Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
BMC Infect Dis ; 24(1): 530, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802763

ABSTRACT

BACKGROUND: The contact plate method is widely accepted and used in various fields where hygiene and contamination levels are crucial. Evidence regarding the applicability of the contact plate method for sampling fabric microbial contamination levels in real medical environments was limited. This study aimed to assess the applicability of the contact plate method for detecting microbial contamination on medical fabrics in a real healthcare environment, thereby providing a benchmark for fabric microbial sampling methods. METHODS: In a level three obstetrics ward of a hospital, twenty-four privacy curtains adjacent to patient beds were selected for this study. The contact plate and swab method were used to collect microbial samples from the privacy curtains on the 1st, 7th, 14th, and 28th days after they were hung. The total colony count on each privacy curtain surface was calculated, and microbial identification was performed. RESULTS: After excluding the effects of time, room type, and curtain location on the detected microbial load, the linear mixed-effects model analysis showed that contact plate method yielded lower colony counts compared to swab method (P < 0.001). However, the contact plate method isolated more microbial species than swab method (P < 0.001). 291 pathogenic strains were isolated using the contact plate method and 133 pathogenic strains were isolated via the swab method. There was no difference between the two sampling methods in the detection of gram-negative bacteria (P = 0.089). Furthermore, the microbial load on curtains in double-occupancy rooms was lower than those in triple-occupancy rooms (P = 0.021), and the microbial load on curtains near windows was lower than that near doors (P = 0.004). CONCLUSION: Contact plate method is superior to swab method in strain isolation. Swab method is more suitable for evaluating the bacterial contamination of fabrics.


Subject(s)
Colony Count, Microbial , Textiles , Humans , Textiles/microbiology , Bacteria/isolation & purification , Bacteria/classification , Specimen Handling/methods
2.
ACS Appl Bio Mater ; 7(5): 2911-2923, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38619913

ABSTRACT

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.


Subject(s)
Anti-Bacterial Agents , Graphite , Materials Testing , Nitrogen Compounds , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Graphite/chemistry , Graphite/pharmacology , Nitrogen Compounds/chemistry , Nitrogen Compounds/pharmacology , Purines/chemistry , Purines/pharmacology , Particle Size , Escherichia coli/drug effects , Textiles/microbiology , Masks , Microbial Sensitivity Tests , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Humans
3.
Int J Biol Macromol ; 265(Pt 1): 130929, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508548

ABSTRACT

The construction of Janus structures on cotton fabrics can endow the fabrics with dynamic multifunctional properties. However, because of the large pores between fabric fibers, the formation of Janus structures by grafting different functional coatings on the double surfaces of cotton fabrics via dipping technology is difficult. To construct Janus structures on cotton fabrics, mist polymerization and "grafting-through" polymerization technologies were used to graft polylauryl methacrylate and a heat-shrinkable thermosensitive antibacterial polymer on the inside and outside surfaces of the cotton fabric, respectively. The as-formed Janus cotton fabric demonstrated excellent antibacterial durability. Even after subjecting the Janus fabric to 70 laundering cycles, its bacterial rates against Escherichia coli and Staphylococcus aureus were > 93.0 %. Compared with the pristine cotton fabric, when the ambient temperature is high or low, the Janus fabric can adjust the skin temperature within 5 min by approximately ±3.0 °C. Additionally, the fabric exhibited excellent waterproof and moisture permeability properties. The Janus cotton fabrics prepared by the proposed strategy possess significant potential for applications in the field of wearable textiles.


Subject(s)
Cotton Fiber , Metal Nanoparticles , Silver/chemistry , Polymerization , Metal Nanoparticles/chemistry , Textiles/microbiology , Anti-Bacterial Agents/chemistry , Escherichia coli
4.
Int J Biol Macromol ; 259(Pt 1): 129085, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163508

ABSTRACT

Cotton textile is very comfortable to wear, and also provides an ideal environment for bacterial propagation, easily causing harm to human health. In order to address this issue, various antibacterial techniques are employed for cotton finishing. However, some processes are complex and involve the use of environmentally unfriendly chemicals. In this work, a durable and efficient antibacterial cotton fabric was prepared via grafting of an amino-compound containing dynamic disulfide bonds, and then in-situ deposition of silver nanoparticles (AgNPs). Briefly, the reactive α-lipoic acid-modified polyethyleneimine (mPEI) was introduced to the cotton fibers via thiol-ene click reaction. Subsequently, the amino groups and dynamically-generated sulfhydryl groups in the mPEI molecules were used to initiate the ultrafast reduction of silver ions without the participation of additional reductant, constructing a stable antibacterial layer on fiber surface. The results reveal that the amino and thiol groups of mPEI could form coordination bonds with the deposited silver nanoparticles, and the antibacterial ability of AgNP@cotton-g-mPEI fabric remains at a high level even after 20 washing cycles. After 30 min of contact with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), the antibacterial rates against both bacteria reached 99.99 %. Meanwhile, the network matrix constructed by the recombination of the dynamic disulfide bonds in mPEI endows the cotton fabric with detectable wrinkle resistance and encouraging anti-ultraviolet effect. The present work provides a novel alternative for preparation of durable and efficient antibacterial textiles.


Subject(s)
Metal Nanoparticles , Silver , Humans , Silver/chemistry , Cellulose/pharmacology , Escherichia coli , Metal Nanoparticles/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Textiles/microbiology , Cotton Fiber , Sulfhydryl Compounds/pharmacology
5.
Int J Biol Macromol ; 258(Pt 1): 128761, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101656

ABSTRACT

With the improvement of the hygiene awareness and pathogen prevention awareness of patients and medical staff, textiles with efficient and long-lasting pathogen inactivation effects are urgently needed. Photodynamic therapy (PDT) has rapidly developed into a new type of antibacterial technology due to its high antibacterial activity and has received widespread attention. However, the commonly used photosensitizers are mostly inorganic nanomaterials, which have poor adhesion to textiles and are not environmentally or human friendly. Here, we report a strategy of preparation of a sunlight-driven rechargeable antibacterial textiles based on natural antibacterial agents, which can work in light and dark conditions. The prepared BD-PTL@wool has long-lasting antibacterial properties, can rapidly produce ROS, and can store sterilization activity under light irradiation, ensuring all-day bacterial killing (>99.95 % under light irradiation and >99.80 % under dark conditions after light irradiation). BD-PTL@wool has excellent reusability, and the antibacterial rate can still above 95 % after repeated use for 5 times. In addition, BD-PTL@wool has excellent hydrophilic, UV resistance, biocompatibility and can withstand 50 washing cycles. The successful application of this strategy in textile preparation broadens the research idea for exploring the application of green photosensitive antibacterial materials in textile field.


Subject(s)
Photochemotherapy , Textiles , Humans , Anti-Bacterial Agents , Hydrophobic and Hydrophilic Interactions , Sunlight , Textiles/microbiology
6.
Sci Rep ; 13(1): 20556, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996620

ABSTRACT

While the global healthcare system is slowly recovering from the COVID-19 pandemic, new multi-drug-resistant pathogens are emerging as the next threat. To tackle these challenges there is a need for safe and sustainable antiviral and antibacterial functionalized materials. Here we develop an 'easy-to-apply' procedure for the surface functionalization of textiles, rendering them antiviral and antibacterial and assessing the performance of these textiles. A metal-free quaternary ammonium-based coating was applied homogeneously and non-covalently to hospital curtains. Abrasion, durability testing, and aging resulted in little change in the performance of the treated textile. Additionally, qualitative and quantitative antibacterial assays on Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumanii revealed excellent antibacterial activity with a CFU reduction of 98-100% within only 4 h of exposure. The treated curtain was aged 6 months before testing. Similarly, the antiviral activity tested according to ISO-18184 with murine hepatitis virus (MHV) showed > 99% viral reduction with the functionalized curtain. Also, the released active compounds of the coating 24 ± 5 µg mL-1 revealed no acute in vitro skin toxicity (IC50: 95 µg mL-1) and skin sensitization. This study emphasizes the potential of safe and sustainable metal-free textile coatings for the rapid antiviral and antibacterial functionalization of textiles.


Subject(s)
Ammonium Compounds , Viruses , Mice , Animals , Humans , Pandemics , Textiles/microbiology , Bacteria , Anti-Bacterial Agents/pharmacology , Antiviral Agents
7.
ACS Appl Mater Interfaces ; 15(24): 29425-29439, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37279206

ABSTRACT

Hospital-acquired (nosocomial) infections account for the majority of adverse health effects during care delivery, placing an immense financial strain on healthcare systems around the world. For the first time, the present article provides evidence of a straightforward pollution-free technique to fabricate a heteroatom-doped carbon dot immobilized fluorescent biopolymer composite for the development of functional textiles with antioxidant and antimicrobial properties. A simple, facile, and eco-friendly approach was devised to prepare heteroatom-doped carbon dots from waste green tea and a biopolymer. The carbon dots showed an excitation-dependent emission behavior, and the XPS data unveiled that they are co-doped with nitrogen and sulfur. A facile physical compounding strategy was adopted to fabricate a carbon dot reinforced biopolymeric composite followed by immobilization onto the textile. The composite textiles revealed excellent antioxidant activity, determined by 1,1-diphenyl-2-picrylhydrazyl (>80%) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid assays (>90%). The results of the disc diffusion assay indicated that the composite textiles substantially inhibited the growth of both tested bacteria Escherichia coli and Bacillus subtilis with increasing coating cycles. The time-dependent antibacterial experiments revealed that the nanocomposite can inhibit significant bacterial growth within a few hours. The present study could open up the possibility for the commercialization of inexpensive smart textile substrates for the prevention of microbial contamination used for the medical and healthcare field.


Subject(s)
Anti-Infective Agents , Antioxidants , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Carbon/chemistry , Coloring Agents , Textiles/microbiology
8.
Appl Microbiol Biotechnol ; 107(12): 3887-3897, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37199751

ABSTRACT

Nosocomial infections or healthcare-associated infections (HAIs) are acquired under medical care in healthcare facilities. In hospital environments, the transmission of infectious diseases through textiles such as white coats, bed linen, curtains, and towels are well documented. Textile hygiene and infection control measures have become more important in recent years due to the growing concerns about textiles as fomites in healthcare settings. However, systematic research in this area is lacking; the factors contributing to the transmission of infections through textiles needs to be better understood. The review aims to critically explore textiles as contaminants in healthcare systems, and to identify potential risks they may pose to patients and healthcare workers. It delineates different factors affecting bacterial adherence on fabrics, such as surface properties of bacteria and fabrics, and environmental factors. It also identifies areas that require further research to reduce the risk of HAIs and improve textile hygiene practices. Finally, the review elaborates on the strategies currently employed, and those that can be employed to limit the spread of nosocomial infections through fabrics. Implementing textile hygiene practices effectively in healthcare facilities requires a thorough analysis of factors affecting fabric-microbiome interactions, followed by designing newer fabrics that discourage pathogen load. KEY POINTS: • Healthcare textiles act as a potential reservoir of nosocomial pathogens • Survival of pathogens is affected by surface properties of fabric and bacteria • Guidelines required for fabrics that discourage microbial load, for hospital use.


Subject(s)
Cross Infection , Fomites , Humans , Textiles/microbiology , Cross Infection/prevention & control , Cross Infection/microbiology , Bacteria , Delivery of Health Care
9.
J Mater Chem B ; 11(23): 5101-5107, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37221892

ABSTRACT

In this study, we examined the modification of polypropylene non-woven fabrics (PP NWFs) via a one-step oxidation treatment using photo-activated chlorine dioxide radicals (ClO2˙). The oxidised PP NWFs exhibited excellent antibacterial activity against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The mound structure and antibacterial activity in the modified PP NWFs disappeared upon washing with a polar organic solvent. After washing, nanoparticles of around 80 nm in diameter were observed in the solution. The results of several mechanistic studies suggest that nanoparticles can contribute to the antimicrobial activity of oxidised PP NWFs.


Subject(s)
Polypropylenes , Textiles , Polypropylenes/pharmacology , Polypropylenes/chemistry , Textiles/microbiology , Oxides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
10.
Int J Biol Macromol ; 240: 124495, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37076078

ABSTRACT

Cotton fabrics (CFs) with persistent and rapid bactericidal capability would be of great significance for daily health protection because CFs are very suitable for the growth and reproduction of microorganisms. Herein, we developed a reactive N-halamine compound, 3-(3-hydroxypropyl diisocyanate)-5,5-dimethylhydantoin (IPDMH), that can be covalently bound to a CF to generate a bactericidal CF after chlorination (CF-DMF-Cl) without damaging its surface morphology. The antibacterial rates of CF-DMF-Cl (0.5 wt% IPDMH) against the gram-negative bacterium Escherichia coli (E. coli) and gram-positive bacterium Staphylococcus aureus (S. aureus) reached 99.99 % and were maintained at 90 % (against E. coli) and 93.5 % (against S. aureus) after 50 laundering cycles. The combination of contact killing and release killing mechanisms by CF-PDM-Cl leads to its rapid and persistent bactericidal activity. In addition, CF-DMF-Cl exhibits adequate biocompatibility, well-maintained mechanical properties, air/water vapor permeability and whiteness. Therefore, the proposed CF-DMF-Cl has great potential applications as a bactericidal CF for use in medical textiles, sportswear, home dressings, and so on.


Subject(s)
Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Amines , Textiles/microbiology , Cotton Fiber
11.
J Vis Exp ; (194)2023 04 07.
Article in English | MEDLINE | ID: mdl-37092818

ABSTRACT

Lab coats are widely used in biohazard laboratories and healthcare facilities as protective garments to prevent direct exposure to pathogens, spills, and burns. These cotton-based protective coats provide ideal conditions for microbial growth and attachment sites due to their porous nature, moisture-holding capacity, and retention of warmth from the user's body. Several studies have demonstrated the survival of pathogenic bacteria on hospital garments and lab coats, acting as vectors of microbial transmission. A common approach to fix these problems is the application of antimicrobial agents in textile finishing, but concerns have been raised due to the toxicity and environmental effects of many synthetic chemicals. The ongoing pandemic has also opened a window for the investigation of effective antimicrobials and eco-friendly and toxic-free formulations. This study uses two natural bioactive compounds, carvacrol and thymol, encapsulated in chitosan nanoparticles, which guarantee effective protection against four human pathogens with up to a 4-log reduction (99.99%). These pathogens are frequently detected in lab coats used in biohazard laboratories. The treated fabrics also resisted up to 10 wash cycles with 90% microbial reduction, which is sufficient for the intended use. We made modifications to the existing standard fabric tests to better represent the typical scenarios of lab coat usage. These refinements allow for a more accurate evaluation of the effectiveness of antimicrobial lab coats and for the simulation of the fate of any accidental microbial spills that must be neutralized within a short time. Further studies are recommended to investigate the accumulation of pathogens over time on antimicrobial lab coats compared to regular protective coats.


Subject(s)
Anti-Infective Agents , Cymenes , Disinfectants , Nanocapsules , Oils, Volatile , Plant Preparations , Protective Clothing , Thymol , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Nanocapsules/chemistry , Plant Preparations/chemistry , Plant Preparations/pharmacology , Protective Clothing/microbiology , Laboratories , Textiles/microbiology , Disinfectants/chemistry , Disinfectants/pharmacology , Thymol/chemistry , Thymol/pharmacology , Cymenes/chemistry , Cymenes/pharmacology , Disk Diffusion Antimicrobial Tests
12.
Nat Nanotechnol ; 18(2): 168-176, 2023 02.
Article in English | MEDLINE | ID: mdl-36585515

ABSTRACT

Cotton textiles are ubiquitous in daily life and are also one of the primary mediums for transmitting viruses and bacteria. Conventional approaches to fabricating antiviral and antibacterial textiles generally load functional additives onto the surface of the fabric and/or their microfibres. However, such modifications are susceptible to deterioration after long-term use due to leaching of the additives. Here we show a different method to impregnate copper ions into the cellulose matrix to form a copper ion-textile (Cu-IT), in which the copper ions strongly coordinate with the oxygen-containing polar functional groups (for example, hydroxyl) of the cellulose chains. The Cu-IT displays high antiviral and antibacterial performance against tobacco mosaic virus and influenza A virus, and Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis bacteria due to the antimicrobial properties of copper. Furthermore, the strong coordination bonding of copper ions with the hydroxyl functionalities endows the Cu-IT with excellent air/water retainability and superior mechanical stability, which can meet daily use and resist repeated washing. This method to fabricate Cu-IT is cost-effective, ecofriendly and highly scalable, and this textile appears very promising for use in household products, public facilities and medical settings.


Subject(s)
Antiviral Agents , Copper , Textiles/microbiology , Anti-Bacterial Agents , Cellulose
13.
Sci Rep ; 12(1): 17332, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36243757

ABSTRACT

Healthcare associated infections cause millions of hospitalizations and cost billions of dollars every year. A potential solution to address this problem is to develop antimicrobial textile for healthcare fabrics (hospital bedding, gowns, lab coats, etc.). Metal nanoparticle-coated textile has been proven to possess antimicrobial properties but have not been adopted by healthcare facilities due to risks of leaching and subsequent loss of function, toxicity, and environmental pollution. This work presents the development and testing of antimicrobial zinc nanocomposite textiles, fabricated using a novel Crescoating process. In this process, zinc nanoparticles are grown in situ within the bulk of different natural and synthetic fabrics to form safe and durable nanocomposites. The zinc nanocomposite textiles show unprecedented microbial reduction of 99.99% (4 log10) to 99.9999% (6 log10) within 24 h on the most common Gram-positive and Gram-negative bacteria, and fungal pathogens. Furthermore, the antimicrobial activity remains intact even after 100 laundry cycles, demonstrating the high longevity and durability of the textile. Independent dermatological evaluation confirmed that the novel textile is non-irritating and hypoallergenic.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanocomposites , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Textiles/microbiology , Zinc
14.
ACS Appl Mater Interfaces ; 14(38): 43732-43740, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121103

ABSTRACT

The ongoing COVID-19 pandemic has increased the use of single-use medical fabrics such as surgical masks, respirators, and other personal protective equipment (PPE), which have faced worldwide supply chain shortages. Reusable PPE is desirable in light of such shortages; however, the use of reusable PPE is largely restricted by the difficulty of rapid sterilization. In this work, we demonstrate successful bacterial and viral inactivation through remote and rapid radio frequency (RF) heating of conductive textiles. The RF heating behavior of conductive polymer-coated fabrics was measured for several different fabrics and coating compositions. Next, to determine the robustness and repeatability of this heating response, we investigated the textile's RF heating response after multiple detergent washes. Finally, we show a rapid reduction of bacteria and virus by RF heating our conductive fabric. 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) was removed from our conductive fabrics after only 10 min of RF heating; human cytomegalovirus (HCMV) was completely sterilized after 5 min of RF heating. These results demonstrate that RF heating conductive polymer-coated fabrics offer new opportunities for applications of conductive textiles in the medical and/or electronic fields.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Bacteria , COVID-19/prevention & control , Detergents , Heating , Humans , Pandemics , Polymers , Textiles/microbiology , Virus Inactivation
15.
PLoS One ; 17(6): e0269556, 2022.
Article in English | MEDLINE | ID: mdl-35658049

ABSTRACT

Due to greater environmental awareness, domestic laundry habits are changing, and antimicrobial control by chemical methods has become an essential factor to compensate for the use of lower temperatures during washing machine cycles. Disinfectants added to laundry detergents are a preventive strategy to reduce the transmission of bacteria, fungi, and viruses in the home, correct aesthetic damage (e.g., spotting, discolouration, and staining), and control the microbial contamination that leads to malodour. In Europe, disinfectants are regulated by the EU Biocidal Products Regulation (No. 528/2012), which stipulates that antimicrobial efficacy must be evaluated according to standardized methods. Current European standards for laundry sanitization only apply to clinical settings (EN 16616: 2015) and are restricted to the main wash cycle. Therefore, there is a gap in the EU standards regarding the testing of product efficacy in household laundering. With the aim of addressing this gap, an international ring trial was organized to evaluate the robustness of a new method (prEN 17658) designed to test the efficacy of antimicrobial laundry products in a domestic setting. The seven participating laboratories were equipped with 5 different laboratory-scale devices to simulate the washing process, and they evaluated 7 microbial parameters for 2 experimental conditions and 3 levels of active substance. The analysis of data according to ISO 5725-2 and ISO 13528 demonstrated that the method was robust. All reproducibility standard deviation values were between 0.00 and 1.40 and the relative standard deviation indicates satisfactory reproducibility. Values of logarithmic reduction ranged from less than 2 log10 for tests with water to more than 5 log10 when disinfectants were added. The evidence generated by the ring trial was presented in a proposal for a standardized method under CEN/TC 216, in which the SOP used in the ring trial is referred to as the prEN 17658 phase 2 step 2 test method covering chemothermal textile disinfection in domestic settings.


Subject(s)
Anti-Infective Agents , Disinfectants , Laundering , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Laundering/methods , Reproducibility of Results , Textiles/microbiology
16.
Sci Rep ; 12(1): 1321, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079098

ABSTRACT

Bacterial infectious diseases are serious health problem which extends to economic and social complications. Moreover, bacterial antibiotic resistance, lack of suitable vaccine or emergence of new mutations is forcing the development of novel antimicrobial agents. The objective of this study is to synthesize and characterize star-like zinc oxide nanoparticles for the application of antibacterial activities in cellulose based hygiene products. ZnO NPs were in situ synthesized via precipitation method on the surface of cellulose fibers. Since bactericidal activity of nanoparticles in part depends on the concentration in the growth medium, various amount of ZnO was incorporated into cellulose matrix ranging from 1 to 3 wt%. Microscopic (TEM, SEM) and spectroscopic (FT-IR, XRD) methods were utilized to investigate the final products. The infrared absorption spectra analysis supported by theoretical finding that during the reaction, ZnO nanoparticles could be bonded with cellulose fibers via hydrogen bonding. The yield of functionalization was determined through thermogravimetric analysis. Collected data proved the successful functionalization of the cellulose fibers with nanoparticles. Static contact angle measurements were carried out showing absorptive character of as prepared fabrics. All the samples were tested for the antibacterial properties and the results were compared to the samples prepared from the pristine cellulose fibers. Moreover, mechanical tests were performed revealing that the addition of only 2 wt% of the nanofiller boosted tensile, tearing and bursting strength by a factor of 1.6, 1.4 and 2.2 in comparison to unfunctionalized paper sample, respectively. Fabricated fabric presenting high hydrophilicity and antibacterial properties have gained increased applications in fabric industry, including hygiene product industry and hence the result of this study would be a welcomed option.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/pharmacology , Metal Nanoparticles/microbiology , Nanocomposites/microbiology , Textiles/microbiology , Zinc Oxide/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
17.
Am J Infect Control ; 50(7): 755-757, 2022 07.
Article in English | MEDLINE | ID: mdl-34883159

ABSTRACT

BACKGROUND: The ability of healthcare associate infection (HAI) pathogens to persist on fomites is crucial to their transmission within the healthcare setting, this study evaluated the persistence of 3 common HAI pathogens on fabrics materials commonly used in healthcare settings. METHODS: Persistence of bacteria species on fabric was investigate by inoculating standardized inoculum prepared from the clinical isolates of Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii on sterile swatches of 100% cotton, microfiber and polyester. Viable bacteria persisting on the inoculated fabrics were evaluated immediate after inoculation and subsequently at 96-hour interval for 32 days using the drop plate technique. The effect of moisture on the persistence of the studied bacteria isolates was also evaluated. RESULTS: Between 3 and 6 log reduction in the viability of the inoculated bacteria cells were observed after 32 days of inoculation on fabrics. Generally, lower viable cells were recovered from the microfiber fabrics compared to others, while higher viable cells were recovered from wet fabrics compared to the dry fabrics in this study. DISCUSSION AND CONCLUSIONS: This study demonstrated that HAI bacteria pathogens can persist for more than a month on hospital fabrics, and that their persistence can be enhanced by moisture.


Subject(s)
Cross Infection , Textiles , Bacteria , Delivery of Health Care , Escherichia coli , Gram-Negative Bacteria , Hospitals , Humans , Textiles/microbiology
18.
Sci Rep ; 11(1): 21542, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728780

ABSTRACT

Washed textiles can remain malodorous and dingy due to the recalcitrance of soils. Recent work has found that 'invisible' soils such as microbial extracellular DNA (eDNA) play a key role in the adhesion of extracellular polymeric substances that form matrixes contributing to these undesirable characteristics. Here we report the application of an immunostaining method to illustrate the cleaning mechanism of a nuclease (DNase I) acting upon eDNA. Extending previous work that established a key role for eDNA in anchoring these soil matrixes, this work provides new insights into the presence and effective removal of eDNA deposited on fabrics using high-resolution in-situ imaging. Using a monoclonal antibody specific to Z-DNA, we showed that when fabrics are washed with DNase I, the incidence of microbial eDNA is reduced. As well as a quantitative reduction in microbial eDNA, the deep cleaning benefits of this enzyme are shown using confocal microscopy and imaging analysis of T-shirt fibers. To the best of our knowledge, this is the first time the use of a molecular probe has been leveraged for fabric and homecare-related R&D to visualize eDNA and evaluate its removal from textiles by a new-to-laundry DNase enzyme. The approaches described in the current work also have scope for re-application to identify further cleaning technology.


Subject(s)
Bacteria/metabolism , Bacterial Adhesion , DNA, Bacterial/isolation & purification , Deoxyribonuclease I/metabolism , Extracellular Vesicles/metabolism , Molecular Imaging/methods , Textiles/analysis , DNA, Bacterial/metabolism , Textiles/microbiology
19.
Sci Rep ; 11(1): 21866, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750366

ABSTRACT

Healthcare-associated infections (HAIs) are an important global issue, leading to poor patient outcomes. A potential route of transmission of HAIs is through contact with hospital privacy curtains. The aim of this study is to evaluate cleaning on reduction of curtain bacterial burden. In this pilot cluster randomized controlled trial we compared the bacterial burden between three groups of 24 curtains on a regional burn/plastic surgery ward. A control group was not cleaned. Two groups were cleaned at 3-4 day intervals with either disinfectant spray or wipe. The primary outcome was the difference in mean CFU/cm2 between day 0 to day 21. The secondary outcome was the proportion of curtains contaminated with Methicillin-resistant Staphylococcus aureus (MRSA). By day 21, the control group was statistically higher (2.2 CFU/cm2) than spray (1.3 CFU/cm2) or wipe (1.5 CFU/cm2) (p < 0.05). After each cleaning at 3-4 day intervals, the bacterial burden on the curtains reduced to near day 0 levels; however, the level increased again over the intervening 3-4 days. By day 21, 64% of control curtains were contaminated with MRSA compared to 10% (spray) and 5% (wipe) (p < 0.05). This study show that curtains start clean and progressively become contaminated with bacteria. Regularly cleaning curtains with disinfectant spray or wipes reduces bacterial burden and MRSA contamination.


Subject(s)
Bedding and Linens/microbiology , Disinfection/methods , Bacterial Load , Burn Units , Cross Infection/microbiology , Cross Infection/prevention & control , Cross Infection/transmission , Environmental Microbiology , Hospitals , Humans , Manitoba , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Pilot Projects , Polyesters , Privacy , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/transmission , Textiles/microbiology
20.
Microbiol Spectr ; 9(2): e0118521, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643452

ABSTRACT

Colonization of textiles and subsequent metabolic degradation of sweat and sebum components by axillary skin bacteria cause the characteristic sweat malodor and discoloring of dirty clothes. Once inside the textile, the bacteria can form biofilms that are hard to remove by conventional washing. When the biofilm persists after washing, the textiles retain the sweat odor. To design biofilm removal and prevention strategies, the bacterial behavior needs to be understood in depth. Here, we aim to study the bacterial behavior in each of the four stages of the bacterial life cycle in textiles: adhesion, growth, drying, and washing. To accomplish this, we designed a novel in vitro model to mimic physiological sweating in cotton and polyester textiles, in which many of the parameters that influence bacterial behavior could be controlled. Due to the higher hydrophobicity, polyester adhered more bacteria and absorbed more sebum, the bacteria's primary nutrient source. Bacteria were therefore also more active in polyester textiles. However, polyester did not bind water as well as cotton. The increased water content of cotton allowed some species to retain a higher activity after the textile had dried. However, none of the textiles retained enough water upon drying to prevent the bacteria from adhering irreversibly to the textile fibers. This work demonstrates that bacterial colonization of textiles depends partially on the hydrophobic and hygroscopic properties of the textile material, indicating that it might be possible to direct bacterial behavior in a more favorable direction by modifying these surface properties. IMPORTANCE During sweating, bacteria from the skin enter the worn textile along with the sweat. Once inside the clothes, the bacteria produce sweat malodor and form colonies that are extremely hard to remove by washing. Over time, this leads to a decreasing textile quality and consumer comfort. To design prevention and removal mechanisms, we investigated the behavior of bacteria during the four stages of their life cycle in textiles: adhesion, growth, drying, and washing. The bacterial behavior in textiles during all four stages is found to be affected by the textile's ability to bind water and fat. The study indicates that sweat malodor and bacterial accumulation in textiles over time can be reduced by making the textiles more repellant to water and fat.


Subject(s)
Bacteria/growth & development , Textiles/analysis , Textiles/microbiology , Bacteria/chemistry , Bacterial Adhesion , Bacterial Physiological Phenomena , Biofilms , Clothing , Humans , Hydrophobic and Hydrophilic Interactions , Polyesters/chemistry , Sebum/metabolism , Skin/metabolism , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...