Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.843
Filter
1.
Folia Biol (Praha) ; 70(1): 74-83, 2024.
Article in English | MEDLINE | ID: mdl-38830125

ABSTRACT

Chlamydia psittaci pneumonia (CPP) is a lung disease caused by the infection with the Chla-mydia psittaci bacterium, which can lead to severe acute respiratory distress syndrome and systemic symptoms. This study explored the specific mechanisms underlying the impact of reactive oxygen species (ROS) on the Th17/Treg balance in CPP. The levels of ROS and the differentiation ratio of Th17/Treg in the peripheral blood of healthy individuals and CPP patients were measured using ELISA and flow cytometry, respectively. The association between the ROS levels and Th17/Treg was assessed using Pearson correlation analysis. The ROS levels and the Th17/Treg ratio were measured in CD4+ T cells following H2O2 treatment and NLRP3 inhibition. The effects of H2O2 treatment and NLRP3 inhibition on the NLRP3/IL-1ß/caspase-1 pathway were observed using immunoblotting. Compared to the healthy group, the CPP group exhibited increased levels of ROS in the peripheral blood, an elevated ratio of Th17 differentiation, and a decreased ratio of Treg differentiation. ROS levels were positively correlated with the Th17 cell proportion but negatively correlated with the Treg cell proportion. The ROS levels and NLRP3/IL-1ß/caspase-1 expression were up-regulated in CD4+ T cells after H2O2 treatment. Furthermore, there was an increase in Th17 differentiation and a decrease in Treg differentiation. Conversely, the NLRP3/IL-1ß/caspase-1 pathway inhibition reversed the effects of H2O2 treatment, with no significant change in the ROS levels. ROS regulates the Th17/Treg balance in CPP, possibly through the NLRP3/IL-1ß/caspase-1 pathway. This study provides a new perspective on the development of immunotherapy for CPP.


Subject(s)
Caspase 1 , Cell Differentiation , Chlamydophila psittaci , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , T-Lymphocytes, Regulatory , Th17 Cells , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Reactive Oxygen Species/metabolism , T-Lymphocytes, Regulatory/immunology , Caspase 1/metabolism , Cell Differentiation/drug effects , Interleukin-1beta/metabolism , Signal Transduction , Male , Female , Middle Aged , Adult , Hydrogen Peroxide/metabolism , Psittacosis
2.
Food Funct ; 15(10): 5641-5654, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38726659

ABSTRACT

Exposure to food allergens elicits fast changes in the intestinal microenvironment, which guides the development of allergic reactions. Investigating the key information about these changes may help in better understanding food allergies. In this research, we explored the relationship between a food allergy and extracellular adenosine triphosphate (ATP), a danger molecule that has been proved to regulate the onset of allergic asthma and dermatitis but has not been studied in food allergies, by developing a unique animal model through allergen-containing diet feeding. After consuming an allergen-containing diet for 7 days, the allergic mice exhibited severe enteritis with elevated luminal ATP levels. The dysregulated luminal ATP worsened food-induced enteritis by enhancing Th17 cell responses and increasing mucosal neutrophil accumulation. In vitro experiments demonstrated that ATP intervention facilitated Th17 cell differentiation and neutrophil activation. In addition, the diet-induced allergy showed noticeable gut dysbiosis, characterized by decreased microbial diversity and increased diet-specific microbiota signatures. As the first, we show that food-induced enteritis is associated with an elevated concentration of luminal ATP. The dysregulated extracellular ATP exacerbated the enteritis of mice to a food challenge by manipulating intestinal Th17 cells and neutrophils.


Subject(s)
Adenosine Triphosphate , Food Hypersensitivity , Neutrophil Activation , Neutrophils , Th17 Cells , Animals , Adenosine Triphosphate/metabolism , Mice , Food Hypersensitivity/immunology , Th17 Cells/immunology , Neutrophils/immunology , Neutrophils/metabolism , Disease Models, Animal , Female , Gastrointestinal Microbiome , Mice, Inbred C57BL , Allergens/immunology , Enteritis/immunology , Mice, Inbred BALB C , Humans
3.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Article in English | MEDLINE | ID: mdl-38691831

ABSTRACT

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Intestinal Mucosa , Sepsis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Gastrointestinal Microbiome/drug effects , Sepsis/immunology , Sepsis/drug therapy , Sepsis/complications , Th17 Cells/immunology , Th17 Cells/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Male , Rats, Sprague-Dawley
4.
Sci Rep ; 14(1): 10595, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719908

ABSTRACT

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Subject(s)
Gene Regulatory Networks , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Transcriptome , Th17 Cells/immunology , Th17 Cells/metabolism , Female , Male , Adult , Middle Aged , Gene Expression Regulation , Lung/pathology , Lung/metabolism , RNA, Competitive Endogenous
5.
Immunol Lett ; 267: 106862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702033

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
6.
J Immunol ; 212(12): 1877-1890, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700398

ABSTRACT

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.


Subject(s)
Inflammation , Osmotic Pressure , Th17 Cells , Tilapia , Animals , Th17 Cells/immunology , Inflammation/immunology , Tilapia/immunology , Signal Transduction/immunology , Lymphocyte Activation/immunology , Interleukin-17/metabolism , Interleukin-17/immunology
7.
Int Immunopharmacol ; 134: 112217, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718658

ABSTRACT

The imbalance between T helper cell 17 (Th17)and regulatory T cells (Treg) cells leading to inflammation has an important role in the pathogenesis of ulcerative colitis (UC). Mammalian target of rapamycin (mTOR) can regulate the differentiation of T cells, but the specific pathway leading mTOR to regulate Th17/Treg cells in UC remains unclear. Our aim with this study was to investigate the effects of mTOR overexpression and silencing on the hypoxia inducible factor-1α (HIF-1α) - Th17/Treg signaling pathway. To mimic a human study, we established a colon cancer epithelial cell line (HT-29) co-culture system with human CD4+ T cells, and we treated the cells with TNF-α. We observed the effects of mTOR on the HIF-Th17/Treg signaling pathway to determine whether mTOR is involved in the regulatory mechanism. Under the stimulation of TNF-α, the levels of HIF-1α in CD4+T cells were increased in the HT-29 co-culture with CD4+ T cells, promoting glycolysis, increasing the Th17 proportion, decreasing the Treg proportion, increasing the pro-inflammatory factors levels, and decreasing the anti-inflammatory factors levels. Moreover, after mTOR silencing, the HIF-1α level and cell glycolysis levels decreased, Th17 cell differentiation decreased, the pro-inflammatory factor levels decreased, and the anti-inflammatory factor levels increased. In contrast, mTOR overexpression lead to the opposite results.mTOR promotes inflammation by regulating the HIF signaling pathway during UC, and silencing mTOR may alleviate inflammation. An mTOR inhibitor is a potential therapeutic target for UC treatment.


Subject(s)
Coculture Techniques , Colitis, Ulcerative , Hypoxia-Inducible Factor 1, alpha Subunit , Signal Transduction , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases , Th17 Cells , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , TOR Serine-Threonine Kinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Th17 Cells/immunology , HT29 Cells , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , Inflammation/immunology , Glycolysis
8.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692922

ABSTRACT

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


Subject(s)
CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Signal Transduction , TNF Receptor-Associated Factor 5 , Humans , Animals , TNF Receptor-Associated Factor 5/genetics , TNF Receptor-Associated Factor 5/metabolism , TNF Receptor-Associated Factor 5/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cytokine Receptor gp130/physiology , Cytokine Receptor gp130/metabolism , Th17 Cells/immunology , Interleukin-6/metabolism , Interleukin-6/physiology , Cell Differentiation , Receptors, Interleukin-6/physiology , Receptors, Interleukin-6/metabolism , Janus Kinases/metabolism , Janus Kinases/physiology , STAT Transcription Factors/physiology , STAT Transcription Factors/metabolism , Mice
9.
FASEB J ; 38(10): e23667, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742812

ABSTRACT

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Subject(s)
Colitis , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Trinitrobenzenesulfonic Acid , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Janus Kinase 2/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , STAT3 Transcription Factor/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Signal Transduction/drug effects , Trinitrobenzenesulfonic Acid/toxicity , Male , Mice, Inbred BALB C , Cell Differentiation/drug effects
10.
J Neuroinflammation ; 21(1): 126, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734662

ABSTRACT

Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Myasthenia Gravis , T-Lymphocytes, Regulatory , Th17 Cells , Thymoma , Thymus Gland , Thymus Neoplasms , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Thymoma/complications , Thymoma/genetics , Thymoma/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/metabolism , Th17 Cells/immunology , Thymus Gland/pathology , Male , Female , Thymus Neoplasms/complications , Thymus Neoplasms/genetics , Adult , Middle Aged , Aged
11.
Sci Rep ; 14(1): 11243, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755179

ABSTRACT

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Subject(s)
Matrix Attachment Region Binding Proteins , MicroRNAs , Purpura, Thrombocytopenic, Idiopathic , Stromal Interaction Molecule 1 , T-Lymphocytes, Regulatory , Th17 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Humans , Animals , Mice , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/metabolism , Female , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Adult , Middle Aged , Gene Expression Regulation , Disease Models, Animal
12.
Biomolecules ; 14(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38785955

ABSTRACT

Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting 1-3% of the world's population, with an impact on quality of life similar to diseases like cancer or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association (GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential psoriasis risk genes determined through GWAS can be annotated and characterised using functional genomics, allowing the identification of novel drug targets and the repurposing of existing drugs. This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and intracellular signaling pathways involved. This includes examination of currently available biological treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure, showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and how they can impact treatment. This could allow for patient stratification towards the treatment most likely to reduce the burden of disease for the longest period possible.


Subject(s)
Genome-Wide Association Study , Genomics , Psoriasis , Humans , Psoriasis/genetics , Psoriasis/drug therapy , Interleukin-23/genetics , Interleukin-23/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Signal Transduction/genetics , Genetic Predisposition to Disease
13.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791096

ABSTRACT

UICC stage IV small-cell lung cancer (SCLC) is a highly aggressive malignancy without curative treatment options. Several randomized trials have demonstrated improved survival rates through the addition of checkpoint inhibitors to first-line platin-based chemotherapy. Consequently, a combination of chemo- and immunotherapy has become standard palliative treatment. However, no reliable predictive biomarkers for treatment response exist. Neither PD-L1 expression nor tumor mutational burden have proven to be effective predictive biomarkers. In this study, we compared the cellular immune statuses of SCLC patients to a healthy control cohort and investigated changes in peripheral blood B, T, and NK lymphocytes, as well as several of their respective subsets, during treatment with immunochemotherapy (ICT) using flow cytometry. Our findings revealed a significant decrease in B cells, while T cells showed a trend to increase throughout ICT. Notably, high levels of exhausted CD4+ and CD8+ cells, alongside NK subsets, increased significantly during treatment. Furthermore, we correlated decreases/increases in subsets after two cycles of ICT with survival. Specifically, a decrease in Th17 cells indicated a better overall survival. Based on these findings, we suggest conducting further investigation into Th17 cells as a potential early predictive biomarkers for response in patients receiving palliative ICT for stage IV SCLC.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , Small Cell Lung Carcinoma , Th17 Cells , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Male , Female , Middle Aged , Aged , Th17 Cells/immunology , Th17 Cells/metabolism , Neoplasm Staging , Immunotherapy/methods , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/drug effects , Adult , Prognosis
14.
J Ethnopharmacol ; 331: 118275, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38729534

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Da-Jian-Zhong decoction (DJZD) is a herbal formula clinically used for abdominal pain and diarrhea induced by spleen-Yang deficiency syndrome. Recently, treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) with DJZD has received increasing attention, but the underlying mechanism of action remains elusive. AIM OF THE STUDY: We aimed to evaluate the therapeutic effect of DJZD on IBS-D rats and to elucidate the underlying mechanisms. MATERIALS AND METHODS: An IBS-D rats model was constructed using a two-factor superposition method of neonatal maternal separation and Senna folium aqueous extract lavage. Moreover, the effect of DJZD was evaluated based on the body weight, rectal temperature, abdominal withdrawal reflex (AWR), and Bristol stool scale score (BSS). The factors that regulate the DJZD effects on IBS-D were estimated using whole microbial genome, transcriptome sequencing (RNA-Seq), flow cytometry, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) analyses. RESULTS: We found that DJZD alleviated the symptoms of IBS-D rats, with the low-dose (2.4 g/kg) as the better ones, as shown by the higher body weight and lower AWR score and BSS. At the phylum level, the relative abundance of Bacteroidetes was obviously increased, and at the genus level, Lactobacillus and Parabacteroides were increased, while that of Firmicutes_bacterium_424 and Ruminococcus gnavus was decreased in DJZD group. Furthermore, the significantly enriched GO terms after treatment with DJZD mainly included the immune response, positive regulation of activated T cell proliferation, and positive regulation of interleukin-17 (IL-17) production. Importantly, flow cytometry analysis further revealed that the T helper cell type 17/regulatory T cell (Th17/Treg) balance contributed to the DJZD-induced alleviation of IBS-D symptoms, as DJZD downregulated Th17/Treg ratio and Th17 cell-related cytokines IL-17 and IL-6 levels in the colon. CONCLUSIONS: These results demonstrated that DJZD has a good therapeutic effect on IBS-D rats, probably by maintaining the homeostasis of gut microbiota and regulating Th17/Treg balance and its related inflammatory factors.


Subject(s)
Diarrhea , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Rats, Sprague-Dawley , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Irritable Bowel Syndrome/drug therapy , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Diarrhea/drug therapy , Th17 Cells/drug effects , Th17 Cells/immunology , Male , T-Lymphocytes, Regulatory/drug effects , Rats , Disease Models, Animal , Female
15.
Front Immunol ; 15: 1327051, 2024.
Article in English | MEDLINE | ID: mdl-38807599

ABSTRACT

Introduction: The CC chemokine ligand 18 (CCL18) is a chemokine highly expressed in chronic inflammation in humans. Recent observations of elevated CCL18 plasma levels in patients with acute cardiovascular syndromes prompted an investigation into the role of CCL18 in the pathogenesis of human and mouse atherosclerosis. Methods and results: CCL18 was profoundly upregulated in ruptured human atherosclerotic plaque, particularly within macrophages. Repeated administration of CCL18 in Western-type diet-fed ApoE -/- mice or PCSK9mut-overexpressing wild type (WT) mice led to increased plaque burden, enriched in CD3+ T cells. In subsequent experimental and molecular modeling studies, we identified CCR6 as a functional receptor mediating CCL18 chemotaxis, intracellular Ca2+ flux, and downstream signaling in human Jurkat and mouse T cells. CCL18 failed to induce these effects in vitro in murine spleen T cells with CCR6 deficiency. The ability of CCR6 to act as CCL18 receptor was confirmed in vivo in an inflammation model, where subcutaneous CCL18 injection induced profound focal skin inflammation in WT but not in CCR6-/- mice. This inflammation featured edema and marked infiltration of various leukocyte subsets, including T cells with a Th17 signature, supporting CCR6's role as a Th17 chemotactic receptor. Notably, focal overexpression of CCL18 in plaques was associated with an increased presence of CCR6+ (T) cells. Discussion: Our studies are the first to identify the CCL18/CCR6 axis as a regulator of immune responses in advanced murine and human atherosclerosis.


Subject(s)
Atherosclerosis , Chemokines, CC , Receptors, CCR6 , Animals , Humans , Atherosclerosis/immunology , Atherosclerosis/metabolism , Mice , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Chemokines, CC/metabolism , Chemokines, CC/genetics , Disease Models, Animal , Mice, Inbred C57BL , Jurkat Cells , Plaque, Atherosclerotic/immunology , Mice, Knockout , Male , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Female , Mice, Knockout, ApoE
16.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38819409

ABSTRACT

Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.


Subject(s)
Cell Plasticity , Interleukin-17 , Periodontitis , Th17 Cells , Th17 Cells/immunology , Animals , Periodontitis/immunology , Periodontitis/pathology , Cell Plasticity/immunology , Interleukin-17/metabolism , Interleukin-17/immunology , Mice , Interleukin-6/metabolism , Mice, Inbred C57BL , T Follicular Helper Cells/immunology , Gingiva/immunology , Gingiva/pathology , Immunoglobulin G/immunology , Alveolar Bone Loss/immunology , Alveolar Bone Loss/pathology
17.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38739976

ABSTRACT

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Diarylheptanoids , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Diarylheptanoids/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Colitis/microbiology , Male , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Th2 Cells/immunology , Th2 Cells/drug effects , Humans
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 373-377, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710521

ABSTRACT

Patients with Hashimoto's thyroiditis had increased numbers of Th17 cells in serum and thyroid tissue, significantly elevated levels of interleukin 17 (IL-17), and an imbalance in the ratio of Th17 cells to regulatory T cells (Tregs). The reduced Tregs' ratio leads to a reduction in immunosuppressive function within the thyroid gland, while Th17 cells are involved in the development of HT by regulating the expression of pro-inflammatory cytokines in the thyroid gland and mediating thyroid tissue fibrosis through the secretion of IL-17.


Subject(s)
Hashimoto Disease , Interleukin-17 , T-Lymphocytes, Regulatory , Th17 Cells , Hashimoto Disease/immunology , Hashimoto Disease/blood , Hashimoto Disease/metabolism , Humans , Interleukin-17/metabolism , Interleukin-17/blood , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thyroid Gland/immunology , Thyroid Gland/metabolism , Animals
19.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38716729

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.


Subject(s)
Dermatitis, Atopic , Staphylococcal Skin Infections , Staphylococcus aureus , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Staphylococcus aureus/immunology , Child , Female , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology , Male , Child, Preschool , Skin/microbiology , Skin/immunology , Skin/pathology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Th1 Cells/immunology , Th2 Cells/immunology , Th17 Cells/immunology , Bayes Theorem , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Intraepithelial Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Membrane Glycoproteins
20.
PLoS One ; 19(5): e0301687, 2024.
Article in English | MEDLINE | ID: mdl-38718078

ABSTRACT

In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.


Subject(s)
Enzyme-Linked Immunospot Assay , Th1 Cells , Th17 Cells , Toxoplasma , Toxoplasmosis , Humans , Th1 Cells/immunology , Th17 Cells/immunology , Enzyme-Linked Immunospot Assay/methods , Toxoplasmosis/immunology , Toxoplasma/immunology , Cytokines/immunology , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...