (50, 100, 200, 400, and 500 mg/L) of Reactive Green 12 dye. The degradation and toxicity of the dye were validated by high-performance liquid chromatography, Fourier infrared spectroscopy analysis, and phytotoxicity and genotoxicity assay, respectively. The highest 97.8% decolorization was achieved within 12 h. Alternations in the peaks and retentions, thus, along with modifications in the functional groups and chemical bonds, confirmed the degradation of Reactive Green 12. The disappearance of a major peak at 1450 cm-1 corresponding to the -N=N- azo link validated the breaking of azo bonds and degradation of the parent dye. The 100% germination of Triticum aestivum seed and healthy growth of plants verified the lost toxicity of degraded dye. Moreover, the chromosomal aberration of Allium cepa root cell treatment also validated the removal of toxicity through bacterial degradation. Thereafter, for efficient degradation of textile dye, the bacterium is recommended for adaptation to the sustainable degradation of dye and wastewater for further application of degraded metabolites in crop irrigation for sustainable agriculture.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Onions , Textile Industry , Triticum , Coloring Agents/metabolism , Coloring Agents/chemistry , Coloring Agents/toxicity , Triticum/microbiology , Onions/drug effects , Azo Compounds/metabolism , Azo Compounds/toxicity , Textiles , Bacteria/metabolism , Bacteria/drug effects , Bacteria/genetics , Mutagenicity Tests
2.
Arch Environ Contam Toxicol ; 86(4): 375-382, 2024 May.
Article in English | MEDLINE | ID: mdl-38775938

ABSTRACT

Alkylphenol ethoxylates comprise of many anthropogenic chemicals such as nonylphenol (NP), octylphenol (OP) and nonylphenol ethoxylates (NPEOs). The objectives of this study were to assess the frequency and magnitude of detections of 4-NP, OP and NPEOs in Canadian sediment downstream of textile associated municipal wastewater treatment plants (MWWTPs) to determine if regulatory actions have had a beneficial impact on the receiving environment. Surficial sediments were obtained in four locations in the province of Québec (Canada) and were analyzed for nonylphenol, nonylphenol monoethoxylates (NP1EO), nonylphenol diethoxylates (NP2EO) and octylphenol from 2015 to 2018. Individual concentrations of the compounds varied from non detect to 419 ng/g. Of the four compounds analyzed, NP was detected the most frequently with a 75% detection rate while OPs were not detected in any of the samples. Since the Canadian regulatory actions have drastically reduced NP/NPEOs usage in textile mill factories and manufactured products, the potential source of these compounds in sediment for this study could stem from the outfall from the MWWTPs but not related to textile mills as well as from the usage of these compounds as formulants in pesticide products. Lastly, there were no exceedances to the Canadian Sediment Quality guideline toxic equivalency approach (TEQ) of 1400 ng/g or the 1310 ng/g guideline for NP in freshwater sediment from the European Scientific Committee on Health, Environmental and Emerging Risks. We hypothesize that the significant concentrations of these compounds in sediment may be a relevant and continuous source of 4NP in surface waters due to resuspension of sediment in the water column.


Subject(s)
Environmental Monitoring , Fresh Water , Geologic Sediments , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Wastewater/chemistry , Wastewater/analysis , Fresh Water/chemistry , Phenols/analysis , Quebec , Waste Disposal, Fluid , Textiles/analysis , Textile Industry
3.
PLoS One ; 19(5): e0304578, 2024.
Article in English | MEDLINE | ID: mdl-38820452

ABSTRACT

The study explores the strategic pricing and quality improvement decisions under uncertain demand in a three-layer textile and garment supply chain. According to whether the fabric manufacturer (FM) invests in quality or not and whether the garment manufacturer (GM) or garment retailer (GR) is willing to share the costs or not, five game models are constructed to investigate the impact of different members' cost sharing on the optimal decisions and profits. By conducting a theoretical and numerical analysis, we find that: (1) The GM's or GR's cost sharing plays a positive effect on the quality improvement, as for whose cost sharing performs better in improving the quality depending on the proportion of cost sharing, and the quality improvement is highest with both members share the costs simultaneously. (2) The FM receives the highest profit when both members share the costs simultaneously, however, whose cost sharing is more profitable for the FM is also related to the proportion of cost sharing; in short, the FM always benefits from the cost sharing, no matter one member does this or two members do this. (3) The GM (GR) gains the highest profit when only the GR (GM) shares the costs, and the results indicate that if one member has shared the costs, whether the other member engaging in cost sharing could benefit the former depending on their proportions. Specifically, when the GM (GR) chooses to share the costs and the proportion is relatively low, the GR(GM) joining in cost sharing is beneficial to the former; otherwise, is harmful.


Subject(s)
Clothing , Quality Improvement , Textiles , Textiles/economics , Clothing/economics , Costs and Cost Analysis , Uncertainty , Humans , Textile Industry/economics , Models, Economic
4.
Bioresour Technol ; 402: 130807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723727

ABSTRACT

The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.


Subject(s)
Agaricus , Coloring Agents , Coloring Agents/chemistry , Textiles , Biodegradation, Environmental , Color , Textile Industry , Water Pollutants, Chemical , Industrial Waste
5.
Braz J Microbiol ; 55(2): 1231-1241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727921

ABSTRACT

Laccase is an exothermic enzyme with copper in its structure and has an important role in biodegradation by providing oxidation of phenolic compounds and aromatic amines and decomposing lignin. The aim of this study is to reach maximum laccase enzyme activity with minimum cost and energy through optimization studies of Proteusmirabilis isolated from treatment sludge of a textile factory. In order to increase the laccase enzyme activities of the isolates, medium and culture conditions were optimized with the study of carbon (Glucose, Fructose, Sodium Acetate, Carboxymethylcellulose, Xylose) and nitrogen sources (Potassium nitrate, Yeast Extract, Peptone From Soybean, Bacteriological Peptone), incubation time, pH, temperature and Copper(II) sulfate concentration then according to the results obtained. Response Surface Method (RSM) was performed on six different variables with three level. According to the data obtained from the RSM, the maximum laccase enzyme activity is reached at pH 7.77, temperature 30.03oC, 0.5 g/L CuSO4, 0.5 g/L fructose and 0.082 g/L yeast extract conditions. After all, the laccase activity increased 2.7 times. As a result, laccase activity of P. mirabilis can be increased by optimization studies. The information obtained as a result of the literature studies is that the laccase enzymes produced in laboratory and industrial scale are costly and their amounts are low. This study is important in terms of obtaining more laccase activity from P.mirabilis with less cost and energy.


Subject(s)
Culture Media , Laccase , Proteus mirabilis , Sewage , Temperature , Textile Industry , Laccase/metabolism , Proteus mirabilis/enzymology , Proteus mirabilis/isolation & purification , Proteus mirabilis/metabolism , Proteus mirabilis/genetics , Sewage/microbiology , Hydrogen-Ion Concentration , Culture Media/chemistry , Industrial Waste , Nitrogen/metabolism , Carbon/metabolism , Biodegradation, Environmental
6.
Chemosphere ; 359: 142389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777191

ABSTRACT

Bacillus nitratireducens was isolated from textile effluent and showed high tolerance to chromium (Cr), reaching up to a 1000 mg/L MIC value. This research was aimed at utilizing biosorbents from live and dead cells of B. nitratireducens to remove Cr from an aqueous solution. A batch biosorption test was performed, and mechanisms analysis was approached by an adsorption-desorption test, SEM-EDS, and FTIR analysis. Cr removal by dead cells in 25, 50, and 100 mg/L of Cr were 58.99 ± 0.7%, 69.8 ± 0.2%, and 82.87 ± 0.11%, respectively, while that by live cells was 73.08 ± 1.9%, 80.27 ± 6.33%, and 86.17 ± 1.93%, respectively. Live cells showed significantly higher Cr removal and adsorption capacities as compared to dead cells. In all concentrations, absorption contributed more than adsorption to the Cr removal by both live and dead cells. Absorption of Cr was subjected to occur due to passive mechanisms in dead cells while involving some active mechanisms in live cells. SEM-EDS confirmed the detection of Cr on the cell surface, while FTIR revealed the shifting of some peaks after the biosorption test, suggesting interactions between Cr and functional groups. Further TEM analysis is suggested to be conducted as a future approach to reveal the inner structure of cells and confirm the involvement of absorption mechanisms.


Subject(s)
Bacillus , Biodegradation, Environmental , Chromium , Water Pollutants, Chemical , Chromium/metabolism , Bacillus/metabolism , Adsorption , Water Pollutants, Chemical/metabolism , Textiles , Waste Disposal, Fluid/methods , Spectroscopy, Fourier Transform Infrared , Textile Industry , Wastewater/chemistry , Wastewater/microbiology
7.
PLoS One ; 19(4): e0299454, 2024.
Article in English | MEDLINE | ID: mdl-38625894

ABSTRACT

This paper develops an outsourcing collaboration model from a firm's perspective operating in a developing economy. The model considers that producers of the final goods residing in a developed country, and operators of manufacturing plants in a developing country collaborate with each other. The final goods producer supplies headquarter services for the production of intermediate goods in the developing country. The operators of manufacturing plants also supply their services in the domestic economy. This arrangement leads to foreign outsourcing collaborations (FOC) between firms of developed country and developing country. The operators of manufacturing plant maximize revenue subject to the cost constraint. The first order conditions suggests that an increase in wages of skilled labor, price of domestic inputs, and cost of production deter FOC. On the other hand, an increase in demand for and price of foreign headquarter services increases the FOC. Empirical analysis based on data collected from 217 clothing (textile and apparel) firms in the city of Faisalabad (Pakistan) reveals that an increase in wage to labor-productivity ratio reduces FOC. An improvement in skilled of the labor and foreign headquarter services give rise to FOC, whereas an increase in economies-of-scope enhances FOC. Additionally, an inverted U-shaped relationship is found between the cost of production and FOC, which shows that at the initial stage, the firm's cost of production increases with an increase in the level of FOC, but soon after the tipping point, the firm's cost starts decreasing with a further increase in FOC.


Subject(s)
Outsourced Services , Textile Industry , Humans , Pakistan , Commerce , Salaries and Fringe Benefits
8.
Chemosphere ; 357: 141920, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636914

ABSTRACT

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Subject(s)
Antimony , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Sewage/chemistry , Sewage/microbiology , Antimony/chemistry , Iron/chemistry , Adsorption , Textile Industry , Ferric Compounds/chemistry , Bioreactors/microbiology , Textiles , Biodegradation, Environmental , Aerobiosis
9.
J Environ Manage ; 358: 120845, 2024 May.
Article in English | MEDLINE | ID: mdl-38599093

ABSTRACT

High-rate membrane bioreactors (MBR), where the wastewater undergoes partial oxidation due to the applied short sludge retention time (SRT) and hydraulic retention time (HRT) values, retain the majority of the organic substances in the sludge through growth and biological flocculation. Thus, a raw material source with a high biomethane production potential is created for the widespread use of circular economy or energy-neutral plants in wastewater treatment. While high-rate MBRs have been successfully employed for energy-efficient treatment of domestic wastewater, there is a lack of research specifically focused on textile wastewater. This study aimed to investigate the textile wastewater treatment and organic matter recovery performances of an aerobic MBR system containing a hollow fiber ultrafiltration membrane with a 0.04 µm pore diameter. The system was initially operated at short SRTs (5 and 3 d) and different SRT/HRT ratios (5, 10, and 20) and subsequently at high-rate conditions (SRT of 0.5-2 d and HRT of 1.2-9.6 h) which are believed to be the most limiting conditions tested for treatment of real textile wastewater. The results showed that chemical oxygen demand (COD) removal averaged 77% even at SRT of 0.5 d and HRT of 1.2 h. Slowly biodegradable substrates and soluble microbial products (SMP) accumulated within the MBR at SRT of 0.5 and 1 d, which resulted in decreased sludge filterability. The observed sludge yield (Yobs) exhibited a considerable increase when SRT was reduced from 5 to 1 d. On the other hand, the SRT/HRT ratio displayed a decisive effect on the energy requirement for aeration.


Subject(s)
Bioreactors , Textiles , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Sewage , Biological Oxygen Demand Analysis , Membranes, Artificial , Textile Industry
10.
Environ Pollut ; 349: 123902, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38580061

ABSTRACT

The textile industry contributes substantially to water pollution. To investigate bioremediation of dye-containing wastewater, the decolorization and biotransformation of three textile azo dyes, Red HE8B, Reactive Green 27, and Acid Blue 29, were considered using an integrated remediation approach involving the microalga Chlamydomonas mexicana and activated sludge (ACS). At a 5 mg L-1 dye concentration, using C. mexicana and ACS alone, decolorization percentages of 39%-64% and 52%-54%, respectively, were obtained. In comparison, decolorization percentages of 75%-79% were obtained using a consortium of C. mexicana and ACS. The same trend was observed for the decolorization of dyes at higher concentrations, but the potential for decolorization was low. The toxic azo dyes adversely affect the growth of microalgae and at high concentration 50 mg L-1 the growth rate inhibited to 50-60% as compared to the control. The natural textile wastewater was also treated with the same pattern and got promising results of decolorization (90%). Moreover, the removal of BOD (82%), COD (72%), TN (64%), and TP (63%) was observed with the consortium. The HPLC and GC-MS confirm dye biotransformation, revealing the emergence of new peaks and the generation of multiple metabolites with more superficial structures, such as N-hydroxy-aniline, naphthalene-1-ol, and sodium hydroxy naphthalene. This analysis demonstrates the potential of the C. mexicana and ACS consortium for efficient, eco-friendly bioremediation of textile azo dyes.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Microalgae , Sewage , Textile Industry , Waste Disposal, Fluid , Water Pollutants, Chemical , Coloring Agents/metabolism , Coloring Agents/chemistry , Sewage/chemistry , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Textiles , Azo Compounds/metabolism
11.
Waste Manag ; 182: 74-90, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643525

ABSTRACT

To understand which are the best strategies for textile waste management and to analyse the effects on the environment of applying circular economy practices to textile products, a review of 45 publications where life cycle assessment (LCA) is applied to these topics has been carried out. The separate collection of textiles, followed by reuse and recycling brings relevant environmental benefits, with impacts related to reuse resulting lower than those of recycling. At the opposite, when mixed municipal solid waste is addressed to energy recovery, the textile fraction is the second most impacting on climate change, right after plastics, while for landfill disposal impacts textiles directly follow the more biodegradable fractions. Textiles manufacturing using recycled fibres generally gives lower impacts than using virgin ones, with a few exceptions in some impact categories for cotton and polyester. The circular practices with the lowest impacts are those that ensure the extension of the textiles service life. Another aim of this review is to identify the main variables affecting the life cycle impact assessment (LCIA). These resulted to be the yield and material demand of recycling processes, the use phase variables, the assumptions on virgin production replaced by reuse or recycling, the substitution factor in reuse, and transportation data in business models based on sharing. Thus, in LCA modelling, great attention should be paid to these variables. Future research should address these aspects, to acquire more relevant data, based on industrial-scale processes and on people habits towards the circular economy strategies applied to textiles.


Subject(s)
Recycling , Textiles , Waste Management , Recycling/methods , Waste Management/methods , Textile Industry , Solid Waste/analysis
12.
Environ Sci Pollut Res Int ; 31(23): 33190-33211, 2024 May.
Article in English | MEDLINE | ID: mdl-38676865

ABSTRACT

The textile industry, with its extensive use of dyes and chemicals, stands out as a significant source of water pollution. Exposure to certain textile dyes, such as azo dyes and their breakdown products like aromatic amines, has been associated with health concerns like skin sensitization, allergic reactions, and even cancer in humans. Annually, the worldwide production of synthetic dyes approximates 7 × 107 tons, of which the textile industry accounts for over 10,000 tons. Inefficient dyeing procedures result in the discharge of 15-50% of azo dyes, which do not adequately bind to fibers, into wastewater. This review delves into the genotoxic impact of azo dyes, prevalent in the textile industry, on aquatic ecosystems and human health. Examining different families of textile dye which contain azo group in their structure such as Sudan I and Sudan III Sudan IV, Basic Red 51, Basic Violet 14, Disperse Yellow 7, Congo Red, Acid Red 26, and Acid Blue 113 reveals their carcinogenic potential, which may affect both industrial workers and aquatic life. Genotoxic and carcinogenic characteristics, chromosomal abnormalities, induced physiological and neurobehavioral changes, and disruptions to spermatogenesis are evident, underscoring the harmful effects of these dyes. The review calls for comprehensive investigations into the toxic profile of azo dyes, providing essential insights to safeguard the aquatic ecosystem and human well-being. The importance of effective effluent treatment systems is underscored to mitigate adverse impacts on agricultural lands, water resources, and the environment, particularly in regions heavily reliant on wastewater irrigation for food production.


Subject(s)
Azo Compounds , Coloring Agents , Coloring Agents/toxicity , Azo Compounds/toxicity , Humans , Textile Industry , Water Pollutants, Chemical/toxicity , Textiles
13.
Chemosphere ; 353: 141538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428533

ABSTRACT

In this work, the bioremediation of wastewater from the textile industry with indigo dye content was carried out using combined bioaugmentation, bioventilation, and biostimulation techniques. Initially, the inoculum was prepared by isolating the microorganisms from the textile wastewater in a 2 L bioreactor. Then, the respirometry technique was implemented to determine the affinity of the microorganisms and the substrate by measuring CO2 and allowed the formulation of an empirical mathematical model for the growth kinetics of the microorganism. Finally, the bioremediation was carried out in a 3 L bioreactor obtaining an indigo dye removal efficiency of 20.7 ± 1.2%, 24.0 ± 1.5%, and 29.7 ± 1.1% for equivalent wavelengths of 436 nm, 525 nm, and 620 nm. The chemical oxygen demand showed an average reduction of 88.9 ± 2.5%, going from 470.7 ± 15.6 to 52.3 ± 10.7 ppm after 30 days under constant agitation and aeration. A negative generalized exponential model was fitted to assess the affinity of the microorganism with the wastewater as a substrate by evaluating the production of CO2 during the bioremediation. Bioremediation techniques improve water discharge parameters compared to chemical treatments implemented in the industry, reducing the use of substances that can generate secondary pollution. Bioaugmentation, biostimulation, and bioventing of the textile wastewater in this study demonstrate the potential of these combined techniques to serve as an efficient alternative for indigo-contaminated wastewater in the textile industry.


Subject(s)
Indigo Carmine , Wastewater , Biodegradation, Environmental , Carbon Dioxide , Textiles , Textile Industry
14.
Enzyme Microb Technol ; 177: 110424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479075

ABSTRACT

In this work, the polygalacturonase (TL-PG1) from the thermophilic fungus Thermomyces lanuginosus was heterologously produced for the first time in the yeast Komagataella phaffii. The TL-PG1 was successfully expressed under the control of the AOX1 promoter and sequentially purified by His-tag affinity. The purified recombinant pectinase exhibited an activity of 462.6 U/mL toward polygalacturonic acid under optimal conditions (pH 6 and 55 ˚C) with a 2.83 mg/mL and 0.063 µmol/minute for Km and Vmax, respectively. When used as supplementation for biomass hydrolysis, TL-PG1 demonstrated synergy with the enzymatic cocktail Ctec3 to depolymerize orange citrus pulp, releasing 1.43 mg/mL of reducing sugar. In addition, TL-PG1 exhibited efficiency in fabric bioscouring, showing potential usage in the textile industry. Applying a protein dosage of 7 mg/mL, the time for the fabric to absorb water was 19.77 seconds (ten times faster than the control). Adding the surfactant Triton to the treatment allowed the reduction of the enzyme dosage by 50% and the water absorption time to 6.38 seconds. Altogether, this work describes a new versatile polygalacturonase from T. lanuginosus with the potential to be employed in the hydrolysis of lignocellulosic biomass and bioscouring.


Subject(s)
Fungal Proteins , Polygalacturonase , Saccharomycetales , Biomass , Eurotiales/enzymology , Eurotiales/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolysis , Kinetics , Polygalacturonase/metabolism , Polygalacturonase/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Textile Industry , Textiles
15.
Environ Sci Pollut Res Int ; 31(17): 25312-25328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472579

ABSTRACT

It was aimed to determine the specific resource use and reduction potential profiles in various textile sub-sectors (cotton woven fabric dyeing-finishing, wool woven fabric dyeing-finishing, synthetic woven fabric dyeing-finishing, cotton knitted fabric, synthetic knit fabric dyeing-finishing, non-woven fabric, dyeing-finishing of knitted fabric). The main focus was to elucidate opportunities for sustainability in terms of decreasing resource utilization in the textile sector. On-site surveys and detailed data collection studies were carried out at 150 textile facilities. Average specific values for water, auxiliary chemicals, dyestuff, electricity, and steam consumptions, and related reduction potentials were calculated and compared within facilities and sub-sectors. The minimum specific resource consumption values reported in the Best Available Techniques Reference Document (BREF) for the textile industry and data of similar facilities from the literature were evaluated and used. A detailed environmental performance profile of the Turkish textile sector in terms of resource usage and reduction potential was generated. The highest specific water consumption was found in the wool-woven fabric sub-sector (345 ± 262 L/kg product). Although the specific auxiliary chemical consumption shows similarities within sub-sectors, the highest specific auxiliary chemical consumption (397 ± 237 g/kg product) was found in the synthetic woven fabric sub-sector. The sub-sector with the highest specific dyestuff consumption (30 ± 13 g/kg product) was the cotton knitted fabric sub-sector. The wool woven fabric industry had the highest specific electricity (7 ± 5.3 kWh/kg product) and steam (20 ± 11 kg steam/kg product) consumption. In addition, for all the studied sub-sectors country-wide, the lowest and highest reduction potentials in resource uses were 18 ± 15% and 73 ± 13%, respectively, suggesting a need for major full-scale implementations of cleaner production for enhancing sustainability in the textile industry.


Subject(s)
Steam , Textile Industry , Animals , Textiles , Wool Fiber , Coloring Agents
16.
J Air Waste Manag Assoc ; 74(5): 335-344, 2024 05.
Article in English | MEDLINE | ID: mdl-38407923

ABSTRACT

Azo dyes, when released untreated in the environment, cause detrimental effects on flora and fauna. Azoreductases are enzymes capable of cleaving commercially used azo dyes, sometimes in less toxic by-products which can be further degraded via synergistic microbial cometabolism. In this study, azoreductases encoded by FMN1 and FMN2 genes were screened from metagenome shotgun sequences generated from the samples of textile dye industries' effluents, cloned, expressed, and evaluated for their azo dye decolorization efficacy. At pH 7 and 45°C temperature, both recombinant enzymes FMN1 and FMN2 were able to decolorize methyl red at 20 and 100 ppm concentrations, respectively. FMN2 was found to be more efficient in decolorization/degradation of methyl red than FMN1. This study offers valuable insights into the possible application of azoreductases to reduce the environmental damage caused by azo dyes, with the hope of contributing to sustainable and eco-friendly practices for the environment management. This enzymatic approach offers a promising solution for the bioremediation of textile industrial effluents. However, the study acknowledges the need for further process optimization to enhance the efficacy of these enzymes in large-scale applications.Implications: The study underscores the environmental hazards associated with untreated release of azo dyes into the environment and emphasizes the potential of azoreductases, specifically those encoded by FMN1 and FMN2 genes, to mitigate the detrimental effects. The study emphasizes the ongoing commitment to refining and advancing the enzymatic approach for the bioremediation of azo dye-containing effluents, marking a positive stride toward more sustainable industrial practices.


Subject(s)
Cloning, Molecular , Industrial Waste , Nitroreductases , Textile Industry , Nitroreductases/genetics , Nitroreductases/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Flavin Mononucleotide/metabolism , Azo Compounds/metabolism , Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Coloring Agents/metabolism , Metagenomics/methods
17.
J Environ Sci (China) ; 140: 123-145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331495

ABSTRACT

The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water, energy, chemicals/dyes, and high generation of solid waste and effluents. Faced with environmental concerns, the textile ennoblement sector is the most critical of the textile production chain, especially the traditional dyeing processes. As an alternative to current problems, dyeing with supercritical CO2 (scCO2) has been presented as a clean and efficient process for a sustainable textile future. Supercritical fluid dyeing (SFD) has shown a growing interest due to its significant impact on environmental preservation and social, economic, and financial gains. The main SFD benefits include economy and reuse of non-adsorbed dyes; reduction of process time and energy expenditure; capture of atmospheric CO2 (greenhouse gas); use and recycling of CO2 in SFD; generation of carbon credits; water-free process; effluent-free process; reduction of CO2 emission and auxiliary chemicals. Despite being still a non-scalable and evolving technology, SFD is the future of dyeing. This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD. The SFD technique was introduced, along with its latest advances and future perspectives. Financial and environmental gains were also discussed.


Subject(s)
Carbon Dioxide , Textile Industry , Coloring Agents , Technology , Textiles , Industrial Waste/analysis , Waste Disposal, Fluid/methods
18.
J Occup Health ; 66(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38289711

ABSTRACT

OBJECTIVES: The purpose of this study was to present a systematic review of the health-related problems of factory workers in the textile and fashion industry. These workers endure long sitting postures, poor workspace conditions, and long working hours to complete their overload of tasks. This situation results in several health problems that affect the productivity, mental health, and well-being of the workers. METHODS: The relevant data (21 article publications) were obtained from the Scopus database. Analysis of the 21 articles was grouped under 3 research themes based on the critical reading of the content and abstracts: respiratory problems, musculoskeletal disorders, and psychological stressors and other health issues. RESULTS: The findings show that factory workers are exposed to dust particles of cotton and other raw materials, fumes, and chemicals from manufacturing processes. This prolonged exposure without the use of personal protective equipment (PPE) leads to respiratory diseases like byssinosis that affect the workers' health. Additionally, working in a particular posture due to the workstation design for prolonged hours causes musculoskeletal disorders or pains. Workers also suffer from anxiety, depression, and stress from workload and pressure, hence making them unstable with reduced productivity. CONCLUSIONS: The findings of the study reinforce the need for a safe workspace and spacious work environment, provision of PPE, training in occupational hazards, frequent health checks, and ergonomic assessment of workstations to reduce prolonged work postures. Stakeholders, employers, policymakers, and governments should collaborate to safeguard and protect the well-being and health of the workers at these factories.


Subject(s)
Byssinosis , Musculoskeletal Diseases , Occupational Diseases , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Byssinosis/complications , Textiles , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Textile Industry
19.
Environ Sci Pollut Res Int ; 31(9): 12597-12616, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38236573

ABSTRACT

Zero liquid discharge (ZLD) technology emerges as a transformative solution for sustainable wastewater management in the textile industry, emphasizing water recycling and discharge minimization. This review comprehensively explores ZLD's pivotal role in reshaping wastewater management practices within the textile sector. With a primary focus on water recycling and minimized discharge, the review thoroughly examines the economic and environmental dimensions of ZLD. Additionally, it includes a comparative cost analysis against conventional wastewater treatment methods and offers a comprehensive outlook on the global ZLD market. Presently valued at US $0.71 billion, the market is anticipated to reach US $1.76 billion by 2026, reflecting a robust annual growth rate of 12.6%. Despite ZLD's efficiency in wastewater recovery, environmental challenges, such as heightened greenhouse gas emissions, increased carbon footprint, elevated energy consumption, and chemical usage, are discussed. Methodologies employed in this review involve an extensive analysis of existing literature, empirical data, and case studies on ZLD implementation in the textile industry worldwide. While acknowledging existing adoption barriers, the review underscores ZLD's potential to guide the textile industry toward a more sustainable and environmentally responsible future.


Subject(s)
Wastewater , Water Purification , Technology , Recycling , Water Purification/methods , Water/analysis , Textile Industry
20.
Int J Phytoremediation ; 26(8): 1231-1242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38279798

ABSTRACT

This study focuses on the improvement of bioremediation of textile dye Reactive Red 195 using agro-industrial waste, groundnut oil cake (GNOC) obtained after oil-pressing. The treatment of GNOC with 1 N H2SO4 had resulted in physiochemical changes on the insoluble porous adsorbent, which improved their adsorption efficiency. The dye removal efficiency increased from 55% to 94% on acidification of GNOC. The raw groundnut oil cake (RGNOC) and acid-treated groundnut oil cake (AGNOC) were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction, and zeta potential. The rate and efficiency of dye adsorption were examined using adsorption kinetics and isotherm models. The results confirm that acid-treated GNOC eliminates impurities, alter the surface functional groups, and significantly increase porous surface areas of RGNOC. The investigation of key factors such as contact time, initial concentration of dye, static/agitation impact, particle size, and adsorbent dose had significantly influenced adsorption capacity of GNOC. Adsorption of dye fits best into the Langmuir model and equilibrium data of dye on AGNOC was explained by psuedo-second-order reaction with maximum adsorption capacity of 12.65 mg/g. This emphasis AGNOC has a very excellent potential to remove the textile dye Reactive Red dye from industrial effluent.


This study reports the primary investigation exploring the application of groundnut oil cake (RGNOC) and its acid-modified (AGNOC) version for the bioremediation of industrially used textile dye Reactive Red 195 (RR195). The core objective of this study is to use a low-cost biosorbent to remove RR195 dye from effluent that pose risk to the health and environment. This study analyses the adsorption capacity of RGNOC and its acid-modified version AGNOC to treat contaminated water and the influencing parameters. AGNOC adsorption potential for RR195 dye sequestration was shown to be higher compared to RGNOC. Acidification of the adsorbent is simple, cost expensive, and more efficient alternate approaches to scale up for industrial application. As a result, an attempt has been made to add a new adsorbent to the database.


Subject(s)
Azo Compounds , Biodegradation, Environmental , Coloring Agents , Water Pollutants, Chemical , Adsorption , Coloring Agents/chemistry , Industrial Waste , Waste Disposal, Fluid/methods , Textiles , Kinetics , Textile Industry , Naphthalenesulfonates
SELECTION OF CITATIONS
SEARCH DETAIL
...